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Description

mds performs multidimensional scaling (MDS) for dissimilarities between observations with respect
to the specified variables. A wide selection of similarity and dissimilarity measures is available. mds
performs classical metric MDS as well as modern metric and nonmetric MDS.

If your proximities are stored as variables in long format, see [MV] mdslong. For MDS with
two-way proximity data in a matrix, see [MV] mdsmat.

Quick start
Classical metric multidimensional scaling of variables v1, v2, v3, and v4 with observations identified

by idvar

mds v1 v2 v3 v4, id(idvar)

Same as above, but use absolute-value distance and suppress the MDS configuration plot
mds v1 v2 v3 v4, id(idvar) measure(absolute) noplot

Same as above, but increase dimensions from 2 to 3 for approximating configuration
mds v1 v2 v3 v4, id(idvar) measure(absolute) noplot dimension(3)

Modern multidimensional scaling
mds v1 v2 v3 v4, id(idvar) method(modern)

Same as above, but Procrustes rotate toward classical solution instead of the default principal orientation
mds v1 v2 v3 v4, id(idvar) method(modern) normalize(classical)

Modern multidimensional scaling with Sammon mapping for the loss criterion
mds v1 v2 v3 v4, id(idvar) loss(sammon)

Modern nonmetric multidimensional scaling
mds v1 v2 v3 v4, id(idvar) method(nonmetric)

Menu
Statistics > Multivariate analysis > Multidimensional scaling (MDS) > MDS of data
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http://stata.com
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Syntax
mds varlist

[
if
] [

in
]
, id(varname)

[
options

]
options Description

Model
∗id(varname) identify observations
method(method) method for performing MDS
loss(loss) loss function
transform(tfunction) permitted transformations of dissimilarities
normalize(norm) normalization method; default is normalize(principal)

dimension(#) configuration dimensions; default is dimension(2)

addconstant make distance matrix positive semidefinite

Model 2

unit
[
(varlist2)

]
scale variables to min = 0 and max = 1

std
[
(varlist3)

]
scale variables to mean = 0 and sd = 1

measure(measure) similarity or dissimilarity measure; default is L2 (Euclidean)
s2d(standard) convert similarity to dissimilarity: dissimij =

√
simii + simjj − 2simij ;

the default
s2d(oneminus) convert similarity to dissimilarity: dissimij = 1− simij

Reporting

neigen(#) maximum number of eigenvalues to display; default is neigen(10)

config display table with configuration coordinates
noplot suppress configuration plot

Minimization

initialize(initopt) start with configuration given in initopt
tolerance(#) tolerance for configuration matrix; default is tolerance(1e-4)

ltolerance(#) tolerance for loss criterion; default is ltolerance(1e-8)

iterate(#) perform maximum # of iterations; default is iterate(1000)

protect(#) perform # optimizations and report best solution; default is protect(1)[
no
]
log display or suppress the iteration log; default is to display

trace display current configuration in iteration log
gradient display current gradient matrix in iteration log
sdprotect(#) advanced; see Options below

∗ id(varname) is required.
bootstrap, by, collect, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
The maximum number of observations allowed in mds is the maximum matrix size; see [R] Limits.
sdprotect(#) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rlimits.pdf#rLimits
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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method Description

classical classical MDS; default if neither loss() nor transform() is
specified

modern modern MDS; default if loss() or transform() is specified;
except when loss(stress) and transform(monotonic) are
specified

nonmetric nonmetric (modern) MDS; default when loss(stress) and
transform(monotonic) are specified

loss Description

stress stress criterion, normalized by distances; the default
nstress stress criterion, normalized by disparities
sstress squared stress criterion, normalized by distances
nsstress squared stress criterion, normalized by disparities
strain strain criterion (with transform(identity) is equivalent to

classical MDS)
sammon Sammon mapping

tfunction Description

identity no transformation; disparity = dissimilarity; the default
power power α: disparity = dissimilarityα

monotonic weakly monotonic increasing functions (nonmetric scaling); only
with loss(stress)

norm Description

principal principal orientation; location = 0; the default
classical Procrustes rotation toward classical solution
target(matname)

[
, copy

]
Procrustes rotation toward matname; ignore naming conflicts

if copy is specified

initopt Description

classical start with classical solution; the default
random

[
(#)

]
start at random configuration, setting seed to #

from(matname)
[
, copy

]
start from matname; ignore naming conflicts if copy is specified

Options

� � �
Model �

id(varname) is required and specifies a variable that identifies observations. A warning message is
displayed if varname has duplicate values.

method(method) specifies the method for MDS.

method(classical) specifies classical metric scaling, also known as “principal coordinates anal-
ysis” when used with Euclidean proximities. Classical MDS obtains equivalent results to modern

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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MDS with loss(strain) and transform(identity) without weights. The calculations for
classical MDS are fast; consequently, classical MDS is generally used to obtain starting values
for modern MDS. If the options loss() and transform() are not specified, mds computes the
classical solution, likewise if method(classical) is specified loss() and transform() are
not allowed.

method(modern) specifies modern scaling. If method(modern) is specified but not loss() or
transform(), then loss(stress) and transform(identity) are assumed. All values of
loss() and transform() are valid with method(modern).

method(nonmetric) specifies nonmetric scaling, which is a type of modern scaling. If
method(nonmetric) is specified, loss(stress) and transform(monotonic) are assumed.
Other values of loss() and transform() are not allowed.

loss(loss) specifies the loss criterion.

loss(stress) specifies that the stress loss function be used, normalized by the squared Eu-
clidean distances. This criterion is often called Kruskal’s stress-1. Optimal configurations for
loss(stress) and for loss(nstress) are equivalent up to a scale factor, but the iteration
paths may differ. loss(stress) is the default.

loss(nstress) specifies that the stress loss function be used, normalized by the squared dis-
parities, that is, transformed dissimilarities. Optimal configurations for loss(stress) and for
loss(nstress) are equivalent up to a scale factor, but the iteration paths may differ.

loss(sstress) specifies that the squared stress loss function be used, normalized by the fourth
power of the Euclidean distances.

loss(nsstress) specifies that the squared stress criterion, normalized by the fourth power of
the disparities (transformed dissimilarities) be used.

loss(strain) specifies the strain loss criterion. Classical scaling is equivalent to loss(strain)
and transform(identity) but is computed by a faster noniterative algorithm. Specifying
loss(strain) still allows transformations.

loss(sammon) specifies the Sammon (1969) loss criterion.

transform(tfunction) specifies the class of allowed transformations of the dissimilarities; transformed
dissimilarities are called disparities.

transform(identity) specifies that the only allowed transformation is the identity; that is,
disparities are equal to dissimilarities. transform(identity) is the default.

transform(power) specifies that disparities are related to the dissimilarities by a power function,

disparity = dissimilarityα, α > 0

transform(monotonic) specifies that the disparities are a weakly monotonic function of the dis-
similarities. This is also known as nonmetric MDS. Tied dissimilarities are handled by the primary
method; that is, ties may be broken but are not necessarily broken. transform(monotonic)
is valid only with loss(stress).

normalize(norm) specifies a normalization method for the configuration. Recall that the location
and orientation of an MDS configuration is not defined (“identified”); an isometric transformation
(that is, translation, reflection, or orthonormal rotation) of a configuration preserves interpoint
Euclidean distances.

normalize(principal) performs a principal normalization, in which the configuration columns
have zero mean and correspond to the principal components, with positive coefficient for the
observation with lowest value of id(). normalize(principal) is the default.
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normalize(classical) normalizes by a distance-preserving Procrustean transformation of the
configuration toward the classical configuration in principal normalization; see [MV] procrustes.
normalize(classical) is not valid if method(classical) is specified.

normalize(target(matname)
[
, copy

]
) normalizes by a distance-preserving Procrustean

transformation toward matname; see [MV] procrustes. matname should be an n × p matrix,
where n is the number of observations and p is the number of dimensions, and the rows of
matname should be ordered with respect to id(). The rownames of matname should be set
correctly but will be ignored if copy is also specified.

Note on normalize(classical) and normalize(target()): the Procrustes transformation
comprises any combination of translation, reflection, and orthonormal rotation—these transfor-
mations preserve distance. Dilation (uniform scaling) would stretch distances and is not applied.
However, the output reports the dilation factor, and the reported Procrustes statistic is for the
dilated configuration.

dimension(#) specifies the dimension of the approximating configuration. The default # is 2
and should not exceed the number of observations; typically, # would be much smaller. With
method(classical), it should not exceed the number of positive eigenvalues of the centered
distance matrix.

addconstant specifies that if the double-centered distance matrix is not positive semidefinite (psd),
a constant should be added to the squared distances to make it psd and, hence, Euclidean.
addconstant is allowed with classical MDS only.

� � �
Model 2 �

unit
[
(varlist2)

]
specifies variables that are transformed to min = 0 and max = 1 before entering

in the computation of similarities or dissimilarities. unit by itself, without an argument, is a
shorthand for unit( all). Variables in unit() should not be included in std().

std
[
(varlist3)

]
specifies variables that are transformed to mean = 0 and sd = 1 before entering in

the computation of similarities or dissimilarities. std by itself, without an argument, is a shorthand
for std( all). Variables in std() should not be included in unit().

measure(measure) specifies the similarity or dissimilarity measure. The default is measure(L2),
Euclidean distance. This option is not case sensitive. See [MV] measure option for detailed
descriptions of the supported measures.

If a similarity measure is selected, the computed similarities will first be transformed into dissim-
ilarities, before proceeding with the scaling; see the s2d() option below.

Classical metric MDS with Euclidean distance is equivalent to principal component analysis (see
[MV] pca); the MDS configuration coordinates are the principal components.

s2d(standard | oneminus) specifies how similarities are converted into dissimilarities. By default,
the command assumes dissimilarity data. Specifying s2d() indicates that your proximity data are
similarities.

Dissimilarity data should have zeros on the diagonal (that is, an object is identical to itself)
and nonnegative off-diagonal values. Dissimilarities need not satisfy the triangular inequality,
D(i, j)2 ≤ D(i, h)2 + D(h, j)2. Similarity data should have ones on the diagonal (that is, an
object is identical to itself) and have off-diagonal values between zero and one. In either case,
proximities should be symmetric.

https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
https://www.stata.com/manuals/mvprocrustes.pdf#mvprocrustes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/mvpca.pdf#mvpca
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The available s2d() options, standard and oneminus, are defined as follows:

standard dissimij =
√

simii + simjj − 2simij =
√

2(1− simij)

oneminus dissimij = 1− simij

s2d(standard) is the default.

s2d() should be specified only with measures in similarity form.

� � �
Reporting �

neigen(#) specifies the number of eigenvalues to be included in the table. The default is neigen(10).
Specifying neigen(0) suppresses the table. This option is allowed with classical MDS only.

config displays the table with the coordinates of the approximating configuration. This table may also
be displayed using the postestimation command estat config; see [MV] mds postestimation.

noplot suppresses the graph of the approximating configuration. The graph can still be produced
later via mdsconfig, which also allows the standard graphics options for fine-tuning the plot; see
[MV] mds postestimation plots.

� � �
Minimization �

These options are available only with method(modern) or method(nonmetric):

initialize(initopt) specifies the initial values of the criterion minimization process.

initialize(classical), the default, uses the solution from classical metric scaling as initial
values. With protect(), all but the first run start from random perturbations from the classical
solution. These random perturbations are independent and normally distributed with standard
error equal to the product of sdprotect(#) and the standard deviation of the dissimilarities.
initialize(classical) is the default.

initialize(random) starts an optimization process from a random starting configuration. These
random configurations are generated from independent normal distributions with standard error
equal to the product of sdprotect(#) and the standard deviation of the dissimilarities. The
means of the configuration are irrelevant in MDS.

initialize(from(matname)
[
, copy

]
) sets the initial value to matname. matname should be an

n×p matrix, where n is the number of observations and p is the number of dimensions, and the
rows of matname should be ordered with respect to id(). The rownames of matname should be
set correctly but will be ignored if copy is specified. With protect(), the second-to-last runs
start from random perturbations from matname. These random perturbations are independent
normal distributed with standard error equal to the product of sdprotect(#) and the standard
deviation of the dissimilarities.

tolerance(#) specifies the tolerance for the configuration matrix. When the relative change in the
configuration from one iteration to the next is less than or equal to tolerance(), the tolerance()
convergence criterion is satisfied. The default is tolerance(1e-4).

ltolerance(#) specifies the tolerance for the fit criterion. When the relative change in the fit
criterion from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied. The default is ltolerance(1e-8).

Both the tolerance() and ltolerance() criteria must be satisfied for convergence.

iterate(#) specifies the maximum number of iterations. The default is iterate(1000).

https://www.stata.com/manuals/mvmdspostestimation.pdf#mvmdspostestimation
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
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protect(#) requests that # optimizations be performed and that the best of the solutions be reported.
The default is protect(1). See option initialize() on starting values of the runs. The output
contains a table of the run, return code, iteration, and criterion value reached. Specifying a large
number, such as protect(50), provides reasonable insight whether the solution found is a global
minimum and not just a local minimum.

If any of the options log, trace, or gradient is also specified, iteration reports will be printed
for each optimization run. Beware: this option will produce a lot of output.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace displays the configuration matrices in the iteration report. Beware: this option may produce a
lot of output.

gradient displays the gradient matrices of the fit criterion in the iteration report. Beware: this option
may produce a lot of output.

The following option is available with mds but is not shown in the dialog box:

sdprotect(#) sets a proportionality constant for the standard deviations of random configurations
(init(random)) or random perturbations of given starting configurations (init(classical) or
init(from())). The default is sdprotect(1).

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Euclidean distances
Non-Euclidean dissimilarity measures
Introduction to modern MDS
Protecting from local minimums

Introduction

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space. See
Kruskal and Wish (1978) for a brief nontechnical introduction to MDS. Young (1987) and Borg and
Groenen (2005) offer more advanced textbook-sized treatments.

If you already have the similarities or dissimilarities of the n objects, you should continue by
reading [MV] mdsmat.

In many applications of MDS, however, the similarity or dissimilarity of objects is not measured
but rather defined by the researcher in terms of variables (“attributes”) x1, . . . , xk that are measured
on the objects. The pairwise dissimilarity of objects can be expressed using a variety of similarity or
dissimilarity measures in the attributes (for example, Mardia, Kent, and Bibby [1979, sec. 13.4]; Cox
and Cox [2001, sec. 1.3]). A common measure is the Euclidean distance L2 between the attributes
of the objects i and j:

L2ij =
{
(xi1 − xj1)2 + (xi2 − xj2)2 + · · ·+ (xik − xjk)2

}1/2

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
http://stata.com
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmat
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A popular alternative is the L1 distance, also known as the cityblock or Manhattan distance. In
comparison to L2, L1 gives less influence to larger differences in attributes:

L1ij = |xi1 − xj1|+ |xi2 − xj2|+ · · ·+ |xik − xjk|

In contrast, we may also define the extent of dissimilarity between 2 observations as the maximum
absolute difference in the attributes and thus give a larger influence to larger differences:

Linfinityij = max(|xi1 − xj1|, |xi2 − xj2|, . . . , |xik − xjk|)

These three measures are special cases of the Minkowski distance L(q), for q = 2 (L2), q = 1 (L1),
and q =∞ (Linfinity), respectively. Minkowski distances with other values of q may be used as
well. Stata supports a wide variety of other similarity and dissimilarity measures, both for continuous
variables and for binary variables. See [MV] measure option for details.

Multidimensional scaling constructs approximations for dissimilarities, not for similarities. Thus, if
a similarity measure is specified, mds first transforms the similarities into dissimilarities. Two methods
to do this are available. The default standard method,

dissimij =
√

simii − 2simij + simjj

has a useful property: if the similarity matrix is positive semidefinite, a property satisfied by most
similarity measures, the standard dissimilarities are Euclidean.

Usually, the number of observations exceeds the number of variables on which the observations
are compared, but this is not a requirement for MDS. MDS creates an n × n dissimilarity matrix D
from the n observations on k variables. It then constructs an approximation of D by the Euclidean
distances in a matching configuration Y of n points in p-dimensional space:

dissimilarity(xi, xj) ≈ L2(yi, yj) for all i, j

Typically, of course, p << k, and most often p = 1, 2, or 3.

A wide variety of MDS methods have been proposed. mds performs classical and modern scaling.
Classical scaling has its roots in Young and Householder (1938) and Torgerson (1952). MDS requires
complete and symmetric dissimilarity interval-level data. To explore modern scaling, see Borg and
Groenen (2005). Classical scaling results in an eigen decomposition, whereas modern scaling is
accomplished by the minimization of a loss function. Consequently, eigenvalues are not available
after modern MDS.

Computing the classical solution is straightforward, but with modern MDS the minimization of the
loss criteria over configurations is a high-dimensional problem that is easily beset by convergence to
local minimums. mds provides options to control the minimization process 1) by allowing the user
to select the starting configuration and 2) by selecting the best solution among multiple minimization
runs from random starting configurations.

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
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Euclidean distances

Example 1

The most popular dissimilarity measure is Euclidean distance. We illustrate with data from table 7.1
of Yang and Trewn (2004, 182). This dataset consists of eight variables with nutrition data on 25
breakfast cereals.

. use https://www.stata-press.com/data/r18/cerealnut
(Cereal nutrition)

. describe

Contains data from https://www.stata-press.com/data/r18/cerealnut.dta
Observations: 25 Cereal nutrition

Variables: 9 24 Feb 2022 17:19
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

brand str25 %25s Cereal Brand
calories int %9.0g Calories (Cal/oz)
protein byte %9.0g Protein (g)
fat byte %9.0g Fat (g)
Na int %9.0g Na (mg)
fiber float %9.0g Fiber (g)
carbs float %9.0g Carbs (g)
sugar byte %9.0g Sugar (g)
K int %9.0g K (mg)

Sorted by:

. summarize calories-K, sep(4)

Variable Obs Mean Std. dev. Min Max

calories 25 109.6 21.30728 50 160
protein 25 2.68 1.314027 1 6

fat 25 .92 .7593857 0 2
Na 25 195.8 71.32204 0 320

fiber 25 1.7 2.056494 0 9
carbs 25 15.3 4.028544 7 22
sugar 25 7.4 4.609772 0 14

K 25 90.6 77.5043 15 320

. replace brand = subinstr(brand," ","_",.)
(20 real changes made)

We replaced spaces in the cereal brand names with underscores to avoid confusing which words in
the brand names are associated with which points in the graphs we are about to produce. Removing
spaces is not required.

The default dissimilarity measure used by mds is the Euclidean distance L2 computed on the
raw data (unstandardized). The summary of the eight nutrition variables shows that K, Na, and
calories—having much larger standard deviations—will largely determine the Euclidean distances.
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. mds calories-K, id(brand)

Classical metric multidimensional scaling
Dissimilarity: L2, computed on 8 variables

Number of obs = 25
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.9603
Retained dimensions = 2 Mardia fit measure 2 = 0.9970

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 158437.92 56.95 56.95 67.78 67.78
2 108728.77 39.08 96.03 31.92 99.70

3 10562.645 3.80 99.83 0.30 100.00
4 382.67849 0.14 99.97 0.00 100.00
5 69.761715 0.03 99.99 0.00 100.00
6 12.520822 0.00 100.00 0.00 100.00
7 5.7559984 0.00 100.00 0.00 100.00
8 2.2243244 0.00 100.00 0.00 100.00
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Classical MDS

MDS configuration

The default MDS configuration graph can be improved upon by using the mdsconfig postestimation
command. We will demonstrate this in a moment. But first, we explain the output of mds.

mds has performed classical metric scaling and extracted two dimensions, which is the default action.
To assess goodness of fit, the two statistics proposed by Mardia are reported (see Mardia, Kent, and
Bibby [1979, sec. 14.4]). The statistics are defined in terms of the eigenvalues of the double-centered
distance matrix. If the dissimilarities are truly Euclidean, all eigenvalues are nonnegative. Look at the
eigenvalues. We may interpret these as the extent to which the dimensions account for dissimilarity
between the cereals. Depending on whether you look at the eigenvalues or squared eigenvalues, it
takes two or three dimensions to account for more than 99% of the dissimilarity.

We can produce a prettier configuration plot with the mdsconfig command; see [MV] mds
postestimation plots for details. command; see [MV] mds postestimation plots for details.

https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
https://www.stata.com/manuals/mvmdspostestimationplots.pdf#mvmdspostestimationplots
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. generate place = 3

. replace place = 9 if inlist(brand,"Rice_Krispies","Nut_&_Honey_Crunch",
> "Special_K","Raisin_Nut_Bran","Lucky_Charms")
(5 real changes made)

. replace place = 12 if inlist(brand,"Mueslix_Crispy_Blend")
(1 real change made)

. mdsconfig, autoaspect mlabvpos(place)
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Classical MDS

MDS configuration

The marker label option mlabvposition() allowed fine control over the placement of the cereal
brand names. We created a variable called place giving clock positions where the cereal names were
to appear in relation to the plotted point. We set these to minimize overlap of the names. We also
requested the autoaspect option to obtain better use of the graphing region while preserving the
scale of the x and y axes.

MDS has placed the cereals so that all the brands fall within a triangle defined by Product 19,
All-Bran, and Puffed Rice. You can examine the graph to see how close your favorite cereal is to
the other cereals.

But, as we saw from the variable summary, three of the eight variables are controlling the distances.
If we want to provide for a more equal footing for the eight variables, we can request that mds
compute the Euclidean distances on standardized variables. Euclidean distance based on standardized
variables is also known as the Karl Pearson distance (Pearson 1900). We obtain standardized measures
with the option std.



12 mds — Multidimensional scaling for two-way data

. mds calories-K, id(brand) std noplot

Classical metric multidimensional scaling
Dissimilarity: L2, computed on 8 variables

Number of obs = 25
Eigenvalues > 0 = 8 Mardia fit measure 1 = 0.5987
Retained dimensions = 2 Mardia fit measure 2 = 0.7697

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 65.645395 34.19 34.19 49.21 49.21
2 49.311416 25.68 59.87 27.77 76.97

3 38.826608 20.22 80.10 17.21 94.19
4 17.727805 9.23 89.33 3.59 97.78
5 11.230087 5.85 95.18 1.44 99.22
6 8.2386231 4.29 99.47 0.78 99.99
7 .77953426 0.41 99.87 0.01 100.00
8 .24053137 0.13 100.00 0.00 100.00

In this and the previous example, we did not specify a method() for mds and got classical
metric scaling. Classical scaling is the default when method() is omitted and neither the loss()
nor transform() option is specified.

Accounting for more than 99% of the underlying distances now takes more MDS-retained dimensions.
For this example, we have still retained only two dimensions. We specified the noplot option because
we wanted to exercise control over the configuration plot by using the mdsconfig command. We
generate a variable named pos that will help minimize cereal brand name overlap.

. generate pos = 3

. replace pos = 5 if inlist(brand,"Honey_Nut_Cheerios","Raisin_Nut_Bran",
> "Nutri_Grain_Almond_Raisin")
(3 real changes made)

. replace pos = 8 if inlist(brand,"Oatmeal_Raisin_Crisp")
(1 real change made)

. replace pos = 9 if inlist(brand,"Corn_Pops","Trix","Nut_&_Honey_Crunch",
> "Rice_Krispies","Wheaties_Honey_Gold")
(5 real changes made)

. replace pos = 12 if inlist(brand,"Life")
(1 real change made)



mds — Multidimensional scaling for two-way data 13

. mdsconfig, autoaspect mlabvpos(pos)
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This configuration plot, based on the standardized variables, better incorporates all the nutrition
data. If you are familiar with these cereal brands, spotting groups of similar cereals appearing near
each other is easy. The bottom-left corner has several of the most sweetened cereals. The brands
containing the word “Bran” all appear to the right of center. Rice Krispies and Puffed Rice are the
farthest to the left.

Classical multidimensional scaling based on standardized Euclidean distances is actually equivalent
to a principal component analysis of the correlation matrix of the variables. See Mardia, Kent, and
Bibby (1979, sec. 14.3) for details.

We now demonstrate this property by doing a principal component analysis extracting the leading
two principal components. See [MV] pca for details.

. pca calories-K, comp(2)

Principal components/correlation Number of obs = 25
Number of comp. = 2
Trace = 8

Rotation: (unrotated = principal) Rho = 0.5987

Component Eigenvalue Difference Proportion Cumulative

Comp1 2.73522 .680583 0.3419 0.3419
Comp2 2.05464 .436867 0.2568 0.5987
Comp3 1.61778 .879117 0.2022 0.8010
Comp4 .738659 .270738 0.0923 0.8933
Comp5 .46792 .124644 0.0585 0.9518
Comp6 .343276 .310795 0.0429 0.9947
Comp7 .0324806 .0224585 0.0041 0.9987
Comp8 .0100221 . 0.0013 1.0000

https://www.stata.com/manuals/mvpca.pdf#mvpca
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Principal components (eigenvectors)

Variable Comp1 Comp2 Unexplained

calories 0.1992 -0.0632 .8832
protein 0.3376 0.4203 .3253

fat 0.3811 -0.0667 .5936
Na 0.0962 0.5554 .3408

fiber 0.5146 0.0913 .2586
carbs -0.2574 0.4492 .4043
sugar 0.2081 -0.5426 .2765

K 0.5635 0.0430 .1278

The proportion and cumulative proportion of the eigenvalues in the PCA match the percentages
from MDS. We will ignore the interpretation of the principal components but move directly to the
principal coordinates, also known as the scores of the PCA. We make a plot of the first and second
scores, using the scoreplot command; see [MV] scoreplot. We specify the mlabel() option to
label the cereals and the mlabvpos() option for fine control over placement of the brand names.

. replace pos = 11 if inlist(brand,"All-Bran")
(1 real change made)

. scoreplot, mlabel(brand) mlabvpos(pos)
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Compare this PCA score plot with the MDS configuration plot. Apart from some differences in how
the graphs were rendered, they are the same.

Non-Euclidean dissimilarity measures

With non-Euclidean dissimilarity measures, the parallel between PCA and MDS no longer holds.

Example 2

To illustrate MDS with non-Euclidean distance measures, we will analyze books on multivariate
statistics. Gifi (1990) reports on the number of pages devoted to seven topics in 20 textbooks on
multivariate statistics. We added similar data on five more recent books.

https://www.stata.com/manuals/mvscoreplot.pdf#mvscoreplot
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. use https://www.stata-press.com/data/r18/mvstatsbooks, clear

. describe

Contains data from https://www.stata-press.com/data/r18/mvstatsbooks.dta
Observations: 25

Variables: 8 15 Mar 2022 16:27
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

author str17 %17s
math int %9.0g Math other than statistics (e.g.,

linear algebra)
corr int %9.0g Correlation and regression,

including linear structural and
functional equations

fact byte %9.0g Factor analysis and principal
component analysis

cano byte %9.0g Canonical correlation analysis
disc int %9.0g Discriminant analysis,

classification, and cluster
analysis

stat int %9.0g Statistics, incl. dist. theory,
hypothesis testing & est.;
categorical data

mano int %9.0g Manova and the general linear
model

Sorted by:

A brief description of the topics is given in the variable labels. For more details, we refer to
Gifi (1990, 15). Here are the data:

. list, noobs

author math corr fact cano disc stat mano

Roy57 31 0 0 0 0 164 11
Kendall57 0 16 54 18 27 13 14
Kendall75 0 40 32 10 42 60 0

Anderson58 19 0 35 19 28 163 52
CooleyLohnes62 14 7 35 22 17 0 56

(output omitted )
GreenCaroll76 290 10 6 0 8 0 2

CailliezPages76 184 48 82 42 134 0 0
Giri77 29 0 0 0 41 211 32

Gnanadesikan77 0 19 56 0 39 75 0
Kshirsagar78 0 22 45 42 60 230 59
Thorndike78 30 128 90 28 48 0 0

MardiaKentBibby79 34 28 68 19 67 131 55
Seber84 16 0 59 13 116 129 101

Stevens96 23 87 67 21 30 43 249
EverittDunn01 0 54 65 0 56 20 30

Rencher02 38 0 71 19 105 135 131

For instance, the 1979 book by Mardia, Kent, and Bibby has 34 pages on mathematics (mostly linear
algebra); 28 pages on correlation, regression, and related topics (in this particular case, simultaneous
equations); etc. In most of these books, some pages are not classified. Anyway, the number of pages
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and the amount of information per page vary widely among the books. A Euclidean distance measure
is not appropriate here. Standardization does not help us here—the problem is not differences in the
scales of the variables but those in the observations. One possibility is to transform the data into
compositional data by dividing the variables by the total number of classified pages. See Mardia, Kent,
and Bibby (1979, 377–380) for a discussion of specialized dissimilarity measures for compositional
data. However, we can also use the correlation between observations (not between variables) as the
similarity measure. The higher the correlation between the attention given to the various topics, the
more similar two textbooks are. We do a classical MDS, suppressing the plot to first assess the quality
of a two-dimensional representation.

. mds math-mano, id(author) measure(corr) noplot

Classical metric multidimensional scaling
Similarity: correlation, computed on 7 variables

Dissimilarity: sqrt(2(1-similarity))

Number of obs = 25
Eigenvalues > 0 = 6 Mardia fit measure 1 = 0.6680
Retained dimensions = 2 Mardia fit measure 2 = 0.8496

abs(eigenvalue) (eigenvalue)^2
Dimension Eigenvalue Percent Cumul. Percent Cumul.

1 8.469821 38.92 38.92 56.15 56.15
2 6.0665813 27.88 66.80 28.81 84.96

3 3.8157101 17.53 84.33 11.40 96.35
4 1.6926956 7.78 92.11 2.24 98.60
5 1.2576053 5.78 97.89 1.24 99.83
6 .45929376 2.11 100.00 0.17 100.00

Again the quality of a two-dimensional approximation is somewhat unsatisfactory, with 67% and
85% of the variation accounted for according to the two Mardia criteria. Still, let’s look at the plot,
using a title that refers to the self-referential aspect of the analysis (Smullyan 1986). We reposition
some of the author labels to enhance readability by using the mlabvpos() option.

. generate spot = 3

. replace spot = 5 if inlist(author,"Seber84","Kshirsagar78","Kendall75")
(3 real changes made)

. replace spot = 2 if author=="MardiaKentBibby79"
(1 real change made)

. replace spot = 9 if inlist(author, "Dagnelie75","Rencher02",
> "GreenCaroll76","EverittDunn01","CooleyLohnes62","Morrison67")
(6 real changes made)
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. mdsconfig, mlabvpos(spot) title(This plot needs no title)
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A striking characteristic of the plot is that the textbooks seem to be located on a circle. This is a
phenomenon that is regularly encountered in multidimensional scaling and was labeled the “horseshoe
effect” by Kendall (1971, 215–251). This phenomenon seems to occur especially in situations in
which a one-dimensional representation of objects needs to be constructed, for example, in seriation
applications, from data in which small dissimilarities were measured accurately but moderate and
larger dissimilarities are “lumped together”.

Technical note
These data could also be analyzed differently. A particularly interesting method is correspondence

analysis (CA), which seeks a simultaneous geometric representation of the rows (textbooks) and
columns (topics). We used camat to analyze these data. The results for the textbooks were not much
different. Textbooks that were mapped as similar using MDS were also mapped this way by CA. The
Green and Carroll book that appeared much different from the rest was also displayed away from
the rest by CA. In the CA biplot, it was immediately clear that this book was so different because its
pages were classified by Gifi (1990) as predominantly mathematical. But CA also located the topics
in this space. The pattern was easy to interpret and was expected. The seven topics were mapped in
three groups. math and stat appear as two groups by themselves, and the five applied topics were
mapped close together. See [MV] ca for information on the ca command.

Introduction to modern MDS
We return to the data on breakfast cereals explored above to introduce modern MDS. We re-

peat some steps taken previously and then perform estimation using options loss(strain) and
transform(identity), which we demonstrate are equivalent to classical MDS.

mds is an estimation or eclass command; see program define in [P] program. You can display
its stored results using ereturn list. The configuration is stored as e(Y) and we will compare the
configuration obtained from classical MDS with the equivalent one from modern MDS.

https://www.stata.com/manuals/mvca.pdf#mvca
https://www.stata.com/manuals/pprogram.pdf#pprogram
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Example 3

. use https://www.stata-press.com/data/r18/cerealnut, clear
(Cereal nutrition)

. replace brand = subinstr(brand," ","_",.)
(20 real changes made)

. quietly mds calories-K, id(brand) noplot

. mat Yclass = e(Y)

. mds calories-K, id(brand) meth(modern) loss(strain) trans(ident) noplot

Iteration 1: strain = 594.12657
Iteration 2: strain = 594.12657

Modern multidimensional scaling
Dissimilarity: L2, computed on 8 variables

Loss criterion: strain = loss for classical MDS
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 594.1266

. mat Ymod = e(Y)

. assert mreldif(Yclass, Ymod) < 1e-6

Note the output differences between modern and classical MDS. In modern MDS we have an iteration
log from the minimization of the loss function. The method, measure, observations, dimensions, and
number of variables are reported as before, but we do not have or display eigenvalues. The normalization
is always reported in modern MDS and with normalize(target()) for classical MDS. The loss
criterion is simply the value of the loss function at the minimum.

Protecting from local minimums

Modern MDS can sometimes converge to a local rather than a global minimum. To protect against
this, multiple runs can be made, giving the best of the runs as the final answer. The option for
performing this is protect(#), where # is the number of runs to be performed. The nolog option
is of particular use with protect(), because the iteration logs from the runs will create a lot of
output. Repeating the minimization can take some time, depending on the number of runs selected
and the number of iterations it takes to converge.

Example 4

We choose loss(stress), and transform(identity) is assumed with modern MDS. We omit
the iteration logs to avoid a large amount of output. The number of iterations is available after
estimation in e(ic). We first do a run without the protect() option, and then we use protect(50)
and compare our results.
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. mds calories-K, id(brand) method(modern) loss(stress) nolog noplot
(transform(identity) assumed)

Modern multidimensional scaling
Dissimilarity: L2, computed on 8 variables

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 0.0263

. di e(ic)
45

. mat Ystress = e(Y)

. set seed 123456789

. mds calories-K, id(brand) method(modern) loss(stress) nolog protect(50)
(transform(identity) assumed)

run mrc #iter lossval

1 0 74 .02626681
2 0 101 .02626681
3 0 78 .02626681
4 0 75 .02626681
5 0 75 .02626681
6 0 57 .02626681
7 0 84 .02626681
8 0 75 .02626681
9 0 85 .02626681

10 0 60 .02626681
11 0 63 .02626681
12 0 45 .02626681
13 0 55 .02626681
14 0 57 .02626682
15 0 82 .02626682
16 0 63 .02626682
17 0 63 .02626682
18 0 66 .02626682
19 0 72 .02626682
20 0 71 .02626682
21 0 52 .02626682
22 0 66 .02626683
23 0 61 .02626683
24 0 59 .02626683
25 0 84 .02626684
26 0 138 .026303
27 0 100 .026303
28 0 74 .026303
29 0 55 .026303
30 0 56 .026303
31 0 67 .026303
32 0 67 .026303
33 0 75 .026303
34 0 58 .026303
35 0 60 .026303
36 0 59 .026303
37 0 53 .026303
38 0 52 .026303
39 0 87 .026303
40 0 63 .02630301
41 0 60 .02630301
42 0 60 .02630301
43 0 58 .02630301
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44 0 66 .02630301
45 0 63 .02630301
46 0 56 .02630302
47 0 53 .02630302
48 0 131 .19899027
49 0 140 .23020403
50 0 170 .23794378

Modern multidimensional scaling
Dissimilarity: L2, computed on 8 variables

Loss criterion: stress = raw_stress/norm(distances)
Transformation: identity (no transformation)

Number of obs = 25
Dimensions = 2

Normalization: principal Loss criterion = 0.0263

. mat YstressP = e(Y)

. assert mreldif(Ystress, YstressP) < 2e-3
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MDS configuration

The output provided when protect() is specified includes a table with information on each
run, sorted by the loss criterion value. The first column simply counts the runs. The second column
gives the internal return code from modern MDS. This example only has values of 0, which indicate
converged results. The column header mrc is clickable and opens a help file explaining the various
MDS return codes. The number of iterations is in the third column. These runs converged in as few
as 45 iterations to as many as 170. The loss criterion values are in the fourth column.

In this example, the results from our original run versus the protected run did not differ by much.
However, looking at runs 48–50, we see loss criterion values that are much higher than the rest.

The graph from this protected modern MDS run may be compared with the first one produced.
There are obvious similarities, though inspection indicates that the two are not the same.
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Stored results
mds stores the following in e():

Scalars
e(N) number of observations
e(p) number of dimensions in the approximating configuration
e(np) number of strictly positive eigenvalues
e(addcons) constant added to squared dissimilarities to force positive semidefiniteness
e(mardia1) Mardia measure 1
e(mardia2) Mardia measure 2
e(critval) loss criterion value
e(alpha) parameter of transform(power)
e(ic) iteration count
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mds
e(cmdline) command as typed
e(method) classical or modern MDS method
e(method2) nonmetric, if method(nonmetric)
e(loss) loss criterion
e(losstitle) description loss criterion
e(tfunction) identity, power, or monotonic, transformation function
e(transftitle) description of transformation
e(id) ID variable name (mds)
e(idtype) int or str; type of id() variable
e(duplicates) 1 if duplicates in id(), 0 otherwise
e(labels) labels for ID categories
e(strfmt) format for category labels
e(varlist) variables used in computing similarities or dissimilarities
e(dname) similarity or dissimilarity measure name
e(dtype) similarity or dissimilarity
e(s2d) standard or oneminus (when e(dtype) is similarity)
e(unique) 1 if eigenvalues are distinct, 0 otherwise
e(init) initialization method
e(irngstate) initial random-number state used for init(random)
e(rngstate) random-number state for solution
e(norm) normalization method
e(targetmatrix) name of target matrix for normalize(target)
e(properties) nob noV for modern or nonmetric MDS; nob noV eigen for classical MDS
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(D) dissimilarity matrix
e(Disparities) disparity matrix for nonmetric MDS
e(Y) approximating configuration coordinates
e(Ev) eigenvalues
e(idcoding) coding for integer identifier variable
e(coding) variable standardization values; first column has value

to subtract and second column has divisor
e(norm stats) normalization statistics
e(linearf) two element vector defining the linear transformation; distance

equals first element plus second element times dissimilarity
Functions

e(sample) marks estimation sample
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Methods and formulas
mds creates a dissimilarity matrix D according to the measure specified in option measure(). See

[MV] measure option for descriptions of these measures. Subsequently, mds uses the same subroutines
as mdsmat to compute the MDS solution for D. See Methods and formulas in [MV] mdsmat for
information.

References
Borg, I., and P. J. F. Groenen. 2005. Modern Multidimensional Scaling: Theory and Applications. 2nd ed. New York:

Springer.

Corten, R. 2011. Visualization of social networks in Stata using multidimensional scaling. Stata Journal 11: 52–63.

Cox, T. F., and M. A. A. Cox. 2001. Multidimensional Scaling. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC.

Gifi, A. 1990. Nonlinear Multivariate Analysis. New York: Wiley.

Kendall, D. G. 1971. Seriation from abundance matrices. In Mathematics in the Archaeological and Historical Sciences.
Edinburgh: Edinburgh University Press.

Kruskal, J. B., and M. Wish. 1978. Multidimensional Scaling. Newbury Park, CA: Sage.

Lingoes, J. C. 1971. Some boundary conditions for a monotone analysis of symmetric matrices. Psychometrika 36:
195–203. https://doi.org/10.1007/BF02291398.

Mardia, K. V., J. T. Kent, and J. M. Bibby. 1979. Multivariate Analysis. London: Academic Press.

Pearson, K. 1900. On the criterion that a given system of deviations from the probable in the case of a
correlated system of variables is such that it can be reasonably supposed to have arisen from random
sampling. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50(302): 157–175.
https://doi.org/10.1080/14786440009463897.

Sammon, J. W., Jr. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18:
401–409. https://doi.org/10.1109/T-C.1969.222678.

Smullyan, R. M. 1986. This Book Needs No Title: A Budget of Living Paradoxes. New York: Touchstone.

Torgerson, W. S. 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17: 401–419.
https://doi.org/10.1007/BF02288916.

Yang, K., and J. Trewn. 2004. Multivariate Statistical Methods in Quality Management. New York: McGraw–Hill.

Young, F. W. 1987. Multidimensional Scaling: History, Theory, and Applications, ed. R. M. Hamer. Hillsdale, NJ:
Erlbaum Associates.

Young, G., and A. S. Householder. 1938. Discussion of a set of points in terms of their mutual distances. Psychometrika
3: 19–22. https://doi.org/10.1007/BF02287916.

Also see References in [MV] mdsmat.

� �
Joseph Bernard Kruskal (1928–2010) was born in New York. His brothers were statistician William
Henry Kruskal (1919–2005) and mathematician and physicist Martin David Kruskal (1925–2006).
He earned degrees in mathematics from Chicago and Princeton and worked at Bell Labs until his
retirement in 1993. In statistics, Kruskal made major contributions to multidimensional scaling.
In computer science, he devised an algorithm for computing the minimal spanning tree of a
weighted graph. His other interests include clustering and statistical linguistics.� �

https://www.stata.com/manuals/mvmeasure_option.pdf#mvmeasure_option
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmatMethodsandformulas
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmat
http://www.stata-journal.com/article.html?article=gr0048
https://doi.org/10.1007/BF02291398
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1007/BF02288916
https://doi.org/10.1007/BF02287916
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmatReferences
https://www.stata.com/manuals/mvmdsmat.pdf#mvmdsmat


mds — Multidimensional scaling for two-way data 23

Also see
[MV] mds postestimation — Postestimation tools for mds, mdsmat, and mdslong

[MV] mds postestimation plots — Postestimation plots for mds, mdsmat, and mdslong

[MV] biplot — Biplots

[MV] ca — Simple correspondence analysis

[MV] factor — Factor analysis

[MV] mdslong — Multidimensional scaling of proximity data in long format

[MV] mdsmat — Multidimensional scaling of proximity data in a matrix

[MV] pca — Principal component analysis

[U] 20 Estimation and postestimation commands
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