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Description

xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear
models and allows you to specify the within-group correlation structure for the panels.

Quick start
Population-averaged linear regression of y on x1 and x2

xtgee y x1 x2

Same as above, but estimate time-varying intragroup correlations
xtgee y x1 x2, corr(unstructured)

Same as above, but estimate a common second-order autoregression structure for the within-panel
correlation

xtgee y x1 x2, corr(ar 2)

Population-averaged negative binomial regression of y2 on x3 and x4 equivalent to xtnbreg, pa

xtgee y2 x3 x4, family(nbinomial 1)

Population-averaged logistic regression of y3 on x5 and x6 when y3 is the number of events out of
10 trials

xtgee y3 x5 x6, family(binomial 10)

Menu
Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equations
(GEE)
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Syntax
xtgee depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

family(family) distribution of depvar
link(link) link function

Model 2

exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
noconstant suppress constant term
asis retain perfect predictor variables
force estimate even if observations unequally spaced in time

Correlation

corr(correlation) within-group correlation structure

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N − P instead of the default N
rgf multiply the robust variance estimate by (N − 1)/(N − P )
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimize options control the optimization process; seldom used

nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

A panel variable must be specified. Correlation structures other than exchangeable and independent require that a
time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4 varname and varlists.
by, collect, mfp, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
nodisplay and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands


xtgee — GEE population-averaged panel-data models 3

family Description

gaussian Gaussian (normal); family(normal) is a synonym
igaussian inverse Gaussian
binomial

[
# | varname

]
Bernoulli/binomial

poisson Poisson
nbinomial

[
#
]

negative binomial
gamma gamma

link Link function/definition

identity identity; y = y
log log; ln(y)
logit logit; ln{y/(1− y)}, natural log of the odds
probit probit; Φ−1(y), where Φ( ) is the normal cumulative distribution
cloglog cloglog; ln{−ln(1− y)}
power

[
#
]

power; yk with k = #; # = 1 if not specified
opower

[
#
]

odds power; [{y/(1− y)}k − 1]/k with k = #; # = 1 if not specified
nbinomial negative binomial; ln{y/(y + α)}
reciprocal reciprocal; 1/y

correlation Description

exchangeable exchangeable
independent independent
unstructured unstructured
fixed matname user-specified
ar # autoregressive of order #
stationary # stationary of order #
nonstationary # nonstationary of order #

Options� � �
Model �

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified
(except for family(nbinomial)).

� � �
Model 2 �

exposure(varname) and offset(varname) are different ways of specifying the same thing.
exposure() specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname) with coefficient constrained to be 1 is
entered into the regression equation. offset() specifies a variable that is to be entered directly
into the log-link function with its coefficient constrained to be 1; thus, exposure is assumed to
be evarname. If you were fitting a Poisson regression model, family(poisson) link(log), for
instance, you would account for exposure time by specifying offset() containing the log of
exposure time.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin
on the scale defined by the link function.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit. This option is only allowed with
option family(binomial) with a denominator of 1.

force specifies that estimation be forced even though the time variable is not equally spaced.
This is relevant only for correlation structures that require knowledge of the time variable. These
correlation structures require that observations be equally spaced so that calculations based on lags
correspond to a constant time change. If you specify a time variable indicating that observations
are not equally spaced, the (time dependent) model will not be fit. If you also specify force,
the model will be fit, and it will be assumed that the lags based on the data ordered by the time
variable are appropriate.

� � �
Correlation �

corr(correlation) specifies the within-group correlation structure; the default corresponds to the
equal-correlation model, corr(exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s
name with or without a blank; for example, corr(ar 1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the
assumed correlations following the word fixed, for example, corr(fixed myr).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

vce(robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place
of the default conventional variance estimator (see Methods and formulas below). Use of this
option causes xtgee to produce valid standard errors even if the correlations within group are not
as hypothesized by the specified correlation structure. Under a noncanonical link, it does, however,
require that the model correctly specifies the mean. The resulting standard errors are thus labeled
“semirobust” instead of “robust” in this case. Although there is no vce(cluster clustvar) option,
results are as if this option were included and you specified clustering on the panel variable.

nmp; see [XT] vce options.

rgf specifies that the robust variance estimate is multiplied by (N − 1)/(N − P ), where N is the
total number of observations and P is the number of coefficients estimated. This option can be
used only with family(gaussian) when vce(robust) is either specified or implied by the use
of pweights. Using this option implies that the robust variance estimate is not invariant to the
scale of any weights used.

scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] Estimation options.

https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals as described in [R] Maximize. For family(binomial) link(logit) (that is, logistic
regression), exponentiation results in odds ratios; for family(poisson) link(log) (that is,
Poisson regression), exponentiated coefficients are incidence-rate ratios.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:

nodisplay is for programmers. It suppresses display of the header and coefficients.

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2013). More
information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have
been several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988);
Zeger and Liang (1986), and Liang (1987). Pendergast et al. (1996) surveys the current methods for
analyzing clustered data in regard to binary response data. Our implementation follows that of Liang
and Zeger (1986).

xtgee fits generalized linear models of yit with covariates xit

g
{
E(yit)

}
= xitβ, y ∼ F with parameters θit

for i = 1, . . . ,m and t = 1, . . . , ni, where there are ni observations for each group identifier i. g( )
is called the link function, and F is the distributional family. Substituting various definitions for g( )
and F results in a wide array of models. For instance, if yit is distributed Gaussian (normal) and
g( ) is the identity function, we have

E(yit) = xitβ, y ∼ N( )

yielding linear regression, random-effects regression, or other regression-related models, depending
on what we assume for the correlation structure.

If g( ) is the logit function and yit is distributed Bernoulli (binomial), we have

logit
{
E(yit)

}
= xitβ, y ∼ Bernoulli

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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or logistic regression. If g(·) is the natural log function and yit is distributed Poisson, we have

ln
{
E(yit)

}
= xitβ, y ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the link() option, the distributional family with family(),
and the assumed within-group correlation structure with corr().

The binomial distribution can be specified as case 1 family(binomial), case 2 family(binomial
#), or case 3 family(binomial varname). In case 2, # is the value of the binomial denominator N ,
the number of trials. Specifying family(binomial 1) is the same as specifying family(binomial);
both mean that y has the Bernoulli distribution with values 0 and 1 only. In case 3, varname is
the variable containing the binomial denominator, thus allowing the number of trials to vary across
observations.

The negative binomial distribution must be specified as family(nbinomial #), where # denotes
the value of the parameter α in the negative binomial distribution. The results will be conditional on
this value.

You do not have to specify both family() and link(); the default link() is the canonical link
for the specified family() (excluding family(nbinomial)):

Family Default link

family(binomial) link(logit)
family(gamma) link(reciprocal)
family(gaussian) link(identity)
family(igaussian) link(power -2)
family(nbinomial) link(log)
family(poisson) link(log)

The canonical link for the negative binomial family is obtained by specifying link(nbinomial). If
you specify both family() and link(), not all combinations make sense. You may choose among
the following combinations:

Gaussian Inverse Binomial Poisson Negative Gamma
Gaussian Binomial

Identity x x x x x x
Log x x x x x x
Logit x
Probit x
C. log–log x
Power x x x x x x
Odds Power x
Neg. binom. x
Reciprocal x x x x

You specify the assumed within-group correlation structure with the corr() option.

For example, call R the working correlation matrix for modeling the within-group correlation, a
square max{ni} × max{ni} matrix. corr() specifies the structure of R. Let Rt,s denote the t, s
element.

The independent structure is defined as

Rt,s =
{

1 if t = s
0 otherwise
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The corr(exchangeable) structure (corresponding to equal-correlation models) is defined as

Rt,s =

{
1 if t = s
ρ otherwise

The corr(ar g) structure is defined as the usual correlation matrix for an AR(g) model. This is
sometimes called multiplicative correlation. For example, an AR(1) model is given by

Rt,s =

{
1 if t = s
ρ|t−s| otherwise

The corr(stationary g) structure is a stationary(g) model. For example, a stationary(1) model
is given by

Rt,s =

{
1 if t = s
ρ if |t− s| = 1
0 otherwise

The corr(nonstationary g) structure is a nonstationary(g) model that imposes only the con-
straints that the elements of the working correlation matrix along the diagonal be 1 and the elements
outside the gth band be zero,

Rt,s =

{
1 if t = s
ρts if 0 < |t− s| ≤ g, ρts = ρst
0 otherwise

corr(unstructured) imposes only the constraint that the diagonal elements of the working
correlation matrix be 1.

Rt,s =

{
1 if t = s
ρts otherwise, ρts = ρst

The corr(fixed matname) specification is taken from the user-supplied matrix, such that

R = matname

Here the correlations are not estimated from the data. The user-supplied matrix must be a valid
correlation matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the Methods and formulas below.

Technical note
Some family(), link(), and corr() combinations result in models already fit by Stata:

family() link() corr() Other Stata estimation command

gaussian identity independent regress
gaussian identity exchangeable xtreg, re
gaussian identity exchangeable xtreg, pa
binomial cloglog independent cloglog (see note 1)
binomial cloglog exchangeable xtcloglog, pa
binomial logit independent logit or logistic
binomial logit exchangeable xtlogit, pa
binomial probit independent probit (see note 2)
binomial probit exchangeable xtprobit, pa
nbinomial log independent nbreg (see note 3)
poisson log independent poisson
poisson log exchangeable xtpoisson, pa
gamma log independent streg, dist(exp) nohr (see note 4)
family link independent glm, irls (see note 5)
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Notes:

1. For cloglog estimation, xtgee with corr(independent) and cloglog (see [R] cloglog) will
produce the same coefficients, but the standard errors will be only asymptotically equivalent because
cloglog is not the canonical link for the binomial family.

2. For probit estimation, xtgee with corr(independent) and probit will produce the same
coefficients, but the standard errors will be only asymptotically equivalent because probit is not
the canonical link for the binomial family. If the binomial denominator is not 1, the equivalent
maximum-likelihood command is glm with options family(binomial #) or family(binomial
varname) and link(probit); see [R] probit and [R] glm.

3. Fitting a negative binomial model by using xtgee (or using glm) will yield results conditional on
the specified value of α. The nbreg command, however, estimates that parameter and provides
unconditional estimates; see [R] nbreg.

4. xtgee with corr(independent) can be used to fit exponential regressions, but this requires
specifying scale(1). As with probit, the xtgee-reported standard errors will be only asymptotically
equivalent to those produced by streg, dist(exp) nohr (see [ST] streg) because log is not
the canonical link for the gamma family. xtgee cannot be used to fit exponential regressions on
censored data.

Using the independent correlation structure, the xtgee command will fit the same model fit
with the glm, irls command if the family–link combination is the same.

5. If the xtgee command is equivalent to another command, using corr(independent) and the
vce(robust) option with xtgee corresponds to using the vce(cluster clustvar) option in the
equivalent command, where clustvar corresponds to the panel variable.

xtgee is a generalization of the glm, irls command and gives the same output when the same
family and link are specified together with an independent correlation structure. What makes xtgee
useful is

• the number of statistical models that it generalizes for use with panel data, many of which are not
otherwise available in Stata;

• the richer correlation structure xtgee allows, even when models are available through other xt
commands; and

• the availability of robust standard errors (see [U] 20.22 Obtaining robust variance estimates),
even when the model and correlation structure are available through other xt commands.

In the following examples, we illustrate the relationships of xtgee with other Stata estimation
commands. Remember that, although xtgee generalizes many other commands, the computational
algorithm is different; therefore, the answers you obtain will not be identical. The dataset we are
using is a subset of the nlswork data (see [XT] xt); we are looking at observations before 1980.

https://www.stata.com/manuals/rcloglog.pdf#rcloglog
https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/rglm.pdf#rglm
https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/xtxt.pdf#xtxt
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Example 1

We can use xtgee to perform ordinary least squares by regress:

. use https://www.stata-press.com/data/r18/nlswork2
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. regress ln_w grade age c.age#c.age

Source SS df MS Number of obs = 16,085
F(3, 16081) = 1413.68

Model 597.54468 3 199.18156 Prob > F = 0.0000
Residual 2265.74584 16,081 .14089583 R-squared = 0.2087

Adj R-squared = 0.2085
Total 2863.29052 16,084 .178021047 Root MSE = .37536

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

grade .0724483 .0014229 50.91 0.000 .0696592 .0752374
age .1064874 .0083644 12.73 0.000 .0900922 .1228825

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.06904 -.6672577

. xtgee ln_w grade age c.age#c.age, corr(indep) nmp

Iteration 1: Tolerance = 8.684e-13

GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: independent avg = 4.1

max = 9
Wald chi2(3) = 4241.04

Scale parameter = .1408958 Prob > chi2 = 0.0000

Pearson chi2(16081) = 2265.75 Deviance = 2265.75
Dispersion (Pearson) = .1408958 Dispersion = .1408958

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0724483 .0014229 50.91 0.000 .0696594 .0752372
age .1064874 .0083644 12.73 0.000 .0900935 .1228812

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.069025 -.6672728

When nmp is specified, the coefficients and the standard errors produced by the estimators are the
same. Moreover, the scale parameter estimate from the xtgee command equals the MSE calculation
from regress; both are estimates of the variance of the residuals.
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Example 2

The identity link and Gaussian family produce regression-type models. With the independent
correlation structure, we reproduce ordinary least squares. With the exchangeable correlation structure,
we produce an equal-correlation linear regression estimator.

xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS
estimator provided by xtreg, re and to the full maximum-likelihood estimator provided by xtreg,
mle. In balanced data, xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle produce
the same results. With unbalanced data, the results are close but differ because the two estimators
handle unbalanced data differently. For both balanced and unbalanced data, the results produced by
xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle differ from those produced by
xtreg, re. Below we demonstrate the use of the three estimators with unbalanced data. We begin
with xtgee; show the maximum likelihood estimator xtreg, mle; show the GLS estimator xtreg,
re; and finally show xtgee with the vce(robust) option.

. xtgee ln_w grade age c.age#c.age, nolog

GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.1

max = 9
Wald chi2(3) = 2918.26

Scale parameter = .1416586 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717731 .00211 34.02 0.000 .0676377 .0759086
age .1077645 .006885 15.65 0.000 .0942701 .1212589

c.age#c.age -.0016381 .0001362 -12.03 0.000 -.001905 -.0013712

_cons -.9480449 .0869277 -10.91 0.000 -1.11842 -.7776698
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. xtreg ln_w grade age c.age#c.age, mle

Fitting constant-only model:
Iteration 0: Log likelihood = -5868.3483
Iteration 1: Log likelihood = -5858.8833
Iteration 2: Log likelihood = -5858.8244

Fitting full model:
Iteration 0: Log likelihood = -4591.9241
Iteration 1: Log likelihood = -4562.4406
Iteration 2: Log likelihood = -4562.3526
Iteration 3: Log likelihood = -4562.3525

Random-effects ML regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913

Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 4.1
max = 9

LR chi2(3) = 2592.94
Log likelihood = -4562.3525 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717747 .002142 33.51 0.000 .0675765 .075973
age .1077899 .0068266 15.79 0.000 .0944101 .1211697

c.age#c.age -.0016364 .000135 -12.12 0.000 -.0019011 -.0013718

_cons -.9500833 .086384 -11.00 0.000 -1.119393 -.7807737

/sigma_u .2689639 .0040854 .2610748 .2770915
/sigma_e .2669944 .0017113 .2636613 .2703696

rho .5036748 .0086449 .4867329 .52061

LR test of sigma_u=0: chibar2(01) = 4996.22 Prob >= chibar2 = 0.000
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. xtreg ln_w grade age c.age#c.age, re

Random-effects GLS regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913

R-squared: Obs per group:
Within = 0.0983 min = 1
Between = 0.2946 avg = 4.1
Overall = 0.2076 max = 9

Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717757 .0021666 33.13 0.000 .0675294 .0760221
age .1078042 .0068125 15.82 0.000 .0944519 .1211566

c.age#c.age -.0016355 .0001347 -12.14 0.000 -.0018996 -.0013714

_cons -.9512118 .0863139 -11.02 0.000 -1.120384 -.7820397

sigma_u .27383747
sigma_e .26624266

rho .51405959 (fraction of variance due to u_i)

. xtgee ln_w grade age c.age#c.age, vce(robust) nolog

GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.1

max = 9
Wald chi2(3) = 2031.28

Scale parameter = .1416586 Prob > chi2 = 0.0000

(Std. err. adjusted for clustering on idcode)

Robust
ln_wage Coefficient std. err. z P>|z| [95% conf. interval]

grade .0717731 .0023341 30.75 0.000 .0671983 .0763479
age .1077645 .0098097 10.99 0.000 .0885379 .1269911

c.age#c.age -.0016381 .0001964 -8.34 0.000 -.002023 -.0012532

_cons -.9480449 .1195009 -7.93 0.000 -1.182262 -.7138274

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates
with valid standard errors for random-effects models. These standard errors are robust to model
misspecification. The vce(robust) option of xtgee, on the other hand, requires that the model
correctly specify the mean and the link function when the noncanonical link is used.

https://www.stata.com/manuals/rregress.pdf#rregress
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Stored results
xtgee stores the following in e():
Scalars

e(N) number of observations
e(N g) number of groups
e(df m) model degrees of freedom
e(chi2) χ2

e(p) p-value for model test
e(df pear) degrees of freedom for Pearson χ2

e(chi2 dev) χ2 test of deviance
e(chi2 dis) χ2 test of deviance dispersion
e(deviance) deviance
e(dispers) deviance dispersion
e(phi) scale parameter
e(g min) smallest group size
e(g avg) average group size
e(g max) largest group size
e(tol) target tolerance
e(dif) achieved tolerance
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) xtgee
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(model) pa
e(family) distribution family
e(link) link function
e(corr) correlation structure
e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type
e(wexp) weight expression
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(nmp) nmp, if specified
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Calculating GEE for GLM
Correlation structures
Nonstationary and unstructured

Introduction

xtgee fits generalized linear models for panel data with the GEE approach described in Liang
and Zeger (1986). A related method, referred to as GEE2, is described in Zhao and Prentice (1990)
and Prentice and Zhao (1991). The GEE2 method attempts to gain efficiency in the estimation of
β by specifying a parametric model for α and then assumes that the models for both the mean
and dependency parameters are correct. Thus there is a tradeoff in robustness for efficiency. The
preliminary work of Liang, Zeger, and Qaqish (1992), however, indicates that there is little efficiency
gained with this alternative approach.

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

h(µi,j) = xTi,jβ

Var(yi,j) = g(µi,j)φ

µi = E(yi) = {h−1(xTi,1β), . . . , h−1(xTi,ni
β)}T

Ai = diag{g(µi,1), . . . , g(µi,ni
)}

Cov(yi) = φAi for independent observations.

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate
analog of the quasiscore function introduced by Wedderburn (1974):

Sβ(β,α) =

m∑
i=1

(
∂µi
∂β

)T

Var(yi)
−1(yi − µi) = 0

We can solve for correlation parameters α by simultaneously solving

Sα(β,α) =

m∑
i=1

(
∂ηi
∂α

)T

H−1i (Wi − ηi) = 0

In the GEE approach to GLM, we let Ri(α) be a “working” correlation matrix depending on the
parameters in α (see the Correlation structures section for the number of parameters), and we estimate
β by solving the GEE,

U(β) =

m∑
i=1

(
∂µi
∂β

)T

V−1i (α)(yi − µi) = 0

where Vi(α) = A
1/2
i Ri(α)A

1/2
i
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To solve this equation, we need only a crude approximation of the variance matrix, which we can
obtain from a Taylor series expansion, where

Cov(yi) = LiZiDiZ
T
i Li + φAi = Ṽi

Li = diag{∂h−1(u)/∂u, u = xTi,jβ, j = 1, . . . , ni}

which allows that

D̂i ≈ (ZT
i Zi)

−1ZiL̂
−1
i

{
(yi − µ̂i)(yi − µ̂i)

T − φ̂Âi

}
L̂−1i ZT

i (Z′iZi)
−1

φ̂ =

m∑
i=1

ni∑
j=1

(yi,j − µ̂i,j)2 − (L̂i,j)
2ZT

i,jD̂iZi,j

g(µ̂i,j)

Calculating GEE for GLM

Using the notation from Liang and Zeger (1986), let yi = (yi,1, . . . , yi,ni
)T be the ni × 1 vector

of outcome values, and let Xi = (xi,1, . . . , xi,ni
)T be the ni × p matrix of covariate values for the

ith subject i = 1, . . . ,m. We assume that the marginal density for yi,j may be written in exponential
family notation as

f(yi,j) = exp [{yi,jθi,j − a(θi,j) + b(yi,j)}φ]

where θi,j = h(ηi,j), ηi,j = xi,jβ. Under this formulation, the first two moments are given by

E(yi,j) = a′(θi,j), Var(yi,j) = a′′(θi,j)/φ

In what follows, we let ni = n without loss of generality. We define the quantities, assuming that
we have an n× n working correlation matrix R(α),

∆i = diag(dθi,j/dηi,j) n× n matrix

Ai = diag{a′′(θi,j)} n× n matrix

Si = yi − a′(θi) n× 1 matrix

Di = Ai∆iXi n× p matrix

Vi = A
1/2
i R(α)A

1/2
i n× n matrix

such that the GEE becomes
m∑
i=1

DT
i V
−1
i Si = 0

We then have that

β̂j+1 = β̂j −

{
m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j)

}−1{ m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Si(β̂j)

}
where the term {

m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j)

}−1
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is what we call the conventional variance estimate. It is used to calculate the standard errors if
the vce(robust) option is not specified. This command supports the clustered version of the
Huber/White/sandwich estimator of the variance with panels treated as clusters when vce(robust)
is specified. See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.
Liang and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

D = (DT
1 , . . . ,D

T
m)

S = (ST
1 , . . . ,S

T
m)T

Ṽ = nm× nm block diagonal matrix with Ṽi

Z = Dβ− S

At a given iteration, the correlation parameters α and scale parameter φ can be estimated from the
current Pearson residuals, defined by

r̂i,j = {yi,j − a′(θ̂i,j)}/{a′′(θ̂i,j)}1/2

where θ̂i,j depends on the current value for β̂. We can then estimate φ by

φ̂−1 =

m∑
i=1

ni∑
j=1

r̂ 2
i,j/(N − p)

As this general derivation is complicated, let’s follow the derivation of the Gaussian family with
the identity link (regression) to illustrate the generalization. After making appropriate substitutions,
we will see a familiar updating equation. First, we rewrite the updating equation for β as

β̂j+1 = β̂j − Z−11 Z2

and then derive Z1 and Z2.

Z1 =

m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Di(β̂j) =

m∑
i=1

XT
i ∆

T
i A

T
i {A

1/2
i R(α)A

1/2
i }

−1Ai∆iXi

=

m∑
i=1

XT
i diag

{
∂θi,j
∂(Xβ)

}
diag {a′′(θi,j)}

[
diag {a′′(θi,j)}

1/2
R(α) diag {a′′(θi,j)}

1/2
]−1

diag {a′′(θi,j)} diag

{
∂θi,j
∂(Xβ)

}
Xi

=

m∑
i=1

XT
i II(III)

−1IIXi =

m∑
i=1

XT
i Xi = XTX

https://www.stata.com/manuals/p_robust.pdf#p_robust
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
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Z2 =

m∑
i=1

DT
i (β̂j)Ṽ

−1
i (β̂j)Si(β̂j) =

m∑
i=1

XT
i ∆

T
i A

T
i {A

1/2
i R(α)A

1/2
i }

−1
(
yi −Xiβ̂j

)
=

m∑
i=1

XT
i diag

{
∂θi,j
∂(Xβ)

}
diag {a′′(θi,j)}

[
diag {a′′(θi,j)}

1/2
R(α) diag {a′′(θi,j)}

1/2
]−1

(
yi −Xiβ̂j

)
=

m∑
i=1

XT
i II(III)

−1(yi −Xiβ̂j) =

m∑
i=1

XT
i (yi −Xiβ̂j) = XTŝj

So, we may write the update formula as

β̂j+1 = β̂j − (XTX)−1XTŝj

which is the same formula for GLS in regression.

Correlation structures
The working correlation matrix R is a function of α and is more accurately written as R(α).

Depending on the assumed correlation structure, α might be

Independent no parameters to estimate
Exchangeable α is a scalar
Autoregressive α is a vector
Stationary α is a vector
Nonstationary α is a matrix
Unstructured α is a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss Ri, which
is the upper left ni × ni submatrix of the ultimately stored matrix in e(R), max{ni} × max{ni}.

The only panels that enter into the estimation for a lag-dependent correlation structure are those
with ni > g (assuming a lag of g). xtgee drops panels with too few observations (and mentions
when it does so).

Independent

The working correlation matrix R is an identity matrix.

Exchangeable

α =

∑m
i=1

(∑ni

j=1

∑ni

k=1 r̂i,j r̂i,k −
∑ni

j=1 r̂
2
i,j

)
∑m
i=1 {ni(ni − 1)}

/∑m
i=1

(∑ni

j=1 r̂
2
i,j

)
∑m
i=1 ni

and the working correlation matrix is given by

Rs,t =
{

1 s = t
α otherwise
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Autoregressive and stationary

These two structures require g parameters to be estimated so that α is a vector of length g + 1
(the first element of α is 1).

α =

m∑
i=1

(∑ni

j=1 r̂
2
i,j

ni
,

∑ni−1
j=1 r̂i,j r̂i,j+1

ni
, . . . ,

∑ni−g
j=1 r̂i,j r̂i,j+g

ni

)/(
m∑
i=1

∑ni

j=1 r̂
2
i,j

ni

)

The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices
formed from the α vector; see Newton (1988). The working correlation matrix for the stationary
model is given by

Rs,t =
{
α1,|s−t| if |s− t| ≤ g
0 otherwise

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. α is estimated (where we replace
r̂i,j = 0 whenever i > ni or j > ni) as

α =

m∑
i=1

m


N−11,1 r̂

2
i,1 N−11,2 r̂i,1r̂i,2 · · · N−11,nr̂i,1r̂i,n

N−12,1 r̂i,2r̂i,1 N−12,2 r̂
2
i,2 · · · N−12,nr̂i,2r̂i,n

...
...

. . .
...

N−1n,1r̂i,ni
r̂i,1 N−1n,2r̂i,ni

r̂i,2 · · · N−1n,nr̂
2
i,n


/(

m∑
i=1

∑ni

j=1 r̂
2
i,j

ni

)

where Np,q =
∑m
i=1 I(i, p, q) and

I(i, p, q) =
{

1 if panel i has valid observations at times p and q
0 otherwise

where Ni,j = min(Ni, Nj), Ni = number of panels observed at time i, and n =
max(n1, n2, . . . , nm).

The working correlation matrix for the nonstationary model is given by

Rs,t =

{
1 if s = t
αs,t if 0 < |s− t| ≤ g
0 otherwise

The working correlation matrix for the unstructured model is given by

Rs,t =

{
1 if s = t
αs,t otherwise

such that the unstructured model is equal to the nonstationary model at lag g = n − 1, where the
panels are balanced with ni = n for all i.
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Also see
[XT] xtgee postestimation — Postestimation tools for xtgee

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[XT] xtprobit — Random-effects and population-averaged probit models

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models+

[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance

[XT] xtset — Declare data to be panel data

[MI] Estimation — Estimation commands for use with mi estimate

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands
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