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Description
tsfilter separates a time series into trend and cyclical components. The trend component may

contain a deterministic or a stochastic trend. The stationary cyclical component is driven by stochastic
cycles at the specified periods.

Syntax
Filter one variable

tsfilter filter
[

type
]

newvar = varname
[

if
] [

in
] [

, options
]

Filter multiple variables, unique names

tsfilter filter
[

type
]

newvarlist = varlist
[

if
] [

in
] [

, options
]

Filter multiple variables, common name stub

tsfilter filter
[

type
]

stub* = varlist
[

if
] [

in
] [

, options
]

filter Name See

bk Baxter–King [TS] tsfilter bk
bw Butterworth [TS] tsfilter bw
cf Christiano–Fitzgerald [TS] tsfilter cf
hp Hodrick–Prescott [TS] tsfilter hp

You must tsset or xtset your data before using tsfilter; see [TS] tsset and [XT] xtset.
varname and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
options differ across the filters and are documented in each filter’s manual entry.

Remarks and examples stata.com

The time-series filters implemented in tsfilter separate a time-series yt into trend and cyclical
components:

yt = τt + ct

where τt is the trend component and ct is the cyclical component. τt may be nonstationary; it may
contain a deterministic or a stochastic trend, as discussed below.

The primary objective of the methods implemented in tsfilter is to estimate ct, a stationary
cyclical component that is driven by stochastic cycles within a specified range of periods. The trend
component τt is calculated by the difference τt = yt − ct.
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Although the filters implemented in tsfilter have been widely applied by macroeconomists,
they are general time-series methods and may be of interest to other researchers.

Remarks are presented under the following headings:
An example dataset
A baseline method: Symmetric moving-average (SMA) filters
An overview of filtering in the frequency domain
SMA revisited: The Baxter–King filter
Filtering a random walk: The Christiano–Fitzgerald filter
A one-parameter high-pass filter: The Hodrick–Prescott filter
A two-parameter high-pass filter: The Butterworth filter

An example dataset

Time series are frequently filtered to remove unwanted characteristics, such as trends and seasonal
components, or to estimate components driven by stochastic cycles from a specific range of periods.
Although the filters implemented in tsfilter can be used for both purposes, their primary purpose
is the latter, and we restrict our discussion to that use.

We explain the methods implemented in tsfilter by estimating the business-cycle component
of a macroeconomic variable, because they are frequently used for this purpose. We estimate the
business-cycle component of the natural log of an index of the industrial production of the United
States, which is plotted below.

Example 1: A trending time series

. use https://www.stata-press.com/data/r18/ipq
(Federal Reserve Economic Data, St. Louis Fed)

. tsline ip_ln
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The above graph shows that ip ln contains a trend component. Time series may contain deter-
ministic trends or stochastic trends. A polynomial function of time is the most common deterministic
time trend. An integrated process is the most common stochastic trend. An integrated process is a
random variable that must be differenced one or more times to be stationary; see Hamilton (1994) for
a discussion. The different filters implemented in tsfilter allow for different orders of deterministic
time trends or integrated processes.
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We now illustrate the four methods implemented in tsfilter, each of which will remove the
trend and estimate the business-cycle component. Burns and Mitchell (1946) defined oscillations in
business data with recurring periods between 1.5 and 8 years to be business-cycle fluctuations; we
use their commonly accepted definition.

A baseline method: Symmetric moving-average (SMA) filters

Symmetric moving-average (SMA) filters form a baseline method for estimating a cyclical component
because of their properties and simplicity. An SMA filter of a time series yt, t ∈ {1, . . . , T}, is the
data transform defined by

y∗t =

q∑
j=−q

αjyt−j

for each t ∈ {q+ 1, . . . , T − q}, where α−j = αj for j ∈ {−q, . . . , q}. Although the original series
has T observations, the filtered series has only T − 2q, where q is known as the order of the SMA
filter.

SMA filters with weights that sum to zero remove deterministic and stochastic trends of order 2 or
less, as shown by Fuller (1996) and Baxter and King (1999).

Example 2: A trend-removing SMA filter

This trend-removal property of SMA filters with coefficients that sum to zero may surprise some
readers. For illustration purposes, we filter ip ln by the filter

−0.2ip lnt−2 − 0.2ip lnt−1 + 0.8ip lnt − 0.2ip lnt+1 − 0.2ip lnt+2

and plot the filtered series. We do not even need tsfilter to implement this second-order SMA
filter; we can use generate.

. generate ip_sma = -.2*L2.ip_ln-.2*L.ip_ln+.8*ip_ln-.2*F.ip_ln-.2*F2.ip_ln
(4 missing values generated)

. tsline ip_sma
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The filter has removed the trend.
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There is no good reason why we chose that particular SMA filter. Baxter and King (1999) derived
a class of SMA filters with coefficients that sum to zero and get as close as possible to keeping only
the specified cyclical component.

An overview of filtering in the frequency domain

We need some concepts from the frequency-domain approach to time-series analysis to motivate
how Baxter and King (1999) defined “as close as possible”. These concepts also motivate the other
filters in tsfilter. The intuitive explanation presented here glosses over many technical details
discussed by Priestley (1981), Hamilton (1994), Fuller (1996), and Wei (2006).

As with much time-series analysis, the basic results are for covariance-stationary processes with
additional results handling some nonstationary cases. We present some useful results for covariance-
stationary processes and discuss how to handle nonstationary series below.

The autocovariances γj , j ∈ {0, 1, . . . ,∞}, of a covariance-stationary process yt specify its
variance and dependence structure. In the frequency-domain approach to time-series analysis, yt and
the autocovariances are specified in terms of independent stochastic cycles that occur at frequencies
ω ∈ [−π, π]. The spectral density function fy(ω) specifies the contribution of stochastic cycles at
each frequency ω relative to the variance of yt, which is denoted by σ2

y . The variance and the
autocovariances can be expressed as an integral of the spectral density function. Formally,

γj =

∫ π

−π
eiωjfy(ω)dω (1)

where i is the imaginary number i =
√
−1.

Equation (1) can be manipulated to show what fraction of the variance of yt is attributable to
stochastic cycles in a specified range of frequencies. Hamilton (1994, 156) discusses this point in
more detail.

Equation (1) implies that if fy(ω) = 0 for ω ∈ [ω1, ω2], then stochastic cycles at these frequencies
contribute zero to the variance and autocovariances of yt.

The goal of time-series filters is to transform the original series into a new series y∗t for which
the spectral density function of the filtered series fy∗(ω) is zero for unwanted frequencies and equal
to fy(ω) for desired frequencies.

A linear filter of yt can be written as

y∗t =

∞∑
j=−∞

αjyt−j = α(L)yt

where we let yt be an infinitely long series as required by some of the results below. To see the
impact of the filter on the components of yt at each frequency ω, we need an expression for fy∗(ω)
in terms of fy(ω) and the filter weights αj . Wei (2006, 282) shows that for each ω,

fy∗(ω) = |α(eiω)|2fy(ω) (2)

where |α(eiω)| is known as the gain of the filter. Equation (2) makes explicit that the squared gain
function |a(eiω)|2 converts the spectral density of the original series, fy(ω), into the spectral density
of the filtered series, fy∗(ω). In particular, (2) says that for each frequency ω, the spectral density
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of the filtered series is the product of the square of the gain of the filter and the spectral density of
the original series.

As we will see in the examples below, the gain function provides a crucial interpretation of what
a filter is doing. We want a filter for which fy∗(ω) = 0 for unwanted frequencies and for which
fy∗(ω) = fy(ω) for desired frequencies. So we seek a filter for which the gain is 0 for unwanted
frequencies and for which the gain is 1 for desired frequencies.

In practice, we cannot find such an ideal filter exactly, because the constraints an ideal filter places
on filter coefficients cannot be satisfied for time series with only a finite number of observations. The
expansive literature on filters is a result of the tradeoffs involved in designing implementable filters
that approximate the ideal filter.

Ideally, filters pass or block the stochastic cycles at specified frequencies by having a gain of
1 or 0. Band-pass filters, such as the Baxter–King (BK) and the Christiano–Fitzgerald (CF) filters,
pass through stochastic cycles in the specified range of frequencies and block all the other stochastic
cycles. High-pass filters, such as the Hodrick–Prescott (HP) and Butterworth filters, only allow the
stochastic cycles at or above a specified frequency to pass through and block the lower-frequency
stochastic cycles. For band-pass filters, let [ω0, ω1] be the set of desired frequencies with all other
frequencies being undesired. For high-pass filters, let ω0 be the cutoff frequency with only those
frequencies ω ≥ ω0 being desired.

SMA revisited: The Baxter–King filter

We now return to the class of SMA filters with coefficients that sum to zero and get as close as
possible to keeping only the specified cyclical component as derived by Baxter and King (1999).

For an infinitely long series, there is an ideal band-pass filter for which the gain function is 1 for
ω ∈ [ω0, ω1] and 0 for all other frequencies. It just so happens that this ideal band-pass filter is an
SMA filter with coefficients that sum to zero. Baxter and King (1999) derive the coefficients of this
ideal band-pass filter and then define the BK filter to be the SMA filter with 2q + 1 terms that are
as close as possible to those of the ideal filter. There is a tradeoff in choosing q: larger values of
q cause the gain of the BK filter to be closer to the gain of the ideal filter, but larger values also
increase the number of missing observations in the filtered series.

Although the mathematics of the frequency-domain approach to time-series analysis is in terms of
stochastic cycles at frequencies ω ∈ [−π, π], applied work is generally in terms of periods p, where
p = 2π/ω. So the options for the tsfilter subcommands are in terms of periods.

Example 3: A BK estimate of the business-cycle component

Below we use tsfilter bk, which implements the BK filter, to estimate the business-cycle
component composed of stochastic cycles between 6 and 32 periods, and then we graph the estimated
component.
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. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32)

. tsline ip_bk
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The above graph tells us what the estimated business-cycle component looks like, but it presents no
evidence as to how well we have estimated the component. A periodogram is better for this purpose.
A periodogram is an estimator of a transform of the spectral density function; see [TS] pergram for
details. Below we plot the periodogram for the BK estimate of the business-cycle component. pergram
displays the results in natural frequencies, which are the standard frequencies divided by 2π. We use
the xline() option to draw vertical lines at the lower natural-frequency cutoff (1/32 = 0.03125)
and the upper natural-frequency cutoff (1/6 ≈ 0.16667).

. pergram ip_bk, xline(0.03125 0.16667)
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If the filter completely removed the stochastic cycles corresponding to the unwanted frequencies,
the periodogram would be a flat line at the minimum value of −6 outside the range identified by
the vertical lines. That the periodogram takes on values greater than −6 outside the specified range
indicates the inability of the BK filter to pass through only stochastic cycles at frequencies inside the
specified band.

We can also evaluate the BK filter by plotting its gain function against the gain function of an
ideal filter. In the output below, we reestimate the business-cycle component to store the gain of the
BK filter for the specified parameters. (The coefficients and the gain of the BK filter are completely

https://www.stata.com/manuals/tspergram.pdf#tspergram
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determined by the specified minimum period, the maximum period, and the order of the SMA filter.)
We label the variable bkgain for the graph below.

. drop ip_bk

. tsfilter bk ip_bk = ip_ln, minperiod(6) maxperiod(32) gain(bkgain abk)

. label variable bkgain "BK filter"

Below we generate ideal, the gain function of the ideal band-pass filter at the frequencies f.
Then we plot the gain of the ideal filter and the gain of the BK filter.

. generate f = _pi*(_n-1)/_N

. generate ideal = cond(f<_pi/16, 0, cond(f<_pi/3, 1,0))

. label variable ideal "Ideal filter"

. twoway line ideal f || line bkgain abk
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The graph reveals that the gain of the BK filter deviates markedly from the square-wave gain of the
ideal filter. Increasing the symmetric moving average via the smaorder() option will cause the gain
of the BK filter to more closely approximate the gain of the ideal filter at the cost of lost observations
in the filtered series.

Filtering a random walk: The Christiano–Fitzgerald filter

Although Baxter and King (1999) minimized the error between the coefficients in their filter and
the ideal band-pass filter, Christiano and Fitzgerald (2003) minimized the mean squared error between
the estimated component and the true component, assuming that the raw series is a random-walk
process. Christiano and Fitzgerald (2003) give three important reasons for using their filter:

1. The true dependence structure of the data affects which filter is optimal.

2. Many economic time series are well approximated by random-walk processes.

3. Their filter does a good job passing through stochastic cycles of desired frequencies and blocking
stochastic cycles from unwanted frequencies on a range of processes that are close to being a
random-walk process.
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The CF filter obtains its optimality properties at the cost of an additional parameter that must be
estimated and a loss of robustness. The CF filter is optimal for a random-walk process. If the true
process is a random walk with drift, then the drift term must be estimated and removed; see [TS] tsfilter
cf for details. The CF filter is not symmetric, so it will not remove second-order deterministic or
second-order integrated processes. tsfilter cf also implements another filter that Christiano and
Fitzgerald (2003) derived that is an SMA filter with coefficients that sum to zero. This filter is designed
to be as close as possible to the random-walk optimal filter under the constraint that it be an SMA
filter with constraints that sum to zero; see [TS] tsfilter cf for details.

Technical note

A random-walk process is a first-order integrated process; it must be differenced once to produce
a stationary process. Formally, a random-walk process is given by yt = yt−1+ εt, where εt is a zero-
mean stationary random variable. A random-walk-plus-drift process is given by ỹt = µ+ ỹt−1 + εt,
where εt is a zero-mean stationary random variable.

Example 4: A CF estimate of the business-cycle component

In this example, we use the CF filter to estimate the business-cycle component, and we plot the
periodogram of the CF estimates. We specify the drift option because ip ln is well approximated
by a random-walk-plus-drift process.

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift

. pergram ip_cf, xline(0.03125 0.16667)
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The periodogram of the CF estimates of the business-cycle component indicates that the CF filter
did a better job than the BK filter of passing through only the desired stochastic cycles. Given that
ip ln is well approximated by a random-walk-plus-drift process, the relative performance of the CF
filter is not surprising.

As with the BK filter, plotting the gain of the CF filter and the gain of the ideal filter gives an
impression of how well the filter isolates the specified components. In the output below, we reestimate
the business-cycle component, using the gain() option to store the gain of the CF filter, and we plot
the gain functions.

https://www.stata.com/manuals/tstsfiltercf.pdf#tstsfiltercf
https://www.stata.com/manuals/tstsfiltercf.pdf#tstsfiltercf
https://www.stata.com/manuals/tstsfiltercf.pdf#tstsfiltercf
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. drop ip_cf

. tsfilter cf ip_cf = ip_ln, minperiod(6) maxperiod(32) drift gain(cfgain acf)

. label variable cfgain "CF filter"

. twoway line ideal f || line cfgain acf
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Comparing this graph with the graph of the BK gain function reveals that the CF filter is closer to
the gain of the ideal filter than is the BK filter. The graph also reveals that the gain of the CF filter
oscillates above and below 1 for desired frequencies.

The choice between the BK or the CF filter is one between robustness or efficiency. The BK filter
handles a broader class of stochastic processes, but the CF filter produces a better estimate of ct if
yt is close to a random-walk process or a random-walk-plus-drift process.

A one-parameter high-pass filter: The Hodrick–Prescott filter

Hodrick and Prescott (1997) motivated the Hodrick–Prescott (HP) filter as a trend-removal technique
that could be applied to data that came from a wide class of data-generating processes. In their view,
the technique specified a trend in the data, and the data were filtered by removing the trend. The
smoothness of the trend depends on a parameter λ. The trend becomes smoother as λ→∞. Hodrick
and Prescott (1997) recommended setting λ to 1,600 for quarterly data.

King and Rebelo (1993) showed that removing a trend estimated by the HP filter is equivalent to
a high-pass filter. They derived the gain function of this high-pass filter and showed that the filter
would make integrated processes of order 4 or less stationary, making the HP filter comparable with
the band-pass filters discussed above.
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Example 5: An HP estimate of the business-cycle component

We begin by applying the HP high-pass filter to ip ln and plotting the periodogram of the
estimated business-cycle component. We specify the gain() option because will use the gain of the
filter in the next example.

. tsfilter hp ip_hp = ip_ln, gain(hpg1600 ahp1600)

. label variable hpg1600 "HP(1600) filter"

. pergram ip_hp, xline(0.03125)
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Because the HP filter is a high-pass filter, the high-frequency stochastic cycles corresponding to
those periods below 6 remain in the estimated component. Of more concern is the presence of the
low-frequency stochastic cycles that the filter should remove. We address this issue in the example
below.

Example 6: Choosing the parameters for the HP filter

Hodrick and Prescott (1997) argued that the smoothing parameter λ should be 1,600 on the basis
of a heuristic argument that specified values for the variance of the cyclical component and the
variance of the second difference of the trend component, both recorded at quarterly frequencies. In
this example, we choose the smoothing parameter to be 677.13, which sets the gain of the filter to
0.5 at the frequency corresponding to 32 periods, as explained in the technical note below. We then
plot the periodogram of the filtered series.
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. tsfilter hp ip_hp2 = ip_ln, smooth(677.13) gain(hpg677 ahp677)

. label variable hpg677 "HP(677) filter"

. pergram ip_hp, xline(0.03125)
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Although the periodogram looks better than the periodogram with the default smoothing, the HP
filter still did not zero out the low-frequency stochastic cycles as well as the CF filter did. We take
another look at this issue by plotting the gain functions for these filters along with the gain function
from the ideal band-pass filter.

. twoway line ideal f || line hpg677 ahp677
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Comparing the gain graphs reveals that the gain of the CF filter is closest to the gain of the ideal
filter. Both the BK and the HP filters allow some low-frequency stochastic cycles to pass through. The
plot also illustrates that the HP filter is a high-pass filter because its gain is 1 for those stochastic
cycles at frequencies above 6 periods, whereas the other gain functions go to zero.
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Technical note
Conventionally, economists have used λ = 1600, which Hodrick and Prescott (1997) recommended

for quarterly data. Ravn and Uhlig (2002) derived values for λ at monthly and annual frequencies that
are rescalings of the conventional λ = 1600 for quarterly data. These heuristic values are the default
values; see [TS] tsfilter hp for details. In the filter literature, filter parameters are set as functions of
the cutoff frequency; see Pollock (2000, 324), for instance. This method finds the filter parameter
that sets the gain of the filter equal to 1/2 at the cutoff frequency. Applying this method to selecting
λ at the cutoff frequency of 32 periods requires solving

1/2 =
4λ {1− cos(2π/32)}2

1 + 4λ {1− cos(2π/32)}2

for λ, which yields λ ≈ 677.13, which was used in the previous example.

The gain function of the HP filter is a function of the parameter λ, and λ sets both the location of
the cutoff frequency and the slope of the gain function. The graph below illustrates this dependence
by plotting the gain function of the HP filter for λ set to 10, 677.13, and 1,600 along with the gain
function for the ideal band-pass filter with cutoff periods of 32 periods and 6 periods.
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A two-parameter high-pass filter: The Butterworth filter

Engineers have used Butterworth filters for a long time because they are “maximally flat”. The
gain functions of these filters are as close as possible to being a flat line at 0 for the unwanted periods
and a flat line at 1 for the desired periods; see Butterworth (1930) and Bianchi and Sorrentino (2007,
17–20).

Pollock (2000) showed that Butterworth filters can be derived from some axioms that specify
properties we would like a filter to have. Although the Butterworth and BK filters share the properties
of symmetry and phase neutrality, the coefficients of Butterworth filters do not need to sum to
zero. (Phase-neutral filters do not shift the signal forward or backward in time; see Pollock [1999].)
Although the BK filter relies on the detrending properties of SMA filters with coefficients that sum
to zero, Pollock (2000) shows that Butterworth filters have detrending properties that depend on the
filters’ parameters.

https://www.stata.com/manuals/tstsfilterhp.pdf#tstsfilterhp
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tsfilter bw implements the high-pass Butterworth filter using the computational method that
Pollock (2000) derived. This filter has two parameters: the cutoff period and the order of the filter
denoted by m. The cutoff period sets the location where the gain function starts to filter out the
high-period (low-frequency) stochastic cycles, and m sets the slope of the gain function for a given
cutoff period. For a given cutoff period, the slope of the gain function at the cutoff period increases
with m. For a given m, the slope of the gain function at the cutoff period increases with the cutoff
period.

We cannot obtain a vertical slope at the cutoff frequency, which is the ideal, because the computation
becomes unstable; see Pollock (2000). The m for which the computation becomes unstable depends
on the cutoff period.

Pollock (2000) and Gómez (1999) argue that the additional flexibility produced by the additional
parameter makes the high-pass Butterworth filter a better filter than the HP filter for estimating the
cyclical components.

Pollock (2000) shows that the high-pass Butterworth filter can estimate the desired components of
the dth difference of a dth-order integrated process as long as m ≥ d.

Example 7: A Butterworth filter that removes low-frequency components

Below we use tsfilter bw to estimate the components driven by stochastic cycles greater than
32 periods using Butterworth filters of order 2 and order 6. We also compute, label, and plot the gain
functions for each filter.

. tsfilter bw ip_bw1 = ip_ln, gain(bwgain1 abw1) maxperiod(32) order(2)

. label variable bwgain1 "BW 2"

. tsfilter bw ip_bw6 = ip_ln, gain(bwgain6 abw6) maxperiod(32) order(6)

. label variable bwgain6 "BW 6"

. twoway line ideal f || line bwgain1 abw1 || line bwgain6 abw6
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The graph illustrates that the slope of the gain function increases with the order of the filter.

The graph below provides another perspective by plotting the gain function from the ideal band-pass
filter on a graph with plots of the gain functions from the Butterworth filter of order 6, the CF filter,
and the HP(677) filter.
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. twoway line ideal f || line bwgain6 abw6 || line cfgain acf
> || line hpg677 ahp677
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Although the slope of the gain function from the CF filter is closer to being vertical at the cutoff
frequency, the gain function of the Butterworth filter does not oscillate above and below 1 after it first
reaches the value of 1. The flatness of the Butterworth filter below and above the cutoff frequency
is not an accident; it is one of the filter’s properties.

Example 8: A Butterworth filter that removes high-frequency components

In the previous example, we used the Butterworth filter of order 6 to remove low-frequency
stochastic cycles, and we saved the results in ip bw6. The Butterworth filter did not address the
high-frequency stochastic cycles below 6 periods because it is a high-pass filter. We remove those
high-frequency stochastic cycles in this example by keeping the trend produced by refiltering the
previously filtered series.

This example uses a common trick: keeping the trend produced by a high-pass filter turns that
high-pass filter into a low-pass filter. Because we want to remove the high-frequency stochastic cycles
still in the previously filtered series ip bw6, we need a low-pass filter. So we keep the trend produced
by refiltering the previously filtered series.

In the output below, we apply a Butterworth filter of order 20 to the previously filtered series
ip bw6. We explain why we used order 20 in the next example. We specify the trend() option to
keep the low-frequency components from these filters. Then we compute and graph the periodogram
for the trend variable.
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. tsfilter bw ip_bwu20 = ip_bw6, gain(bwg20 fbw20) maxperiod(6) order(20)
> trend(ip_bwb)

. label variable bwg20 "BW upper filter 20"

. pergram ip_bwb, xline(0.03125 0.16667)
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The periodogram reveals that the two-pass process has passed the original series ip ln through
a band-pass filter. It also reveals that the two-pass process did a reasonable job of filtering out the
stochastic cycles corresponding to the unwanted frequencies.

Example 9: Choosing the order of a Butterworth filter

In the previous example, when the cutoff period was 6, we set the order of the Butterworth filter
to 20. In contrast, in example 7, when the cutoff period was 32, we set the order of the Butterworth
filter to 6. We had to increase filter order because the slope of the gain function of the Butterworth
filter is increasing with the cutoff period. We needed a larger filter order to get an acceptable slope
at the lower cutoff period.

We illustrate this point in the output below. We apply Butterworth filters of orders 1 and 6 to the
previously filtered series ip bw6, we compute the gain functions, we label the gain variables, and
then we plot the gain functions from the ideal filter and the Butterworth filters.
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. tsfilter bw ip_bwu1 = ip_bw6, gain(bwg1 fbw1) maxperiod(6) order(2)

. label variable bwg1 "BW upper filter 2"

. tsfilter bw ip_bwu6 = ip_bw6, gain(bwg6 fbw6) maxperiod(6) order(6)

. label variable bwg6 "BW upper filter 6"

. twoway line ideal f || line bwg1 fbw1 || line bwg6 fbw6 || line bwg20 fbw20
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Because the cutoff period is 6, the gain functions for m = 2 and m = 6 are much flatter than the
gain functions for m = 2 and m = 6 in example 7 when the cutoff period was 32. The gain function
for m = 20 is reasonably close to vertical, so we used it in example 8. We mentioned above that
for any given cutoff period, the computation eventually becomes unstable for larger values of m. For
instance, when the cutoff period is 32, m = 20 is not numerically feasible.

Example 10: Comparing the Butterworth and CF estimates

As a conclusion, we plot the business-cycle components estimated by the CF filter and by the
two passes of Butterworth filters. The shaded areas identify recessions. The two estimates are close
but the differences could be important. Which estimate is better depends on whether the oscillations
around 1 in the graph of the CF gain function (the second graph of example 7) cause more problems
than the nonvertical slopes at the cutoff periods that occur in the BW6 gain function of that same
graph and the BW upper filter 20 gain function graphed above.
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There is a long tradition in economics of using models to estimate components. Instead of comparing
filters by their gain functions, some authors compare filters by finding underlying models for which
the filter parameters are the model parameters. For instance, Harvey and Jaeger (1993), Gómez (1999,
2001), Pollock (2000, 2006), and Harvey and Trimbur (2003) derive models that correspond to the
HP or the Butterworth filter. Some of these references also compare components estimated by filters
with components estimated by making predictions from estimated models. In effect, these references
point out that arima, dfactor, sspace, and ucm (see [TS] arima, [TS] dfactor, [TS] sspace, and
[TS] ucm) implement alternative methods to component estimation.

Methods and formulas
All filters work with both time-series data and panel data when there are many observations on

each panel. When used with panel data, the calculations are performed separately within each panel.

For these filters, the default minimum and maximum periods of oscillation correspond to the
boundaries used by economists (Burns and Mitchell 1946) for business cycles. Burns and Mitchell
defined business cycles as oscillations in business data with recurring periods between 1.5 and 8
years. Their definition continues to be cited by economists investigating correlations between business
cycles.

If yt is a time series, then the cyclical component is

ct = B(L)yt =

∞∑
j=−∞

bjyt−j

where bj are the coefficients of the impulse–response sequence of some ideal filter. The impulse–
response sequence is the inverse Fourier transform of either a square wave or step function depending
upon whether the filter is a band-pass or high-pass filter, respectively.

https://www.stata.com/manuals/tsarima.pdf#tsarima
https://www.stata.com/manuals/tsdfactor.pdf#tsdfactor
https://www.stata.com/manuals/tssspace.pdf#tssspace
https://www.stata.com/manuals/tsucm.pdf#tsucm
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In finite sequences, it is necessary to approximate this calculation with a finite impulse–response
sequence b̂j :

ĉt = B̂t(L)yt =

n2∑
j=−n1

b̂jyt−j

The infinite-order impulse–response sequence for the filters implemented in tsfilter are symmetric
and time-invariant.

In the frequency domain, the relationships between the true cyclical component and its finite
estimates respectively are

c(ω) = B(ω)y(ω)

and
ĉ(ω) = B̂(ω)y(ω)

where B(ω) and B̂(ω) are the frequency transfer functions of the filters B and B̂.

The frequency transfer function for B(ω) can be expressed in polar form as

B(ω) = |B(ω)|exp{iθ(ω)}

where |B(ω)| is the filter’s gain function and θ(ω) is the filter’s phase function. The gain function
determines whether the amplitude of the stochastic cycle is increased or decreased at a particular
frequency. The phase function determines how a cycle at a particular frequency is shifted forward or
backward in time.

In this form, it can be shown that the spectrum of the cyclical component, fc(ω), is related to the
spectrum of yt series by the squared gain:

fc(ω) = |B(ω)|2fy(ω)

Each of the four filters in tsfilter has an option for returning an estimate of the gain function
together with its associated scaled frequency a = ω/π, where 0 ≤ ω ≤ π. These are consistent
estimates of |B(ω)|, the gain from the ideal linear filter.

The band-pass filters implemented in tsfilter, the BK and CF filters, use a square wave as the
ideal transfer function:

B(ω) =

 1 if |ω| ∈ [ωl, ωh]

0 if |ω| /∈ [ωl, ωh]

The high-pass filters, the Hodrick–Prescott and Butterworth filters, use a step function as the ideal
transfer function:

B(ω) =

 1 if |ω| ≥ ωh

0 if |ω| < ωh
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