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Description

frontier fits stochastic production or cost frontier models; the default is a production frontier
model. It provides estimators for the parameters of a linear model with a disturbance that is assumed
to be a mixture of two components, which have a strictly nonnegative and symmetric distribution,
respectively. frontier can fit models in which the nonnegative distribution component (a measurement
of inefficiency) is assumed to be from a half-normal, exponential, or truncated-normal distribution.
See Kumbhakar and Lovell (2000) for a detailed introduction to frontier analysis.

Quick start
Cobb–Douglas production frontier model of lny1 as a function of lnx1 and lnx2

frontier lny1 lnx1 lnx2

Same as above, but use exponential instead of half-normal distribution for the inefficiency term
frontier lny1 lnx1 lnx2, distribution(exponential)

Include x3 as an explanatory variable in the idiosyncratic error variance function
frontier lny1 lnx1 lnx2, vhet(x3)

Same as above, and include x4 as an explanatory variable in the technical inefficiency variance
function

frontier lny1 lnx1 lnx2, vhet(x3) uhet(x4)

Conditional mean model with the mean modeled as a linear function of x3
frontier lny1 lnx1 lnx2, distribution(tnormal) cm(x3)

Cost frontier model of y2 as a function of lnx1 and lnx2

frontier y2 lnx1 lnx2, distribution(tnormal) cost

Menu
Statistics > Linear models and related > Frontier models
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Syntax

frontier depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
distribution(hnormal) half-normal distribution for the inefficiency term
distribution(exponential) exponential distribution for the inefficiency term
distribution(tnormal) truncated-normal distribution for the inefficiency term
ufrom(matrix) specify untransformed log likelihood; only with d(tnormal)

cm(varlist
[
, noconstant

]
) fit conditional mean model; only with d(tnormal); use

noconstant to suppress constant term

Model 2

constraints(constraints) apply specified linear constraints
uhet(varlist

[
, noconstant

]
) explanatory variables for technical inefficiency variance

function; use noconstant to suppress constant term
vhet(varlist

[
, noconstant

]
) explanatory variables for idiosyncratic error variance

function; use noconstant to suppress constant term
cost fit cost frontier model; default is production frontier model

SE/Robust
∗vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,

or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables
coeflegend display legend instead of statistics
∗vce(robust) and vce(cluster clustvar) may not be specified with distribution(tnormal).
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, collect, fp, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptionsOptionsconstraintsdescrip
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

noconstant; see [R] Estimation options.

distribution(distname) specifies the distribution for the inefficiency term as half-normal (hnormal),
exponential, or truncated-normal (tnormal). The default is hnormal.

ufrom(matrix) specifies a 1 ×K matrix of untransformed starting values when the distribution is
truncated-normal (tnormal). frontier can estimate the parameters of the model by maximizing
either the log likelihood or a transformed log likelihood (see Methods and formulas). frontier
automatically transforms the starting values before passing them on to the transformed log likelihood.
The matrix must have the same number of columns as there are parameters to estimate.

cm(varlist
[
, noconstant

]
) may be used only with distribution(tnormal). Here frontier

will fit a conditional mean model in which the mean of the truncated-normal distribution is modeled
as a linear function of the set of covariates specified in varlist. Specifying noconstant suppresses
the constant in the mean function.

� � �
Model 2 �

constraints(constraints); see [R] Estimation options.

By default, when fitting the truncated-normal model or the conditional mean model, frontier
maximizes a transformed log likelihood. When constraints are applied, frontier will maximize
the untransformed log likelihood with constraints defined in the untransformed metric.

uhet(varlist
[
, noconstant

]
) specifies that the technical inefficiency component is heteroskedastic,

with the variance function depending on a linear combination of varlistu. Specifying noconstant
suppresses the constant term from the variance function. This option may not be specified with
distribution(tnormal).

vhet(varlist
[
, noconstant

]
) specifies that the idiosyncratic error component is heteroskedastic,

with the variance function depending on a linear combination of varlistv . Specifying noconstant
suppresses the constant term from the variance function. This option may not be specified with
distribution(tnormal).

cost specifies that frontier fit a cost frontier model.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce option.

vce(robust) and vce(cluster clustvar) may not be specified with distribution(tnormal).

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with frontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and
Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular
subfield in econometrics. Kumbhakar and Lovell (2000) provide a good introduction.

frontier fits three stochastic frontier models with distinct parameterizations of the inefficiency
term and can fit stochastic production or cost frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production
function f(zi,β). In a world without error or inefficiency, the ith firm would produce

qi = f(zi,β)

Stochastic frontier analysis assumes that each firm potentially produces less than it might due to
a degree of inefficiency. Specifically,

qi = f(zi,β)ξi

where ξi is the level of efficiency for firm i; ξi must be in the interval (0, 1 ]. If ξi = 1, the firm
is achieving the optimal output with the technology embodied in the production function f(zi,β).
When ξi < 1, the firm is not making the most of the inputs zi given the technology embodied in the
production function f(zi,β). Because the output is assumed to be strictly positive (that is, qi > 0),
the degree of technical efficiency is assumed to be strictly positive (that is, ξi > 0).

Output is also assumed to be subject to random shocks, implying that

qi = f(zi,β)ξiexp(vi)

Taking the natural log of both sides yields

ln(qi) = ln
{
f(zi,β)

}
+ ln(ξi) + vi

Assuming that there are k inputs and that the production function is linear in logs, defining
ui = − ln(ξi) yields

ln(qi) = β0 +

k∑
j=1

βj ln(zji) + vi − ui (1)

Because ui is subtracted from ln(qi), restricting ui ≥ 0 implies that 0 < ξi ≤ 1, as specified above.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
http://stata.com
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Kumbhakar and Lovell (2000) provide a detailed version of the above derivation, and they show
that performing an analogous derivation in the dual cost function problem allows us to specify the
problem as

ln(ci) = β0 + βq ln(qi) +

k∑
j=1

βj ln(pji) + vi + ui (2)

where qi is output, zji are input quantities, ci is cost, and the pji are input prices.

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the
specification.

Technical note

The model that frontier actually fits is of the form

yi = β0 +

k∑
j=1

βjxji + vi − sui

where

s =

{
1, for production functions
−1, for cost functions

so, in the context of the discussion above, yi = ln(qi), and xji = ln(zji) for a production function;
and for a cost function, yi = ln(ci), and the xji are the ln(pji) and ln(qi). You must take the
natural logarithm of the data before fitting a stochastic frontier production or cost model. frontier
performs no transformations on the data.

Different specifications of the ui and the vi terms give rise to distinct models. frontier provides
estimators for the parameters of three basic models in which the idiosyncratic component, vi, is
assumed to be independently N(0, σv) distributed over the observations. The basic models differ in
their specification of the inefficiency term, ui, as follows:

exponential: the ui are independently exponentially distributed with variance σ2
u

hnormal: the ui are independently half-normally N+(0, σ2
u) distributed

tnormal: the ui are independently N+(µ, σ2
u) distributed with truncation point at 0

For half-normal or exponential distributions, frontier can fit models with heteroskedastic error
components, conditional on a set of covariates. For a truncated-normal distribution, frontier can
also fit a conditional mean model in which the mean is modeled as a linear function of a set of
covariates.

Example 1: The half-normal and the exponential models

For our first example, we demonstrate the half-normal and exponential models by reproducing a
study found in Greene (2003, 505), which uses data originally published in Zellner and Revankar (1969).
In this study of the transportation equipment manufacturing industry, observations on value added,
capital, and labor are used to estimate a Cobb–Douglas production function. The variable lnv is the
log-transformed value added, lnk is the log-transformed capital, and lnl is the log-transformed labor.
OLS estimates are compared with those from stochastic frontier models using both the half-normal
and exponential distribution for the inefficiency term.
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. use https://www.stata-press.com/data/r18/greene9
(Transportation equipment manufacturing industry)

. regress lnv lnk lnl

Source SS df MS Number of obs = 25
F(2, 22) = 397.54

Model 44.1727741 2 22.086387 Prob > F = 0.0000
Residual 1.22225984 22 .055557265 R-squared = 0.9731

Adj R-squared = 0.9706
Total 45.3950339 24 1.89145975 Root MSE = .23571

lnv Coefficient Std. err. t P>|t| [95% conf. interval]

lnk .2454281 .1068574 2.30 0.032 .0238193 .4670368
lnl .805183 .1263336 6.37 0.000 .5431831 1.067183

_cons 1.844416 .2335928 7.90 0.000 1.359974 2.328858

. frontier lnv lnk lnl

Iteration 0: Log likelihood = 2.3357572
Iteration 1: Log likelihood = 2.4673009
Iteration 2: Log likelihood = 2.4695125
Iteration 3: Log likelihood = 2.4695222
Iteration 4: Log likelihood = 2.4695222

Stoc. frontier normal/half-normal model Number of obs = 25
Wald chi2(2) = 743.71

Log likelihood = 2.4695222 Prob > chi2 = 0.0000

lnv Coefficient Std. err. z P>|z| [95% conf. interval]

lnk .2585478 .098764 2.62 0.009 .0649738 .4521218
lnl .7802451 .1199399 6.51 0.000 .5451672 1.015323

_cons 2.081135 .281641 7.39 0.000 1.529128 2.633141

/lnsig2v -3.48401 .6195353 -5.62 0.000 -4.698277 -2.269743
/lnsig2u -3.014599 1.11694 -2.70 0.007 -5.203761 -.8254368

sigma_v .1751688 .0542616 .0954514 .3214633
sigma_u .2215073 .1237052 .074134 .6618486
sigma2 .0797496 .0426989 -.0039388 .163438
lambda 1.264536 .1678684 .9355204 1.593552

LR test of sigma_u=0: chibar2(01) = 0.43 Prob >= chibar2 = 0.256

. predict double u_h, u
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. frontier lnv lnk lnl, distribution(exponential)

Iteration 0: Log likelihood = 2.7270659
Iteration 1: Log likelihood = 2.8551532
Iteration 2: Log likelihood = 2.8604815
Iteration 3: Log likelihood = 2.8604897
Iteration 4: Log likelihood = 2.8604897

Stoc. frontier normal/exponential model Number of obs = 25
Wald chi2(2) = 845.68

Log likelihood = 2.8604897 Prob > chi2 = 0.0000

lnv Coefficient Std. err. z P>|z| [95% conf. interval]

lnk .2624859 .0919988 2.85 0.004 .0821717 .4428002
lnl .7703795 .1109569 6.94 0.000 .5529079 .9878511

_cons 2.069242 .2356159 8.78 0.000 1.607444 2.531041

/lnsig2v -3.527598 .4486176 -7.86 0.000 -4.406873 -2.648324
/lnsig2u -4.002457 .9274575 -4.32 0.000 -5.820241 -2.184674

sigma_v .1713925 .0384448 .1104231 .2660258
sigma_u .1351691 .0626818 .0544692 .3354317
sigma2 .0476461 .0157921 .016694 .0785981
lambda .7886525 .087684 .616795 .9605101

LR test of sigma_u=0: chibar2(01) = 1.21 Prob >= chibar2 = 0.135

. predict double u_e, u

. list state u_h u_e

state u_h u_e

1. Alabama .2011338 .14592865
2. California .14480966 .0972165
3. Connecticut .1903485 .13478797
4. Florida .51753139 .5903303
5. Georgia .10397912 .07140994

6. Illinois .12126696 .0830415
7. Indiana .21128212 .15450664
8. Iowa .24933153 .20073081
9. Kansas .10099517 .06857629

10. Kentucky .05626919 .04152443

11. Louisiana .20332731 .15066405
12. Maine .22263164 .17245793
13. Maryland .13534062 .09245501
14. Massachusetts .15636999 .10932923
15. Michigan .15809566 .10756915

16. Missouri .10288047 .0704146
17. NewJersey .09584337 .06587986
18. NewYork .27787793 .22249416
19. Ohio .22914231 .16981857
20. Pennsylvania .1500667 .10302905

21. Texas .20297875 .14552218
22. Virginia .14000132 .09676078
23. Washington .11047581 .07533251
24. WestVirginia .15561392 .11236153
25. Wisconsin .14067066 .0970861
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The parameter estimates and the estimates of the inefficiency terms closely match those published in
Greene (2003, 505), but the standard errors of the parameter estimates are estimated differently (see
the technical note below).

The output from frontier includes estimates of the standard deviations of the two error components,
σv and σu, which are labeled sigma v and sigma u, respectively. In the log likelihood, they are
parameterized as lnσ2

v and lnσ2
u, and these estimates are labeled /lnsig2v and /lnsig2u in the

output. frontier also reports two other useful parameterizations. The estimate of the total error
variance, σ2

S = σ2
v + σ2

u, is labeled sigma2, and the estimate of the ratio of the standard deviation
of the inefficiency component to the standard deviation of the idiosyncratic component, λ = σu/σv ,
is labeled lambda.

At the bottom of the output, frontier reports the results of a test that there is no technical
inefficiency component in the model. This is a test of the null hypothesis H0 : σ2

u = 0 against
the alternative hypotheses H1 : σ2

u > 0. If the null hypothesis is true, the stochastic frontier model
reduces to an OLS model with normal errors. However, because the test lies on the boundary of the
parameter space of σ2

u, the standard likelihood-ratio test is not valid, and a one-sided generalized
likelihood-ratio test must be constructed; see Gutierrez, Carter, and Drukker (2001). For this example,
the output shows LR = 0.43 with a p-value of 0.256 for the half-normal model and LR = 1.21 with
a p-value of 0.135 for the exponential model. There are several possible reasons for the failure to
reject the null hypothesis, but the fact that the test is based on an asymptotic distribution and the
sample size was 25 is certainly a leading candidate among those possibilities.

Technical note
frontier maximizes the log-likelihood function of a stochastic frontier model by using the

Newton–Raphson method, and the estimated variance–covariance matrix is calculated as the inverse
of the negative Hessian (matrix of second partial derivatives); see [R] ml. When comparing the results
with those published using other software, be aware of the difference in the optimization methods,
which may result in different, yet asymptotically equivalent, variance estimates.

Example 2: Models with heteroskedasticity

Often the error terms may not have constant variance. frontier allows you to model heteroskedas-
ticity in either error term as a linear function of a set of covariates. The variance of either the technical
inefficiency or the idiosyncratic component may be modeled as

σ2
i = exp(wiδ)

The default constant included in wi may be suppressed by appending a noconstant option to the
list of covariates. Also, you can simultaneously specify covariates for both σui

and σvi .

In this example, we use a sample of 756 observations of fictional firms producing a manufactured
good by using capital and labor. The firms are hypothesized to use a constant returns-to-scale technology,
but the sizes of the firms differ. Believing that this size variation will introduce heteroskedasticity
into the idiosyncratic error term, we estimate the parameters of a Cobb–Douglas production function.
To do this, we use a conditional heteroskedastic half-normal model, with the size of the firm as an
explanatory variable in the variance function for the idiosyncratic error. We also perform a test of the
hypothesis that the firms use a constant returns-to-scale technology.

https://www.stata.com/manuals/rml.pdf#rml
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. use https://www.stata-press.com/data/r18/frontier1, clear

. frontier lnoutput lnlabor lncapital, vhet(size)

Iteration 0: Log likelihood = -1508.3692
Iteration 1: Log likelihood = -1501.583
Iteration 2: Log likelihood = -1500.3942
Iteration 3: Log likelihood = -1500.3794
Iteration 4: Log likelihood = -1500.3794

Stoc. frontier normal/half-normal model Number of obs = 756
Wald chi2(2) = 9.68

Log likelihood = -1500.3794 Prob > chi2 = 0.0079

lnoutput Coefficient Std. err. z P>|z| [95% conf. interval]

lnoutput
lnlabor .7090933 .2349374 3.02 0.003 .2486244 1.169562

lncapital .3931345 .5422173 0.73 0.468 -.6695919 1.455861
_cons 1.252199 3.14656 0.40 0.691 -4.914946 7.419344

lnsig2v
size -.0016951 .0004748 -3.57 0.000 -.0026256 -.0007645

_cons 3.156091 .9265826 3.41 0.001 1.340023 4.97216

lnsig2u
_cons 1.947487 .1017653 19.14 0.000 1.748031 2.146943

sigma_u 2.647838 .134729 2.396514 2.925518

. test _b[lnlabor] + _b[lncapital] = 1

( 1) [lnoutput]lnlabor + [lnoutput]lncapital = 1

chi2( 1) = 0.03
Prob > chi2 = 0.8622

The output above indicates that the variance of the idiosyncratic error term is a function of firm size.
Also, we failed to reject the hypothesis that the firms use a constant returns-to-scale technology.

Technical note
In small samples, the conditional heteroskedastic estimators will lack precision for the variance

parameters and may fail to converge altogether.

Example 3: The truncated-normal model

Let’s turn our attention to the truncated-normal model. Once again, we will use fictional data. For
this example, we have 1,231 observations on the quantity of output, the total cost of production for
each firm, the prices that each firm paid for labor and capital services, and a categorical variable
measuring the quality of each firm’s management. After taking the natural logarithm of the costs
(lncost), prices (lnp k and lnp l), and output (lnout), we fit a stochastic cost frontier model
and specify the distribution for the inefficiency term to be truncated normal.
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. use https://www.stata-press.com/data/r18/frontier2

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cost

Iteration 0: Log likelihood = -2386.9523
Iteration 1: Log likelihood = -2386.5146
Iteration 2: Log likelihood = -2386.2704
Iteration 3: Log likelihood = -2386.2504
Iteration 4: Log likelihood = -2386.2493
Iteration 5: Log likelihood = -2386.2493

Stoc. frontier normal/truncated-normal model Number of obs = 1,231
Wald chi2(3) = 8.82

Log likelihood = -2386.2493 Prob > chi2 = 0.0318

lncost Coefficient Std. err. z P>|z| [95% conf. interval]

lnp_k .3410717 .2363861 1.44 0.149 -.1222366 .80438
lnp_l .6608628 .4951499 1.33 0.182 -.3096131 1.631339
lnout .7528653 .3468968 2.17 0.030 .0729601 1.432771
_cons 2.602609 1.083004 2.40 0.016 .4799595 4.725259

/mu 1.095705 .881517 1.24 0.214 -.632037 2.823446
/lnsigma2 1.5534 .1873464 8.29 0.000 1.186208 1.920592
/lgtgamma 1.257862 .2589522 4.86 0.000 .7503255 1.765399

sigma2 4.727518 .8856833 3.274641 6.825001
gamma .7786579 .0446303 .6792496 .8538846

sigma_u2 3.681119 .7503408 2.210478 5.15176
sigma_v2 1.046399 .2660035 .5250413 1.567756

H0: No inefficiency component: z = 5.595 Prob >= z = 0.0000

In addition to the coefficients, the output reports estimates for several parameters. sigma v2 is the
estimate of σ2

v . sigma u2 is the estimate of σ2
u. gamma is the estimate of γ = σ2

u/σ
2
S . sigma2 is the

estimate of σ2
S = σ2

v +σ2
u. Because γ must be between 0 and 1, the optimization is parameterized in

terms of the logit of γ, and this estimate is reported as lgtgamma. Because σ2
S must be positive, the

optimization is parameterized in terms of ln(σ2
S), whose estimate is reported as lnsigma2. Finally,

mu is the estimate of µ, the mean of the truncated-normal distribution.

In the output above, the generalized log-likelihood test for the presence of the inefficiency term
has been replaced with a test based on the third moment of the OLS residuals. When µ = 0 and
σu = 0, the truncated-normal model reduces to a linear regression model with normally distributed
errors. However, the distribution of the test statistic under the null hypothesis is not well established,
because it becomes impossible to evaluate the log likelihood as σu approaches zero, prohibiting the
use of the likelihood-ratio test.

However, Coelli (1995) noted that the presence of an inefficiency term would negatively skew the
residuals from an OLS regression. By identifying negative skewness in the residuals with the presence
of an inefficiency term, Coelli derived a one-sided test for the presence of the inefficiency term. The
results of this test are given at the bottom of the output. For this example, the null hypothesis of no
inefficiency component is rejected.

In the example below, we fit a truncated model and detect a statistically significant inefficiency
term in the model. We might question whether the inefficiency term is identically distributed over
all firms or whether there might be heterogeneity across firms. frontier provides an extension
to the truncated normal model by allowing the mean of the inefficiency term to be modeled as a
linear function of a set of covariates. In our dataset, we have a categorical variable that measures the
quality of a firm’s management. We refit the model, including the cm() option, specifying a set of
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binary indicator variables representing the different categories of the quality-measurement variable as
covariates.

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cm(i.quality) cost

Iteration 0: Log likelihood = -2386.9523
Iteration 1: Log likelihood = -2384.936
Iteration 2: Log likelihood = -2382.3942
Iteration 3: Log likelihood = -2382.324
Iteration 4: Log likelihood = -2382.3233
Iteration 5: Log likelihood = -2382.3233

Stoc. frontier normal/truncated-normal model Number of obs = 1,231
Wald chi2(3) = 9.31

Log likelihood = -2382.3233 Prob > chi2 = 0.0254

lncost Coefficient Std. err. z P>|z| [95% conf. interval]

lncost
lnp_k .3611204 .2359749 1.53 0.126 -.1013819 .8236227
lnp_l .680446 .4934935 1.38 0.168 -.2867835 1.647675
lnout .7605533 .3466102 2.19 0.028 .0812098 1.439897
_cons 2.550769 1.078911 2.36 0.018 .4361417 4.665396

mu
quality

2 .5056067 .3382907 1.49 0.135 -.1574309 1.168644
3 .783223 .376807 2.08 0.038 .0446947 1.521751
4 .5577511 .3355061 1.66 0.096 -.0998288 1.215331
5 .6792882 .3428073 1.98 0.048 .0073981 1.351178

_cons .6014025 .990167 0.61 0.544 -1.339289 2.542094

/lnsigma2 1.541784 .1790926 8.61 0.000 1.190769 1.892799
/lgtgamma 1.242302 .2588968 4.80 0.000 .734874 1.749731

sigma2 4.67292 .8368852 3.289611 6.637923
gamma .7759645 .0450075 .6758739 .8519189

sigma_u2 3.62602 .7139576 2.226689 5.025351
sigma_v2 1.0469 .2583469 .5405491 1.553251

The conditional mean model was developed in the context of panel-data estimators, and we can
apply frontier’s conditional mean model to panel data.
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Stored results
frontier stores the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(chi2) χ2

e(ll) log likelihood
e(ll c) log likelihood for H0: σu=0

e(z) test for negative skewness of OLS residuals
e(sigma u) standard deviation of technical inefficiency
e(sigma v) standard deviation of vi
e(p) p-value for model test
e(chi2 c) LR test statistic
e(p z) p-value for z
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) frontier
e(cmdline) command as typed
e(depvar) name of dependent variable
e(function) production or cost
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(dist) distribution assumption for ui

e(het) heteroskedastic components
e(u hetvar) varlist in uhet()
e(v hetvar) varlist in vhet()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Consider an equation of the form

yi = xiβ + vi − sui

where yi is the dependent variable, xi is a 1× k vector of observations on the independent variables
included as indent covariates, β is a k × 1 vector of coefficients, and

s =

{
1, for production functions
−1, for cost functions

The log-likelihood functions are as follows.

Normal/half-normal model:

lnL =

N∑
i=1

{
1

2
ln
(

2

π

)
− lnσS + lnΦ

(
−sεiλ
σS

)
− ε2i

2σ2
S

}
Normal/exponential model:

lnL =

N∑
i=1

− lnσu +
σ2
v

2σ2
u

+ lnΦ

−sεi − σ2
v

σu

σv

+
sεi
σu


Normal/truncated-normal model:

lnL =

N∑
i=1

{
−1

2
ln (2π)− lnσS − lnΦ

(
µ

σS
√
γ

)

+ lnΦ

[
(1− γ)µ− sγεi
{σ2

Sγ (1− γ)}1/2

]
− 1

2

(
εi + sµ

σS

)2
}

where σS = (σ2
u + σ2

v)1/2, λ = σu/σv , γ = σ2
u/σ

2
S , εi = yi − xiβ, and Φ() is the cumulative

distribution function of the standard normal distribution.
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To obtain estimation for ui, you can use either the mean or the mode of the conditional distribution
f(u|ε).

E (ui | εi) = µ∗i + σ∗

{
φ(−µ∗i/σ∗)

Φ(µ∗i/σ∗)

}
M (ui | εi) =

{
µ∗i if µ∗i ≥ 0
0 otherwise

Then, the technical efficiency (s = 1) or cost efficiency (s = −1) will be estimated by

Ei = E { exp(−sui) | εi}

=

{
1− Φ (sσ∗ − µ∗i/σ∗)

1− Φ (−µ∗i/σ∗)

}
exp
(
−sµ∗i +

1

2
σ2
∗

)
where µ∗i and σ∗ are defined for the normal/half-normal model as

µ∗i = −sεiσ2
u/σ

2
S

σ∗ = σuσv/σS

for the normal/exponential model as

µ∗i = −sεi − σ2
v/σu

σ∗ = σv

and for the normal/truncated-normal model as

µ∗i =
−sεiσ2

u + µσ2
v

σ2
S

σ∗ = σuσv/σS

In the half-normal and exponential models, when heteroskedasticity is assumed, the standard
deviations, σu or σv , will be replaced in the above equations by

σ2
i = exp(wiδ)

where w is the vector of explanatory variables in the variance function.

In the conditional mean model, the mean parameter of the truncated normal distribution, µ, is
modeled as a linear combination of the set of covariates, w.

µ = wiδ
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Therefore, the log-likelihood function can be rewritten as

lnL =

N∑
i=1

[
−1

2
ln (2π)− lnσS − lnΦ

(
wiδ√
σ2
Sγ

)

+ lnΦ

{
(1− γ)wiδ− sγεi√

σ2
Sγ (1− γ)

}
− 1

2

(
εi + swiδ

σS

)2
]

The z test reported in the output of the truncated-normal model is a third-moment test developed by
Coelli (1995) as an extension of a test previously developed by Pagan and Hall (1983). Coelli shows
that under the null of normally distributed errors, the statistic

z =
m3(

6m3
2

N

)1/2
has a standard normal distribution, where m3 is the third moment from the OLS regression. Because
the residuals are either negatively skewed (production function) or positively skewed (cost function),
a one-sided p-value is used.
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