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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT]  Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[EFN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual
[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual



Title

Intro — Introduction to multivariate statistics manual

Description

This manual documents Stata’s multivariate analysis features and is referred to as the [MV] manual
in cross-references.

Following this entry, [MV] Multivariate provides an overview of the multivariate analysis features
in Stata and Stata’s multivariate analysis commands. The other parts of this manual are arranged
alphabetically.

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest multivariate analysis features, type search multivariate analysis after installing
the latest official updates; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual



Title

Multivariate — Introduction to multivariate commands

Description Remarks and examples Also see

Description

The Multivariate Reference Manual organizes the commands alphabetically, which makes it easy
to find individual command entries if you know the name of the command. This overview organizes
and presents the commands conceptually, that is, according to the similarities in the functions that
they perform. The table below lists the manual entries that you should see for additional information.

Cluster analysis.
These commands perform cluster analysis on variables or the similarity or dissimilarity values within
a matrix. An introduction to cluster analysis and a description of the cluster and clustermat
subcommands is provided in [MV] cluster and [MV] clustermat.

Discriminant analysis.
These commands provide both descriptive and predictive linear discriminant analysis (LDA), as well
as predictive quadratic discriminant analysis (QDA), logistic discriminant analysis, and kth-nearest-
neighbor (KNN) discriminant analysis. An introduction to discriminant analysis and the discrim
command is provided in [MV] discrim.

Factor analysis and principal component analysis.
These commands provide reliability analysis using Cronbach’s alpha, factor analysis of a correlation
matrix, and principal component analysis (PCA) of a correlation or covariance matrix. The correlation
or covariance matrix can be provided directly or computed from variables.

Rotation.
These commands provide methods for rotating a factor or PCA solution or for rotating a matrix.
Also provided is Procrustean rotation analysis for rotating a set of variables to best match another
set of variables.

Multivariate analysis of variance, multivariate regression, and related techniques.
These commands provide canonical correlation analysis, multivariate regression, multivariate anal-
ysis of variance (MANOVA), and comparison of multivariate means. Also provided are multivariate
tests on means, covariances, and correlations, and tests for multivariate normality.

Structural equation modeling.
These commands provide multivariate linear models that can include observed and latent variables.
These models include confirmatory factor analysis, multivariate regression, path analysis, mediator
analysis, and more; see the Stata Structural Equation Modeling Reference Manual.

Multidimensional scaling and biplots.
These commands provide classic and modern (metric and nonmetric) MDS and two-dimensional
biplots. MDS can be performed on the variables or on proximity data in a matrix or as proximity
data in long format.

Correspondence analysis.
These commands provide simple correspondence analysis (CA) on the cross-tabulation of two
categorical variables or on a matrix and multiple correspondence analysis (MCA) and joint corre-
spondence analysis (JCA) on two or more categorical variables.
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Bayesian analysis.
These commands provide Bayesian estimation of multivariate linear models, including multivariate
normal regression; see the Stata Bayesian Analysis Reference Manual.

Item response theory.
These commands fit item response theory models to binary, ordinal, and nominal items, and
their combinations. Postestimation features include graphical tools to plot characteristic curves and
information functions; see the Stata Item Response Theory Reference Manual.

Multivariate time-series models.
These commands provide multivariate models for time-series data, including multivariate generalized
autoregressive conditional heteroskedasticity (GARCH), vector autoregressive (VAR), vector error-
correction (VEC), dynamic-factor, state-space, and dynamic stochastic general equilibrium (DSGE)
models. Bayesian analysis of VAR and DSGE is also available.

Multivariate meta-regression.
These commands fit multivariate fixed-effects and random-effects meta-regression models. Various
postestimation features, such as predicting random effects and assessing multivariate heterogeneity,
are available; see Stata Meta-Analysis Reference Manual.

Cluster analysis

[MV] cluster Introduction to cluster-analysis commands
[MV] clustermat Introduction to clustermat commands
[MV] matrix dissimilarity Compute similarity or dissimilarity measures; may be

used by clustermat

Discriminant analysis

[MV] discrim Introduction to discriminant-analysis commands
[MV] discrim lda Linear discriminant analysis (LDA)

[MV] discrim lda postestimation Postestimation tools for discrim lda

[MV] candisc Canonical (descriptive) linear discriminant analysis
[MV] discrim qda Quadratic discriminant analysis (QDA)

[MV] discrim qda postestimation Postestimation tools for discrim qda

[MV] discrim logistic Logistic discriminant analysis

[MV] discrim logistic postestimation Postestimation tools for discrim logistic

[MV] discrim knn kth-nearest-neighbor (KNN) discriminant analysis
[MV] discrim knn postestimation Postestimation tools for discrim knn

[MV] discrim estat Postestimation tools for discrim

Factor analysis and principal component analysis

[MV] alpha Compute interitem correlations (covariances) and
Cronbach’s alpha

[MV] factor Factor analysis

[MV] factor postestimation Postestimation tools for factor and factormat

[MV] pca Principal component analysis

[MV] pca postestimation Postestimation tools for pca and pcamat

[MV] rotate Orthogonal and oblique rotations after factor and pca

[MV] screeplot Scree plot of eigenvalues

[MV] scoreplot Score and loading plots
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Rotation
mv]
mv]
mv]

[MV] procrustes postestimation

rotate
rotatemat
procrustes

Orthogonal and oblique rotations after factor and pca
Orthogonal and oblique rotation of a Stata matrix
Procrustes transformation

Postestimation tools for procrustes

Multivariate analysis of variance, multivariate regression, and related techniques

MV]
(mv]
(mv]
[MV]
[MV]
MV]
(Mv]
mv]

canon
canon postestimation
mvreg

mvreg postestimation
manova

manova postestimation
hotelling

mvtest

[R] nlsur
[R] reg3
[R] sureg

Structural equation modeling
[SEM] Stata Structural Equation Modeling Reference Manual

Multidimensional scaling and biplots

mv]
[(MV]
MV]
MV]
(mv]
mv]

mds

mds postestimation

mds postestimation plots
mdslong

mdsmat

biplot

Correspondence analysis

mv]
[MV]
MV]
MV]
mv]
mv]

ca
ca postestimation

ca postestimation plots
mca

mca postestimation

mca postestimation plots

Bayesian analysis
[BAYES] Stata Bayesian Analysis Reference Manual

Item response theory
[IRT] Stata Item Response Theory Reference Manual

Canonical correlations

Postestimation tools for canon

Multivariate regression

Postestimation tools for mvreg

Multivariate analysis of variance and covariance
Postestimation tools for manova

Hotelling’s T2 generalized means test

Multivariate tests on means, covariances, correlations,
and of normality

Estimation of nonlinear systems of equations
Three-stage estimation for systems of simultaneous equations
Zellner’s seemingly unrelated regression

Multidimensional scaling for two-way data

Postestimation tools for mds, mdsmat, and mdslong
Postestimation plots for mds, mdsmat, and mdslong
Multidimensional scaling of proximity data in long format
Multidimensional scaling of proximity data in a matrix
Biplots

Simple correspondence analysis
Postestimation tools for ca and camat
Postestimation plots for ca and camat
Multiple and joint correspondence analysis
Postestimation tools for mca
Postestimation plots for mca
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Multivariate time-series models

[TS] Stata Time-Series Reference Manual
[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual

Multivariate meta-regression
[META] Stata Meta-Analysis Reference Manual

Remarks and examples

Remarks are presented under the following headings:

Cluster analysis

Discriminant analysis

Factor analysis and principal component analysis
Rotation

Multivariate analysis of variance, multivariate regression, and related techniques
Structural equation modeling

Multidimensional scaling and biplots
Correspondence analysis

Bayesian analysis

Item response theory

Multivariate time-series models

Multivariate meta-regression

Cluster analysis

Cluster analysis is concerned with finding natural groupings, or clusters. Stata’s cluster-analysis
commands provide several hierarchical and partition clustering methods, postclustering summarization
methods, and cluster-management tools. The hierarchical clustering methods may be applied to the
data with the cluster command or to a user-supplied dissimilarity matrix with the clustermat
command. See [MV] cluster for an introduction to cluster analysis and the cluster and clustermat
suite of commands. For an alternative to cluster analysis, see [SEM] Intro 5 for information on latent
class analysis.

A wide variety of similarity and dissimilarity measures are available for comparing observations;
see [MV] measure_option. Dissimilarity matrices, for use with clustermat, are easily obtained using
the matrix dissimilarity command; see [MV] matrix dissimilarity. This provides the building
blocks necessary for clustering variables instead of observations or for clustering using a dissimilarity
not automatically provided by Stata; [MV] clustermat provides examples.

Discriminant analysis

Discriminant analysis may be used to describe differences between groups and to exploit those
differences in allocating (classifying) observations to the groups. These two purposes of discriminant
analysis are often called descriptive discriminant analysis and predictive discriminant analysis.

discrim has both descriptive and predictive LDA; see [MV] discrim lda. The candisc command
computes the same thing as discrim 1da, but with output tailored for the descriptive aspects of the
discrimination; see [MV] candisc.

The remaining discrim subcommands provide alternatives to linear discriminant analysis for
predictive discrimination. [MV] discrim qda provides quadratic discriminant analysis. [MV] discrim
logistic provides logistic discriminant analysis. [MV] discrim knn provides kth-nearest-neighbor
discriminant analysis.
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Postestimation commands provide classification tables (confusion matrices), error-rate estimates,
classification listings, and group summarizations. In addition, postestimation tools for LDA and
QDA include display of Mahalanobis distances between groups, correlations, and covariances. LDA
postestimation tools also include discriminant-function loading plots, discriminant-function score plots,
scree plots, display of canonical correlations, eigenvalues, proportion of variance, likelihood-ratio tests
for the number of nonzero eigenvalues, classification functions, loadings, structure matrix, standardized
means, and ANOVA and MANOVA tables. See [MV] discrim estat, [MV] discrim lda postestimation,
and [MV] discrim gda postestimation.

Factor analysis and principal component analysis

Cronbach’s alpha is a measure of reliability often used as a preliminary step before factor analysis.
Though not literally correct, alpha is sometimes conceptualized as the average correlation among all
possible pairwise combinations of a group of variables. A value of alpha greater than 0.7 (sometimes
0.8) indicates high intracorrelation among a group of variables and is typically used as a criterion to
determine that a subsequent factor analysis is appropriate. See [MV] alpha for details.

Factor analysis and principal component analysis (PCA) have dual uses. They may be used as a
dimension-reduction technique, and they may be used in describing the underlying data.

In PCA, the leading eigenvectors from the eigen decomposition of the correlation or covariance
matrix of the variables describe a series of uncorrelated linear combinations of the variables that
contain most of the variance. For data reduction, a few of these leading components are retained. For
describing the underlying structure of the data, the magnitudes and signs of the eigenvector elements
are interpreted in relation to the original variables (rows of the eigenvector).

pca uses the correlation or covariance matrix computed from the dataset. pcamat allows the
correlation or covariance matrix to be directly provided. The vce (normal) option provides standard
errors for the eigenvalues and eigenvectors, which aids in their interpretation. See [MV] pca for details.

Factor analysis finds a few common factors that linearly reconstruct the original variables. Recon-
struction is defined in terms of prediction of the correlation matrix of the original variables, unlike
PCA, where reconstruction means minimum residual variance summed across all variables. Factor
loadings are examined for interpretation of the structure of the data.

factor computes the correlation from the dataset, whereas factormat is supplied the matrix
directly. They both display the eigenvalues of the correlation matrix, the factor loadings, and the
“uniqueness” of the variables. See [MV] factor for details.

To perform factor analysis or PCA on binary data, compute the tetrachoric correlations and use these
with factormat or pcamat. Tetrachoric correlations are available with the tetrachoric command;
see [R] tetrachoric.

After factor analysis and PCA, a suite of commands are available that provide for rotation of the
loadings; generation of score variables; graphing of scree plots, loading plots, and score plots; display
of matrices and scalars of interest such as anti-image matrices, residual matrices, Kaiser—Meyer—
Olkin measures of sampling adequacy, squared multiple correlations; and more. See [MV] factor
postestimation, [MV] pca postestimation, [MV] rotate, [MV] screeplot, and [MV] scoreplot for
details.
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Rotation

Rotation provides a modified solution that is rotated from an original multivariate solution such
that interpretation is enhanced. Rotation is provided through three commands: rotate, rotatemat,
and procrustes.

rotate works directly after pca, pcamat, factor, and factormat. It knows where to obtain
the component- or factor-loading matrix for rotation, and after rotating the loading matrix, it places
the rotated results in e () so that all the postestimation tools available after pca and factor may be
applied to the rotated results. See [MV] rotate for details.

Perhaps you have the component or factor loadings from a published source and want to investigate
various rotations, or perhaps you wish to rotate a loading matrix from some other multivariate
command. rotatemat provides rotations for a specified matrix. See [MV] rotatemat for details.

A large selection of orthogonal and oblique rotations are provided for rotate and rotatemat.
These include varimax, quartimax, equamax, parsimax, minimum entropy, Comrey’s tandem 1 and 2,
promax power, biquartimax, biquartimin, covarimin, oblimin, factor parsimony, Crawford—Ferguson
family, Bentler’s invariant pattern simplicity, oblimax, quartimin, target, and weighted target rotations.
Kaiser normalization is also available.

The procrustes command provides Procrustean analysis. The goal is to transform a set of source
variables to be as close as possible to a set of target variables. The permitted transformations are any
combination of dilation (uniform scaling), rotation and reflection (orthogonal and oblique transforma-
tions), and translation. Closeness is measured by the residual sum of squares. See [MV] procrustes
for details.

A set of postestimation commands are available after procrustes for generating fitted values and
residuals; for providing fit statistics for orthogonal, oblique, and unrestricted transformations; and for
providing a Procrustes overlay graph. See [MV] procrustes postestimation for details.

Multivariate analysis of variance, multivariate regression, and related techniques

The first canonical correlation is the maximum correlation that can be obtained between a linear
combination of one set of variables and a linear combination of another set of variables. The second
canonical correlation is the maximum correlation that can be obtained between linear combinations of
the two sets of variables subject to the constraint that these second linear combinations are orthogonal
to the first linear combinations, and so on.

canon estimates these canonical correlations and provides the loadings that describe the linear
combinations of the two sets of variables that produce the correlations. Standard errors of the loadings
are provided, and tests of the significance of the canonical correlations are available. See [MV] canon
for details.

Postestimation tools are available after canon for generating the variables corresponding to the
linear combinations underlying the canonical correlations. Various matrices and correlations may also
be displayed. See [MV] canon postestimation for details.

In canonical correlation, there is no real distinction between the two sets of original variables.
In multivariate regression, however, the two sets of variables take on the roles of dependent and
independent variables. Multivariate regression is an extension of regression that allows for multiple
dependent variables. See [MV] mvreg for multivariate regression, and see [MV] mvreg postestimation
for the postestimation tools available after multivariate regression.

Just as analysis of variance (ANOVA) can be formulated in terms of regression where the categorical
independent variables are represented by indicator (sometimes called dummy) variables, multivariate
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analysis of variance (MANOVA), a generalization of ANOVA that allows for multiple dependent variables,
can be formulated in terms of multivariate regression where the categorical independent variables are
represented by indicator variables. Multivariate analysis of covariance (MANCOVA) allows for both
continuous and categorical independent variables.

The manova command fits MANOVA and MANCOVA models for balanced and unbalanced designs,
including designs with missing cells, and for factorial, nested, or mixed designs, or designs involving
repeated measures. Four multivariate test statistics—Wilks’s lambda, Pillai’s trace, the Lawley—
Hotelling trace, and Roy’s largest root—are computed for each term in the model. See [MV] manova
for details.

Postestimation tools are available after manova that provide for univariate Wald tests of expressions
involving the coefficients of the underlying regression model and that provide for multivariate tests
involving terms or linear combinations of the underlying design matrix. Linear combinations of
the dependent variables are also supported. Also available are marginal means, predictive margins,
marginal effects, and average marginal effects. See [MV] manova postestimation for details.

Related to MANOVA is Hotelling’s T2 test of whether a set of means is zero or whether two sets
of means are equal. It is a multivariate test that reduces to a standard ¢ test if only one variable is
involved. The hotelling command provides Hotelling’s T2 test; see [MV] hotelling, but also see
[MV] mvtest means for more extensive multivariate means testing.

A suite of mvtest commands perform assorted multivariate tests. mvtest means performs one-
sample and multiple-sample multivariate tests on means, assuming multivariate normality. mvtest
covariances performs one-sample and multiple-sample multivariate tests on covariances, assuming
multivariate normality. mvtest correlations performs one-sample and multiple-sample tests on
correlations, assuming multivariate normality. mvtest normality performs tests for univariate,
bivariate, and multivariate normality. See [MV] mvtest.

Related to multivariate regression, the sureg, reg3, nlsur, and demandsys commands fit models
with more than one outcome variable. sureg fits a seemingly unrelated regression model, which
is equivalent to the multivariate regression model fit by mvreg when the same set of covariates
models each dependent variable. However, sureg extends this to allow for different covariates in each
equation. The reg3 command estimates a system of structural equations in which some equations
include endogenous covariates. Both sureg and reg3 fit linear models. The nlsur command fits a
system of nonlinear equations. See [R] sureg, [R] reg3, [R] nlsur, and [R] demandsys for details.

Structural equation modeling

Structural equation modeling (SEM) is a flexible estimation method for fitting a variety of multivariate
models, and it allows for latent (unobserved) variables. See [SEM] Intro 5.

Multidimensional scaling and biplots

Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimi-
larities (for instance, Euclidean distances) between observations in a high-dimensional space are
represented in a lower-dimensional space (typically two dimensions) so that the Euclidean distance
in the lower-dimensional space approximates the dissimilarities in the higher-dimensional space.

The mds command provides classical and modern (metric and nonmetric) MDS for dissimilarities
between observations with respect to the variables; see [MV] mds. A wide variety of similarity
and dissimilarity measures are allowed (the same ones available for the cluster command); see
[MV] measure_option.
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mdslong and mdsmat provide MDS directly on the dissimilarities recorded either as data in long
format (mdslong) or as a dissimilarity matrix (mdsmat); see [MV] mdslong and [MV] mdsmat.

Postestimation tools available after mds, mdslong, and mdsmat provide MDS configuration plots
and Shepard diagrams; generation of the approximating configuration or the disparities, dissimilarities,
distances, raw residuals and transformed residuals; and various matrices and scalars, such as Kruskal
stress (loss), quantiles of the residuals per object, and correlations between disparities or dissimilarities
and approximating distances. See [MV] mds postestimation and [MV] mds postestimation plots.

Biplots are two-dimensional representations of data. Both the observations and the variables are
represented. The observations are represented by marker symbols, and the variables are represented
by arrows from the origin. Observations are projected to two dimensions so that the distance between
the observations is approximately preserved. The cosine of the angle between arrows approximates
the correlation between the variables. A biplot aids in understanding the relationship between the
variables, the observations, and the observations and variables jointly. The biplot command produces
biplots; see [MV] biplot.

Correspondence analysis

Simple correspondence analysis (CA) is a technique for jointly exploring the relationship between
rows and columns in a cross-tabulation. It is known by many names, including dual scaling, reciprocal
averaging, and canonical correlation analysis of contingency tables.

ca performs CA on the cross-tabulation of two integer-valued variables or on two sets of crossed
(stacked) integer-valued variables. camat performs CA on a matrix with nonnegative entries—perhaps
from a published table. See [MV] ca for details.

A suite of commands are available following ca and camat. These include commands for producing
CA biplots and dimensional projection plots; for generating fitted values, row coordinates, and column
coordinates; and for displaying distances between row and column profiles, individual cell inertia
contributions, 2 distances between row and column profiles, and the fitted correspondence table.
See [MV] ca postestimation and [MV] ca postestimation plots.

mca performs multiple (MCA) or joint (JCA) correspondence analysis on two or more categorical
variables and allows for crossing (stacking). See [MV] mca.

Postestimation tools available after mca provide graphing of category coordinate plots, dimensional
projection plots, and plots of principal inertias; display of the category coordinates, optionally with
column statistics; the matrix of inertias of the active variables after JCA; and generation of row scores.
See [MV] mca postestimation and [MV] mca postestimation plots.

Bayesian analysis

Bayesian analysis provides a flexible framework for fitting a variety of Bayesian models, including
multivariate models. See Stata Bayesian Analysis Reference Manual.

Item response theory

Item response theory (IRT) is used in the design, analysis, scoring, and comparison of tests and
similar instruments whose purpose is to measure unobservable characteristics of the respondents; see
Stata Item Response Theory Reference Manual.
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Multivariate time-series models

For time-series data, a variety of multivariate models are available. These include multivariate
GARCH models, vector autoregressive (VAR) models, vector error-correction (VEC) models, dynamic-
factor models, and state-space models. See [TS] Stata Time-Series Reference Manual

Dynamic stochastic general equilibrium (DSGE) models are specialized multivariate time-series
models that allow current values of variables to depend not only on past values but also on
expectations of future values. See [DSGE] Stata Dynamic Stochastic General Equilibrium Models
Reference Manual.

Bayesian VAR and Bayesian DSGE models are also available. See Stata Bayesian Analysis Reference
Manual.

Multivariate meta-regression

Multivariate meta-regression models are used to investigate the relationship between study-level
covariates, called moderators, and multiple dependent effect sizes reported by each study. Random-
effects and fixed-effects models are available to fit the data using the meta mvregress command.
For the random-effects models, several estimation methods are possible to estimate the covariance of
the random effects. See [META] meta mvregress for details.

Postestimation tools include predicting the random effects and their variance—covariance matrix
and other diagnostic tools for assessing the model assumptions. Multivariate heterogeneity may be
quantified using the postestimation command estat heterogeneity. See [META| meta mvregress
postestimation.

Also see
[R] Intro — Introduction to base reference manual

[MV] Glossary
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alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

alpha computes the interitem correlations or covariances for all pairs of variables in varlist and

Cronbach’s « statistic for the scale formed from them. At least two variables must be specified with
alpha.

Quick start

Cronbach’s alpha and the average interitem covariance of 6 variables
alpha vl v2 v3 v4 v5 v6

Same as above, but standardize the variables to give average interitem correlation
alpha vl v2 v3 v4 vb v6, std

Same as above, and show table of item-test and item-rest correlations and the effect of removing each
variable from the scale

alpha vl v2 v3 v4 vb v6, std item

Same as above, and also list each interitem correlation
alpha vl v2 v3 v4 v5 v6, std item detail

Same as above, but force v2 and v5 to enter with reversed sign
alpha vl v2 v3 v4 vb v6, std item detail reverse(v2 vb)

Same as above, and generate scalevar with the summative score (scale)

alpha vl v2 v3 v4 vb5 v6, std item detail reverse(v2 v5) ///
generate(scalevar)

Menu

Statistics > Multivariate analysis > Cronbach’s alpha

11
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Syntax

alpha varlist [l_'f] [ln] [, options]

options Description
Options
asis take sign of each item as is
casewise delete cases with missing values
detail list individual interitem correlations and covariances
generate (newvar) save the generated scale in newvar
item display item-test and item-rest correlations
label include variable labels in output table
min (#) must have at least # observations for inclusion
reverse (varlist) reverse signs of these variables
std standardize items in the scale to mean 0, variance 1

by and collect are allowed; see [U] 11.1.10 Prefix commands.
Options

asis specifies that the sense (sign) of each item be taken as presented in the data. The default is to
determine the sense empirically and reverse the scorings for any that enter negatively.

casewise specifies that cases with missing values be deleted listwise. The default is pairwise
computation of covariances and correlations.

detail lists the individual interitem correlations and covariances.

generate (newvar) specifies that the scale constructed from varlist be saved in newvar. Unless asis
is specified, the sense of items entering negatively is automatically reversed. If std is also specified,
the scale is constructed by using standardized (mean 0, variance 1) values of the individual items.
Unlike most Stata commands, generate() does not use casewise deletion. A score is created
for every observation for which there is a response to at least one item (one variable in varlist
is not missing). The summative score is divided by the number of items over which the sum is
calculated.

item specifies that item-test and item-rest correlations and the effects of removing an item from the
scale be displayed. item is valid only when more than two variables are specified in varlist.

label requests that the detailed output table be displayed in a compact format that enables the
inclusion of variable labels.

min(#) specifies that only cases with at least # observations be included in the computations.
casewise is a shorthand for min (k), where k is the number of variables in varlist.

reverse (varlist) specifies that the signs (directions) of the variables (items) in varlist be reversed.
Any variables specified in reverse() that are not also included in alpha’s varlist are ignored.

std specifies that the items in the scale be standardized (mean 0, variance 1) before summing.
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Remarks and examples

Cronbach’s alpha (Cronbach 1951) assesses the reliability of a summative rating (Likert 1932)
scale composed of the variables (called items) specified. The set of items is often called a test or
battery. A scale is simply the sum of the individual item scores, reversing the scoring for statements
that have negative correlations with the factor (for example, attitude) being measured. Scales can be
formed by using the raw item scores or standardized item scores.

The reliability « is defined as the square of the correlation between the measured scale and the
underlying factor. If you think of a test as being composed of a random sample of items from a
hypothetical domain of items designed to measure the same thing, « represents the expected correlation
of one test with an alternative form containing the same number of items. The square root of « is
the estimated correlation of a test with errorless true scores (Nunnally and Bernstein 1994, 235).

In addition to reporting v, alpha generates the summative scale from the items (variables) specified
and automatically reverses the sense of any when necessary. Stata’s decision can be overridden by
specifying the reverse (varlist) option.

Because it concerns reliability in measuring an unobserved factor, « is related to factor analysis.
The test should be designed to measure one factor, and, because the scale will be composed of an
unweighted sum, the factor loadings should all contribute roughly equal information to the score.
Both of these assumptions can be verified with factor; see [MV] factor. Equality of factor loadings
can also be assessed by using the item option.

> Example 1

To illustrate alpha, we apply it, first without and then with the item option, to the automobile
dataset after randomly introducing missing values:

. use https://www.stata-press.com/data/r18/automiss
(1978 automobile data)

. alpha price headroom rep78 trunk weight length turn displ, std

Test scale = mean(standardized items)
Reversed item: rep78

Average interitem correlation: 0.5251
Number of items in the scale: 8
Scale reliability coefficient: 0.8984

The scale derived from our somewhat arbitrarily chosen automobile items (variables) appears to be
reasonable because the estimated correlation between it and the underlying factor it measures is
1/0.8984 ~ 0.9478 and the estimated correlation between this battery of eight items and all other
eight-item batteries from the same domain is 0.8984. Because the “items” are not on the same scale,
it is important that std was specified so that the scale and its reliability were based on the sum
of standardized variables. We could obtain the scale in a new variable called sc with the gen(sc)
option.
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Though the scale appears reasonable, we include the item option to determine if all the items fit
the scale:

. alpha price headroom rep78 trunk weight length turn displ, std item

Test scale = mean(standardized items)

Average
Item-test Item-rest interitem
Item Obs Sign correlation correlation correlation alpha
price 70 + 0.5260 0.3719 0.5993 0.9128
headroom 66 + 0.6716 0.5497 0.5542 0.8969
rep78 61 - 0.4874 0.3398 0.6040 0.9143
trunk 69 + 0.7979 0.7144 0.5159 0.8818
weight 64 + 0.9404 0.9096 0.4747 0.8635
length 69 + 0.9382 0.9076 0.4725 0.8625
turn 66 + 0.8678 0.8071 0.4948 0.8727
displacement 63 + 0.8992 0.8496 0.4852 0.8684
Test scale 0.5251 0.8984

“Test” denotes the additive scale; here 0.5251 is the average interitem correlation, and 0.8984 is
the alpha coefficient for a test scale based on all items.

“Obs” shows the number of nonmissing values of the items; “Sign” indicates the direction in
which an item variable entered the scale; “~” denotes that the item was reversed. The remaining four
columns in the table provide information on the effect of one item on the scale.

Column four gives the item-test correlations. Apart from the sign of the correlation for items that
entered the scale in reversed order, these correlations are the same numbers as those computed by
the commands

. alpha price headroom rep78 trunk weight length turn displ, std gen(sc)

. pwcorr sc price headroom rep78 trunk weight length turn displ

Typically, the item-test correlations should be roughly the same for all items. Item-test correlations
may not be adequate to detect items that fit poorly because the poorly fitting items may distort the scale.
Accordingly, it may be more useful to consider item-rest correlations (Nunnally and Bernstein 1994),
that is, the correlation between an item and the scale that is formed by all other items. The average
interitem correlations (covariances if std is omitted) of all items, excluding one, are shown in column
six. Finally, column seven gives Cronbach’s « for the test scale, which consists of all but the one
item.

Here neither the price item nor the rep78 item seems to fit well in the scale in all respects.
The item-test and item-rest correlations of price and rep78 are much lower than those of the other
items. The average interitem correlation increases substantially by removing either price or rep78;
apparently, they do not correlate strongly with the other items. Finally, we see that Cronbach’s «
coefficient will increase from 0.8984 to 0.9128 if the price item is dropped, and it will increase
from 0.8984 to 0.9143 if rep78 is dropped. For well-fitting items, we would of course expect that
« decreases by shortening the test.

N
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> Example 2

The variable names for the automobile data are reasonably informative. This may not always be
true; items in batteries commonly used to measure personality traits, attitudes, values, etc., are usually
named with indexed names, for example, item12a, item12b, item12c. The label option forces
alpha to produce the same statistical information in a more compact format that leaves room to
include variable (item) labels. In this compact format, alpha excludes the number of nonmissing
values of the items, displays the statistics using fewer digits, and uses somewhat cryptic headers:

. alpha price headroom rep78 trunk weight length turn displ, std item label detail

Test scale = mean(standardized items)

Items S it-cor ir-cor ii-cor alpha Label

price + 0.526 0.372 0.599 0.913 Price

headroom + 0.672 0.550 0.554 0.897 Headroom (in.)

rep78 - 0.487 0.340 0.604 0.914 Repair record 1978
trunk + 0.798 0.714 0.516 0.882 Trunk space (cu. ft.)
weight + 0.940 0.910 0.475 0.863 Weight (1bs.)

length + 0.938 0.908 0.473 0.862 Length (in.)

turn + 0.868 0.807 0.495 0.873 Turn circle (ft.)
displacement + 0.899 0.850 0.485 0.868 Displacement (cu. in.)
Test scale 0.525 0.898 mean(standardized items)

Interitem correlations (reverse applied) (obs=pairwise, see below)

price headroom rep78 trunk
price 1.0000
headroom 0.1174 1.0000
rep78 -0.0479 0.1955 1.0000
trunk 0.2748 0.6841 0.2777 1.0000
weight 0.5093 0.5464 0.3624 0.6486
length 0.4511 0.5823 0.3162 0.7404
turn 0.3528 0.4067 0.4715 0.5900
displacement 0.5537 0.5166 0.3391 0.6471
weight length turn displacement
weight 1.0000
length 0.9425 1.0000
turn 0.8712 0.8589 1.0000
displacement 0.8753 0.8422 0.7723 1.0000
Pairwise number of observations
price headroom rep78 trunk
price 70
headroom 62 66
rep78 59 54 61
trunk 65 61 59 69
weight 60 56 52 60
length 66 61 58 64
turn 62 58 56 62
displacement 59 58 51 58
weight length turn displacement
weight 64
length 60 69
turn 57 61 66
displacement 54 58 56 63

Because the detail option was also specified, the interitem correlation matrix was printed, together
with the number of observations used for each entry (because these varied across the matrix). Note
the negative sign attached to rep78 in the output, indicating the sense in which it entered the scale.
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Better-looking output with less-cryptic headers is produced if the linesize is set to a value of at
least 100:

. set linesize 100
. alpha price headroom rep78 trunk weight length turn displ, std item label
Test scale = mean(standardized items)

Item-test Item-rest Interitem

Item Obs Sign corr. corr. corr. alpha Label

price 70 + 0.5260 0.3719 0.5993 0.9128 Price

headroom 66 + 0.6716 0.5497 0.5542 0.8969 Headroom (in.)

rep78 61 - 0.4874 0.3398 0.6040 0.9143  Repair record 1978
trunk 69 + 0.7979 0.7144 0.5159 0.8818 Trunk space (cu. ft.)
weight 64 + 0.9404 0.9096 0.4747 0.8635 Weight (1lbs.)

length 69 + 0.9382 0.9076 0.4725 0.8625 Length (in.)

turn 66 + 0.8678 0.8071 0.4948 0.8727 Turn circle (ft.)
displacement 63 + 0.8992 0.8496 0.4852 0.8684 Displacement (cu. in.)
Test scale 0.5251 0.8984 mean(standardized items)

4

Users of alpha require some standard for judging values of «. We paraphrase Nunnally and
Bernstein (1994, 265): In the early stages of research, modest reliability of 0.70 or higher will suffice;
values in excess of 0.80 often waste time and funds. In contrast, where measurements on individuals
are of interest, a reliability of 0.80 may not be nearly high enough. Even with a reliability of 0.90,
the standard error of measurement is almost one-third as large as the standard deviation of test scores;
a reliability of 0.90 is the minimum that should be tolerated, and a reliability of 0.95 should be
considered the desirable standard.

Stored results

alpha stores the following in r():

Scalars

r(alpha) scale reliability coefficient

r(k) number of items in the scale

r(cov) average interitem covariance

r(rho) average interitem correlation if std is specified
Matrices

r(Alpha) scale reliability coefficient

r(ItemTestCorr) item-test correlation

r(ItemRestCorr) item-rest correlation

r (MeanInterItemCov) average interitem covariance

r(MeanInterItemCorr) average interitem correlation if std is specified

If the item option is specified, results are stored as row matrices for the k subscales when one
variable is removed.

Methods and formulas

Let z;, ¢ = 1,...,k, be the variables over which « is to be calculated. Let s; be the sign with
which x; enters the scale. If asis is specified, s; = 1 for all 7. Otherwise, principal-factor analysis
is performed on x;, and the first factor’s score is predicted; see [MV] factor. s; is —1 if correlation
of the z; and the predicted score is negative and +1 otherwise.
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Let 7;; be the correlation between x; and x;, c;; be the covariance, and n;; be the number of
observations used in calculating the correlation or covariance. The average correlation is
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Let c;; denote the variance of z;, and define the average variance as
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If std is specified, the scale reliability « is calculated as defined by the general form of the
Spearman—Brown Prophecy Formula (Nunnally and Bernstein 1994, 232; Allen and Yen 1979,
85-88):

kT
14+ (k-1

This expression corresponds to « under the assumption that the summative rating is the sum of
the standardized variables (Nunnally and Bernstein 1994, 234). If std is not specified, « is defined
(Nunnally and Bernstein 1994, 232 and 234) as
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Let x;; reflect the value of item ¢ in the jth observation. If std is specified, the jth value of the
scale computed from the k x;; items is

k
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where S() is the function that returns the standardized (mean 0, variance 1) value if T4 is not missing
and returns zero if x;; is missing. k; is the number of nonmissing values in x;;, ¢ = 1,..., k. If
std is not specified, S() is the function that returns z;; or returns missing if x;; is missing.
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Lee Joseph Cronbach (1916-2001) was born in Fresno, California. He participated in a study
of gifted children and completed high school at the age of 14. He obtained a doctoral degree
in educational psychology from the University of Chicago, where he later served as an assistant
professor. During World War II, he applied his expertise as a military psychologist for the
U.S. Navy.

Cronbach is widely known for his paper on the alpha coefficient, which measures test reliability.
While his work on the reliability coefficient was focused on psychological testing and education,
Cronbach’s alpha is used in several fields. He wrote an article with Paul Meehl on psychological
test validity and later published a book with Goldine Gleser introducing generalizability theory.

Cronbach made a lasting impact on program evaluations through his collaborative research
with faculty at Stanford, along with his book Designing Evaluations of Educational and Social
Programs. He also played an active role in the American Psychological Association’s work on
test standards and later became president of the American Psychological Association. His many
contributions are reflected in the honors he received from the American Education Research
Association, the Educational Testing Service, and other associations.
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Description

biplot displays a two-dimensional biplot of a dataset. A biplot simultaneously displays the
observations (rows) and the relative positions of the variables (columns). Marker symbols (points) are
displayed for observations, and arrows are displayed for variables. Observations are projected to two
dimensions such that the distance between the observations is approximately preserved. The cosine
of the angle between arrows approximates the correlation between the variables.

Quick start

Biplot of v1, v2, v3, and v4
biplot vl v2 v3 v4

Same as above, but use standardized instead of centered variables
biplot v1 v2 v3 v4, std

Same as above, but graph dimension 3 versus 1 instead of 2 versus 1
biplot vl v2 v3 v4, std dim(3 1)

Biplot with separate row and column plots
biplot vl v2 v3 v4, separate

Only graph the column plot
biplot v1 v2 v3 v4, norow

Biplot with different color row markers for each category of catvar
biplot vl v2 v3 v4, rowover(catvar)

Label row observations using the values in variable mylabel
biplot vl v2 v3 v4, rowlabel(mylabel)

Store biplot coordinates in new variables x and y
biplot vl v2 v3 v4, generate(x y)

Menu

Statistics > Multivariate analysis > Biplot

19
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Syntax
biplot varlist [lf] [in} [ , options]
options Description
Main
rowover (varlist) identify observations from different groups of varlist; may not be
combined with separate or norow
dim(# #) two dimensions to be displayed; default is dim(2 1)
std use standardized instead of centered variables
ﬂha(#) row weight = #; column weight = 1 — #; default is 0.5
stretch(#) stretch the column (variable) arrows
mahalanobis approximate Mahalanobis distance; implies alpha(0)
Xnegate negate the data relative to the x axis
ynegate negate the data relative to the y axis
autoaspect adjust aspect ratio on the basis of the data; default aspect ratio is 1
separate produce separate plots for rows and columns; may not be combined
with rowover ()
nograph suppress graph
table display table showing biplot coordinates
Rows

rowopts (row_options)
row#opts (row_options)

rowlabel (varname)
norow
generate (newvar, newvar,)

Columns
colopts(col_options)
negcol
negcolopts (col_options)
nocolumn

Y axis, X axis, Titles, Legend, Overall
twoway_options

affect rendition of rows (observations)

affect rendition of rows (observations) in the #th group of varlist
defined in rowover (); available only with rowover ()

specify label variable for rows (observations)
suppress row points; may not be combined with rowover ()

store biplot coordinates for observations in variables newvar,
and newvar,

affect rendition of columns (variables)

include negative column (variable) arrows
affect rendition of negative columns (variables)
suppress column arrows

any options other than by () documented in [G-3] twoway_options

collect is allowed; see [U] 11.1.10 Prefix commands.

row_options

Description

marker_options
marker_label _options
nolabel

name (name)

change look of markers (color, size, etc.)
change look or position of marker labels
remove the default row (variable) label from the graph
override the default name given to rows (observations)
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col_options Description
pcarrow_options affect the rendition of paired-coordinate arrows
nolabel remove the default column (variable) label from the graph
name (name) override the default name given to columns (variables)
Options
Main

rowover (varlist) distinguishes groups among observations (rows) by highlighting observations on
the plot for each group identified by equal values of the variables in varlist. By default, the graph
contains a legend that consists of group names. rowover () may not be combined with separate
Or norow.

dim(# #) identifies the dimensions to be displayed. For instance, dim(3 2) plots the third dimension
(vertically) versus the second dimension (horizontally). The dimension numbers cannot exceed the
number of variables. The default is dim(2 1).

std produces a biplot of the standardized variables instead of the centered variables.

alpha(#) specifies that the variables be scaled by \* and the observations by A=) where A are
the singular values. It is required that 0 < # < 1. The most common values are 0, 0.5, and 1. The
default is alpha(0.5) and is known as the symmetrically scaled biplot or symmetric factorization
biplot. The result with alpha(1) is the principal-component biplot, also called the row-preserving
metric (RPM) biplot. The biplot with alpha(0) is referred to as the column-preserving metric
(CPM) biplot.

stretch(#) causes the length of the arrows to be multiplied by #. For example, stretch(1) would
leave the arrows the same length, stretch(2) would double their length, and stretch(0.5)
would halve their length.

mahalanobis implies alpha(0) and scales the positioning of points (observations) by v/n — 1
and positioning of arrows (variables) by 1/4/n — 1. This additional scaling causes the distances
between observations to change from being approximately proportional to the Mahalanobis distance
to instead being approximately equal to the Mahalanobis distance. Also, the inner products between
variables approximate their covariance.

xnegate specifies that dimension-1 (z axis) values be negated (multiplied by —1).
ynegate specifies that dimension-2 (y axis) values be negated (multiplied by —1).

autoaspect specifies that the aspect ratio be automatically adjusted based on the range of the data to
be plotted. This option can make some biplots more readable. By default, biplot uses an aspect
ratio of one, producing a square plot. Some biplots will have little variation in the y-axis direction,
and using the autoaspect option will better fill the available graph space while preserving the
equivalence of distance in the  and y axes.

As an alternative to autoaspect, the rwoway_option aspectratio() can be used to override
the default aspect ratio. biplot accepts the aspectratio() option as a suggestion only and will
override it when necessary to produce plots with balanced axes; that is, distance on the x axis
equals distance on the y axis.

twoway_options, such as xlabel(), xscale(), ylabel(), and yscale(), should be used with
caution. These axis_options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway _options.
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separate produces separate plots for the row and column categories. The default is to overlay the
plots. separate may not be combined with rowover ().

nograph suppresses displaying the graph.
table displays a table with the biplot coordinates.

Rows

rowopts (row_options) affects the rendition of the points plotting the rows (observations). This option
may not be combined with rowover (). The following row_options are allowed:

marker_options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker_options.

marker_label_options specify the properties of marker labels; see [G-3] marker_label_options.
mlabel () in rowopts() may not be combined with the rowlabel () option.

nolabel removes the default row label from the graph.
name (name) overrides the default name given to rows.

row#opts (row_options) affects rendition of the points plotting the rows (observations) in the #th group
identified by equal values of the variables in varlist defined in rowover (). This option requires

specifying rowover (). See rowopts() above for the allowed row_options, except mlabel () is
not allowed with row#opts().

rowlabel (varname) specifies label variable for rows (observations).
norow suppresses plotting of row points. This option may not be combined with rowover ().

generate (newvar, newvar,) stores biplot coordinates for rows in variables newvar, and newvar,,.

Columns

colopts (col_options) affects the rendition of the arrows and points plotting the columns (variables).
The following col_options are allowed:

pcarrow_options affect the rendition of paired-coordinate arrows; see [G-2] graph twoway pcarrow.
nolabel removes the default column label from the graph.
name (name) overrides the default name given to columns.

negcol includes negative column (variable) arrows on the plot.

negcolopts (col_options) affects the rendition of the arrows and points plotting the negative columns
(variables). The col_options allowed are given above.

nocolumn suppresses plotting of column arrows.

Y axis, X axis, Titles, Legend, Overall |

twoway—_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk
(see [G-3] saving_option). See autoaspect above for a warning against using options such as
xlabel(), xscale(), ylabel(), and yscale().




biplot — Biplots 23

Remarks and examples

The biplot command produces what Cox and Cox (2001) refer to as the “classic biplot”.
Biplots were introduced by Gabriel (1971); also see Gabriel (1981). Gower and Hand (1996) discuss
extensions and generalizations to biplots and place many of the well-known multivariate techniques
into a generalized biplot framework extending beyond the classic biplot implemented by Stata’s
biplot command. Cox and Cox (2001), Jolliffe (2002), Gordon (1999), Jacoby (1998), Rencher
and Christensen (2012), and Seber (1984) discuss the classic biplot. Kohler (2004) provides a Stata
implementation of biplots.

Let X be the centered (or standardized if the std option is specified) data. A biplot splits the
information in X into a portion related to the observations (rows of X) and a portion related to the
variables (columns of X)

X ~ (Uy AS)(Vy ALY

where 0 < « < 1; see Methods and formulas for details. Uy A contains the plotting coordinates
corresponding to observations (rows), and Vg A;a contains the plotting coordinates corresponding
to variables (columns). In a biplot, the row coordinates are plotted as symbols, and the column
coordinates are plotted as arrows from the origin.

The commonly used values for « are 0, 0.5, and 1. The default is 0.5. The alpha() option allows
you to set a.

Biplots with an « of 1 are also called principal-component biplots because Uy Ay contains the
principal-component scores and V5 contains the principal-component coefficients. Euclidean distance
between points in this kind of biplot approximates the Euclidean distance between points in the
original higher-dimensional space.

Using an « of 0, Euclidean distances in the biplot are approximately proportional to Maha-
lanobis distances in the original higher-dimensional space. Also, the inner product of the arrows is
approximately proportional to the covariances between the variables.

When you set o to 0 and specify the mahalanobis option, the Euclidean distances are not just
approximately proportional but are approximately equal to Mahalanobis distances in the original space.
Likewise, the inner products of the arrows are approximately equal (not just proportional) to the
covariances between the variables. This means that the length of an arrow is approximately equal to
the standard deviation of the variable it represents. Also, the cosine of the angle between two arrows
is approximately equal to the correlation between the two variables.

A biplot with an « of 0.5 is called a symmetric factorization biplot or symmetrically scaled biplot.
It often produces reasonable looking biplots where the points corresponding to observations and the
arrows corresponding to variables are given equal weight. Using an « of O (or 1) causes the points (or
the arrows) to be bunched tightly around the origin while the arrows (or the points) are predominant
in the graph. Here many authors recommend picking a scaling factor for the arrows to bring them
back into balance. The stretch() option allows you to do this.

Regardless of your choice of o, the position of a point in relation to an arrow indicates whether
that observation is relatively large, medium, or small for that variable. Also, although the special
conditions mentioned earlier may not strictly hold for all «, the biplot still aids in understanding the
relationship between the variables, the observations, and the observations and variables jointly.
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> Example 1

Gordon (1999, 176) provides a simple example of a biplot based on data having five rows and
three columns.

. input v1 v2 v3

vl v2 v3
1. 60 80 -240
2. -213 66 180
3. 123 -186 180
4. -9 38 -60
5. 39 2 -60
6. end

. biplot v1 v2 v3
Biplot of 5 observations and 3 variables

Explained variance by component 1 = 0.6283
Explained variance by component 2 = 0.3717
Total explained variance 1.0000

Biplot
20

—> Variables
o1 e  Observations

Dimension 2

°
3

-151 vl

20 45 40 5 0 5 10 15
Dimension 1

The first component accounts for 63% of the variance, and the second component accounts for the
remaining 37%. All the variance is accounted for because, here, the 5-by-3 data matrix is only of
rank 2.

Gordon actually used an o of 0 and performed the scaling to better match Mahalanobis distance.
We do the same using the options alpha(0) and mahalanobis. (We could just use mahalanobis
because it implies alpha(0).) With an « of 0, Gordon decided to scale the arrows by a factor of
0.01. We accomplish this with the stretch() option and add options to provide a title and subtitle
in place of the default title obtained previously.

. biplot vl v2 v3, alpha(0) mahalanobis stretch(.01) title(Simple biplot)
> subtitle(See figure 6.10 of Gordon (1999))
Biplot of 5 observations and 3 variables

Explained variance by component 1 0.6283
Explained variance by component 2 = 0.3717
Total explained variance = 1.0000
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Simple biplot

See figure 6.10 of Gordon (1999)

Dimension 2

—> Variables

e Observations
el

T
2 -15 -1 -5 0 .5

Dimension 1

The outcome is little changed between the first and second biplot except for the additional titles

and the scale of the x and y axes.

biplot allows you to highlight observations belonging to different groups by using option
rowover (). Suppose our data come from two groups defined by variable group, group=1 and

group=2.
. generate byte group = cond(_n<3, 1, 2)
. list
vl v2 v3  group
1. 60 80  -240 1
2. -213 66 180 1
3. 123 -186 180 2
4. -9 38 -60 2
5. 39 2 -60 2

Here is the previous biplot with group-specific markers:

. biplot vl v2 v3, alpha(0) mahalanobis stretch(.01) title(Simple biplot)
> subtitle(Grouping variable group) rowover(group)

> rowlopts(name("Group 1") msymbol(0) nolabel)
> row2opts(name ("Group 2") msymbol(T) nolabel)

Biplot of 5 observations and 3 variables

Explained variance by component 1 = 0.6283
Explained variance by component 2 = 0.3717
Total explained variance = 1.0000
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Simple biplot
Grouping variable group
2
1.5 by
14 v2
~N
_5 54 —> Variables
% N e Groupl
E 03 . 4 Group 2
a a
-5+
-1
A vl
-1.54

Dimension 1

In the above example, groups are defined by a single variable group but you can specify multiple
variables with rowover (). The rendition of group markers is controlled by options rowlopts() and
row2opts (). The marker labels are disabled by using the nolabel option.

d

> Example 2
Table 7.1 of Cox and Cox (2001) provides the scores of 10 Renaissance painters on four attributes
using a scale from O to 20, as judged by Roger de Piles in the 17th century.

. use https://www.stata-press.com/data/r18/renpainters, clear
(Scores by Roger de Piles for Renaissance painters)

. list, abbrev(12)

painter composition drawing colour expression

1. Del Sarto 12 16 9 8
2. Del Piombo 8 13 16 7
3. Da Udine 10 8 16 3
4. Giulio Romano 15 16 4 14
5. Da Vinci 15 16 4 14
6. Michelangelo 8 17 4 8
7. Fr. Penni 0 15 8 0
8. Perino del Vaga 15 16 7 6
9. Perugino 4 12 10 4
10. Raphael 17 18 12 18
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. biplot composition-expression, alpha(l) stretch(10) table
> rowopts(name (Painters)) rowlabel(painter) colopts(name(Attributes))
> title(Renaissance painters)

Biplot of 10 painters and 4 attributes

Explained variance by component 1 0.6700
Explained variance by component 2 = 0.2375
Total explained variance = 0.9075

Biplot coordinates

Painters diml dim2

Del Sarto 1.2120 0.0739
Del Piombo -4.5003 5.7309
Da Udine -7.2024 7.5745
Giulio Rom~o 8.4631 -2.5503
Da Vinci 8.4631 -2.5503
Michelangelo 0.1284  -5.9578
Fr Penni -11.9449 -5.4510
Perino del~a 2.2564 -0.9193
Perugino -7.8886 -0.8757

Raphael 11.0131 4.9251

Attributes diml dim2
composition 6.4025 3.3319
drawing 2.4952 -3.3422
colour -2.4557 8.7294
expression 6.8375 1.2348

Renaissance painters

15+
104 colour
Da Udine
°
Del P\umbo.
5 .Raphae\
N composition
c
2 expression
@ 0 el Sarto ——> Attributes
[ Peruginoe ® Perino del Vaga i
_g i “eDaltrRomanc  ©  Painters
drawing
-5 . >
Fr penni Michelangelo
-10
-15-
T T T T T T T
-15 -10 -5 0 5 10 15
Dimension 1

alpha(1l) gave us an « of 1. stretch(10) made the arrows 10 times longer. table requested
that the biplot coordinate table be displayed. rowopts () and colopts() affected the rendition of the
rows (observations) and columns (variables). The name () suboption provided a name to use instead
of the default names “Observations” and “Variables” in the graph legend and in the biplot coordinate
table. The rowlabel(painter) option requested that the variable painter be used to label the
row points (observations) in both the graph and table. The title () option was used to override the
default title.

The default is to produce a square graphing region. Because the z axis containing the first
component has more variability than the y axis containing the second component, there are often
no observations or arrows appearing in the upper and lower regions of the graph. The autoaspect
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option sets the aspect ratio and the x-axis and y-axis scales so that more of the graph region is used
while maintaining the equivalent interpretation of distance for the 2 and y axes.

Here is the previous biplot with the omission of the table option and the addition of the
autoaspect option. We also add the ynegate option to invert the orientation of the data in the
y-axis direction to match the orientation shown in figure 7.1 of Cox and Cox (2001). We add the
negcol option to include column (variable) arrows pointing in the negative directions, and the
rendition of these negative columns (variables) is controlled by negcolopts().

. biplot composition-expression, autoaspect alpha(l) stretch(10) ynegate
> rowopts(name (Painters)) rowlabel(painter) colopts(name(Attributes))
> title(Renaissance painters) negcol negcolopts(name(-Attributes))

Biplot of 10 painters and 4 attributes

Explained variance by component 1 = 0.6700
Explained variance by component 2 = 0.2375
Total explained variance = 0.9075

Renaissance painters

104
colour
1
!
Michelangelo
Fr. Penni s/
5 2 /
composition < II drawing
o~ S~ ® BaltrRomano
5 RSO <=~ "~ 1/ ePerinodelVage —— Atributes
2 0- - el Sarto N
o ——> -Attributes
E expression
a / * Painters
¥
drawing composition
54 . .Raphae\
Del Piombo
.
Da Udine
104 colour
T T T T T T T
-15 -10 -5 0 5 10 15
Dimension 1
d
Stored results
biplot stores the following in r():
Scalars
r(rhol) explained variance by component 1
r(rho2) explained variance by component 2
r(rho) total explained variance
r(alpha) value of alpha() option
Matrices
r(U) biplot coordinates for the observations; stored only if the row dimension

does not exceed Stata’s maximum matrix size; as an alternative, use
generate() to store biplot coordinates for the observations in variables
r(V) biplot coordinates for the variables
r(Vstretch) biplot coordinates for the variables times stretch() factor
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Methods and formulas

Let X be the centered (standardized if std is specified) data with N rows (observations) and p
columns (variables). A biplot splits the information in X into a portion related to the observations
(rows of X) and a portion related to the variables (columns of X). This task is done using the singular

value decomposition (SVD).
X =UAV’

The biplot formula is derived from this SVD by first splitting A, a diagonal matrix, into
A = A® Al—a

and then retaining the first two columns of U, the first two columns of V, and the first two rows
and columns of A. Using the subscript 2 to denote this, the biplot formula is

X ~ Uy Ay A VY,
where 0 < o < 1. This is then written as

X ~ (Uy AS) (Vo ALY

U, A contains the plotting coordinates corresponding to observations (rows) and Vo A%_a
contains the plotting coordinates corresponding to variables (columns). In a biplot, the row coordinates
are plotted as symbols and the column coordinates are plotted as arrows from the origin.

Let \; be the ¢th diagonal of A. The explained variance for component 1 is

p -1
p1 = {ZAZZ} )\%

and for component 2 is

The total explained variance is
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ca — Simple correspondence analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

ca performs a simple correspondence analysis (CA) and optionally creates a biplot of two categorical
variables or multiple crossed variables. camat is similar to ca but is for use with a matrix containing
cross-tabulations or other nonnegative values with strictly positive margins.

Quick start
Simple correspondence analysis of two categorical variables

Correspondence analysis of the cross-tabulation with rows catvarl and columns catvar2
ca catvarl catvar2

Also produce the correspondence analysis biplot
ca catvarl catvar2, plot

Increase the number of dimensions from 2 to 3
ca catvarl catvar2, dimensions(3)

Use row and column principal coordinate normalization
ca catvarl catvar2, normalize(principal)

Simple correspondence analysis with crossed (stacked) variables

Correspondence analysis of the cross-tabulation of rows catvarl and crossed columns mycol from
the crossed variables catvar2 and catvar3

ca catvarl (mycol: catvar2 catvar3)

Same as above, but display compact tables and produce the correspondence analysis biplot
ca catvarl (mycol: catvar2 catvar3), compact plot

Simple correspondence analysis of a matrix

Correspondence analysis of the cross-tabulations contained in matrix M
camat M

Also produce the correspondence analysis biplot
camat M, plot

31
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Menu
ca

Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis (CA)

camat

Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis of a matrix

Syntax
Simple correspondence analysis of two categorical variables

ca rowvar colvar [lf] [m} [weight] [, options}

Simple correspondence analysis with crossed (stacked) variables

ca row_spec col_spec [if ] [in] [weight} [, ()pti()ns]
Simple correspondence analysis of an n, X n. matrix
camat matname [, options]

where spec = varname | (newvar : varlist)

and matname is an n, X n. matrix with n,., n, > 2.
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options

Description

Model 2
dimensions (#)
normalize (nopts)
rowsupp (matname,.)
colsupp (matname,)
rowname (string)
colname (string)
missing

Codes (ca only)
report(variables)
gort (crossed)
report(all)
Egth (min)
length(#)

Reporting
ddimensions (#)

number of dimensions (factors, axes); default is dim(2)
normalization of row and column coordinates

matrix of supplementary rows

matrix of supplementary columns

label for rows

label for columns

treat missing values as ordinary values (ca only)

report coding of crossing variables

report coding of crossed variables

report coding of crossing and crossed variables

use minimal length unique codes of crossing variables
use # as coding length of crossing variables

number of singular values to be displayed; default is ddim(.)

norowpoints suppress table with row category statistics
nocolpoints suppress table with column category statistics
compact display tables in a compact format

plot plot the row and column coordinates

maxlength (#) maximum number of characters for labels; default is maxlength(12)
nopts Description

symmetric symmetric coordinates (canonical); the default
Eandard row and column standard coordinates

row row principal, column standard coordinates
column column principal, row standard coordinates
principal row and column principal coordinates

# power 0 < # < 1 for row coordinates; seldom used

bootstrap, by, collect, jackknife, rolling, and statsby are allowed with ca; see [U] 11.1.10 Prefix commands.
However, bootstrap and jackknife results should be interpreted with caution; identification of the ca parameters
involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates (Milan and

Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
fweights, aweights, and iweights are allowed with ca; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options
Model 2

dimensions (#) specifies the number of dimensions (= factors = axes) to be extracted. The default
is dimensions (2). If you specify dimensions (1), the row and column categories are placed on
one dimension. # should be strictly smaller than the number of rows and the number of columns,
counting only the active rows and columns, excluding supplementary rows and columns (see
options rowsupp() and colsuppQ)).

CA is a hierarchical method, so extracting more dimensions does not affect the coordinates and
decomposition of inertia of dimensions already included. The percentages of inertia accounting
for the dimensions are in decreasing order as indicated by singular values. The first dimension
accounts for the most inertia, followed by the second dimension, and then the third dimension,
etc.

normalize (nopts) specifies the normalization method, that is, how the row and column coordinates
are obtained from the singular vectors and singular values of the matrix of standardized residuals.
See Normalization and interpretation of correspondence analysis in Remarks and examples for a
discussion of these different normalization methods.

symmetric, the default, distributes the inertia equally over rows and columns, treating the
rows and columns symmetrically. The symmetric normalization is also known as the standard,
or canonical, normalization. This is the most common normalization when making a biplot.
normalize(symmetric) is equivalent to normalize(0.5). canonical is a synonym for
symmetric.

standard specifies that row and column coordinates should be in standard form (singular vec-
tors divided by the square root of mass). This normalization method is not equivalent to
normalize (#) for any #.

row specifies principal row coordinates and standard column coordinates. This option should be
chosen if you want to compare row categories. Similarity of column categories should not be
interpreted. The biplot interpretation of the relationship between row and column categories is
appropriate. normalize (row) is equivalent to normalize(1).

column specifies principal column coordinates and standard row coordinates. This option should
be chosen if you want to compare column categories. Similarity of row categories should not
be interpreted. The biplot interpretation of the relationship between row and column categories
is appropriate. normalize (column) is equivalent to normalize (0).

principal is the normalization to choose if you want to make comparisons among the row
categories and among the column categories. In this normalization, comparing row and column
points is not appropriate. Thus a biplot in this normalization is best avoided. In the principal
normalization, the row and column coordinates are obtained from the left and right singular
vectors, multiplied by the singular values. This normalization method is not equivalent to
normalize (#) for any #.

#,0 < # < 1, is seldom used; it specifies that the row coordinates are obtained as the left singular
vectors multiplied by the singular values to the power #, whereas the column coordinates equal
the right singular vectors multiplied by the singular values to the power 1 — #.

rowsupp (matname, ) specifies a matrix of supplementary rows. matname, should have n. columns.
The row names of matname,. are used for labeling. Supplementary rows do not affect the computation
of the dimensions and the decomposition of inertia. They are, however, included in the plots and
in the table with statistics of the row points. Because supplementary points do not contribute to
the dimensions, their entries under the column labeled contrib are left blank.
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colsupp (matname.) specifies a matrix of supplementary columns. matname. should have n, rows.
The column names of matname,. are used for labeling. Supplementary columns do not affect the
computation of the dimensions and the decomposition of inertia. They are, however, included in
the plots and in the table with statistics of the column points. Because supplementary points do
not contribute to the dimensions, their entries under the column labeled contrib are left blank.

rowname (string) specifies a label to refer to the rows of the matrix. The default is rowname (rowvar)
for ca and rowname (rows) for camat.

colname (string) specifies a label to refer to the columns of the matrix. The default is col-
name (colvar) for ca and colname(columns) for camat.

missing, allowed only with ca, treats missing values of rowvar and colvar as ordinary categories
to be included in the analysis. Observations with missing values are omitted from the analysis by
default.

_ [Godes|

report (opt) displays coding information for the crossing variables, crossed variables, or both.
report () is ignored if you do not specify at least one crossed variable.

report(variables) displays the coding schemes of the crossing variables, that is, the variables
used to define the crossed variables.

report(crossed) displays a table explaining the value labels of the crossed variables.
report(all) displays the codings of the crossing and crossed variables.

length(opt) specifies the coding length of crossing variables.
length(min) specifies that the minimal-length unique codes of crossing variables be used.

length(#) specifies that the coding length # of crossing variables be used, where # must be
between 4 and 32.

Reporting

ddimensions (#) specifies the number of singular values to be displayed. The default is
ddimensions(.), meaning all.

norowpoints suppresses the table with row point (category) statistics.
nocolpoints suppresses the table with column point (category) statistics.

compact specifies that the table with point statistics be displayed multiplied by 1,000 as proposed by
Greenacre (2017), enabling the display of more columns without wrapping output. The compact
tables can be displayed without wrapping for models with two dimensions at line size 79 and with
three dimensions at line size 99.

plot displays a plot of the row and column coordinates in two dimensions. With row principal
normalization, only the row points are plotted. With column principal normalization, only the
column points are plotted. In the other normalizations, both row and column points are plotted.
You can use cabiplot directly if you need another selection of points to be plotted or if you
want to otherwise refine the plot; see [MV] ca postestimation plots.

maxlength(#) specifies the maximum number of characters for row and column labels in plots. The
default is maxlength(12).

Note: The reporting options may be specified during estimation or replay.
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Remarks and examples

Remarks are presented under the following headings:

Introduction

A first example

How many dimensions?

Statistics on the points

Normalization and interpretation of correspondence analysis
Plotting the points

Supplementary points

Matrix input

Crossed variables

Introduction

Correspondence analysis (CA) offers a geometric representation of the rows and columns of a two-way
frequency table that is helpful in understanding the similarities between the categories of variables and
the association between the variables. CA is formally equivalent to various other geometric approaches,
including dual scaling, reciprocal averaging, and canonical correlation analysis of contingency tables
(Greenacre 1984, chap. 4). For an informal introduction to CA and related metric approaches, see
Weller and Romney (1990). Greenacre (2017) provides a much more thorough introduction with few
mathematical prerequisites. More advanced treatments are given by Greenacre (1984) and Gower and
Hand (1996).

In some respects, CA can be thought of as an analogue to principal components for nominal
variables. It is also possible to interpret CA in reciprocal averaging (Greenacre 1984, 96—102; Cox
and Cox 2001, 193-200), in optimal scaling (Greenacre 1984, 102—108), and in canonical correlations
(Greenacre 1984, 108—116; Gower and Hand 1996, 183-185). Scaling refers to the assignment of
scores to the categories of the row and column variables. Different criteria for the assignment of
scores have been proposed, generally with different solutions. If the aim is to maximize the correlation
between the scored row and column, the problem can be formulated in terms of CA. The optimal scores
are the coordinates on the first dimension. The coordinates on the second and subsequent dimensions
maximize the correlation between row and column scores subject to orthogonality constraints. See
also [MV] ca postestimation.

A first example

> Example 1: A well-known correspondence analysis example

We illustrate CA with an example of smoking behavior by different ranks of personnel. This
example is often used in the CA literature (for example, Greenacre 1984, 55; Greenacre 2017, 66), so
you have probably encountered these (artificial) data before. By using these familiar data, we make
it easier to relate the literature on CA to the output of the ca command.
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. use https://www.stata-press.com/data/r18/ca_smoking

. tabulate rank smoking

Smoking intensity

Rank None Light Medium Heavy Total
Senior_mngr 4 2 3 2 11
Junior_mngr 4 3 7 4 18
Senior_empl 25 10 12 4 51
Junior_empl 18 24 33 13 88
Secretary 10 6 7 2 25
Total 61 45 62 25 193

ca displays the results of a CA on two categorical variables in a multipanel format.

. ca rank smoking

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51
Singular Principal Cumul.

Dimension value inertia chi2 Percent percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76

Dim 2 .1000859 .0100172 1.93 11.76 99.51

Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
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Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality  Jinert Coord Sqcorr Contrib
rank
Senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
Senior empl 0.264 1.000 0.450 0.728 0.999 0.512
Junior empl 0.456 1.000 0.308 -0.446 0.942 0.331
Secretary 0.130 0.999 0.071 0.385 0.865 0.070
smoking
None 0.316 1.000 0.577 0.752 0.994 0.654
Light 0.233 0.984 0.083 -0.190 0.327 0.031
Medium 0.321 0.983 0.148 -0.375 0.982 0.166
Heavy 0.130 0.995 0.192 -0.562 0.684 0.150
Dimension_2
Categories Coord Sqcorr Contrib
rank
Senior mngr 0.612 0.800 0.214
Junior mngr 0.769 0.465 0.551
Senior empl 0.034 0.001 0.003
Junior empl -0.183 0.058 0.152
Secretary -0.249 0.133 0.081
smoking
None 0.096 0.006 0.029
Light -0.446 0.657 0.463
Medium -0.023 0.001 0.002
Heavy 0.625 0.310 0.506

The order in which we specify the variables is mostly immaterial. The first variable (rank) is also
called the row variable, and the second (smoking) is the column variable. This ordering is important
only as far as the interpretation of some options and some labeling of output are concerned. For
instance, the option norowpoints suppresses the table with row points, that is, the categories of
rank. ca requires two integer-valued variables. The rankings of the categories and the actual values
used to code categories are not important. Thus, rank may be coded 1, 2, 3, 4, 5, 0r 0, 1, 4, 9, 16, or
—2, —1, 0, 1, 2; it does not matter. We do suggest assigning value labels to the variables to improve
the interpretability of tables and plots.

Correspondence analysis seeks to offer a low-dimensional representation describing how the row
and column categories contribute to the inertia in a table. ca reports Pearson’s test of independence,
just like tabulate with the chi2 option. Inertia is Pearson’s x? statistic divided by the sample
size, 16.44/193 = 0.0852. Pearson’s x? test has significance level p = 0.1718, casting doubt on
any association between rows and columns. Still, given the prominence of this example in the CA
literature, we will continue.

The first panel produced by ca displays the decomposition of total inertia in orthogonal dimensions—
analogous to the decomposition of the total variance in principal component analysis (see [MV] pca).
The first dimension accounts for 87.76% of the inertia; the second dimension accounts for 11.76%
of the inertia. Because the dimensions are orthogonal, we may add the contributions of the two
dimensions and say that the two leading dimensions account for 87.76% + 11.76% = 99.52% of
the total inertia. A two-dimensional representation seems in order. The remaining output is discussed
later.

d
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How many dimensions?

> Example 2: Specifying the number of dimensions

In the first example with the smoking data, we displayed coordinates and statistics for a two-
dimensional approximation of the rows and columns. This is the default. We can specify more or
fewer dimensions with the option dimensions(). The maximum number is min(n, — I,n. — 1).
At this maximum, the x2 distances between the rows and columns are exactly represented by CA;
100% of the inertia is accounted for. This is called the saturated model; the fitted values of the CA
model equal the observed correspondence table.

The minimum number of dimensions is one; the model with zero dimensions would be a model of
independence of the rows and columns. With one dimension, the rows and columns of the table are
identified by points on a line, with distance on the line approximating the x2 distance in the table,
and a biplot is no longer feasible.

. ca rank smoking, dim(1)

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active rows Number of dim. = 1
4 active columns Expl. inertia (%) = 87.76
Singular Principal Cumul.
Dimension value inertia chi2 Percent  percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00
Total .0851899 16.44 100
Statistics for row and column categories in symmetric normalization
Overall Dimension_1
Categories Mass Quality  %inert Coord Sqcorr Contrib
rank
Senior mngr 0.057 0.092 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.526 0.139 -0.495 0.526 0.084
Senior empl 0.264 0.999 0.450 0.728 0.999 0.512
Junior empl 0.456 0.942 0.308 -0.446 0.942 0.331
Secretary 0.130 0.865 0.071 0.385 0.865 0.070
smoking
None 0.316 0.994 0.577 0.752 0.994 0.654
Light 0.233 0.327 0.083 -0.190 0.327 0.031
Medium 0.321 0.982 0.148 -0.375 0.982 0.166
Heavy 0.130 0.684 0.192 -0.562 0.684 0.150

The first panel produced by ca does not depend on the number of dimensions extracted; thus, we
will always see all singular values and the percentage of inertia explained by the associated dimensions.
In the second panel, the only thing that depends on the number of dimensions is the overall quality of
the approximation. The overall quality is the sum of the quality scores on the extracted dimensions
and so increases with the number of extracted dimensions. The higher the quality, the better the x?
distances with other rows (columns) are represented by the extracted number of dimensions. In a
saturated model, the overall quality is 1 for each row and column category.

So, how many dimensions should we retain? It is common for researchers to extract the minimum
number of dimensions in a CA to explain at least 90% of the inertia, analogous to similar heuristic



40 ca— Simple correspondence analysis

rules on the number of components in principal component analysis. We could probably also search
for a scree, the number of dimensions where the singular values flatten out (see [MV] screeplot). A
screeplot of the singular values can be obtained by typing

. screeplot e(Sv)
(output omitted )

where e (Sv) is the name where ca has stored the singular values.

Statistics on the points

> Example 3: A more compact table of row and column statistics

We now turn our attention to the second panel. The overall section of the panel lists the following
statistics:

e The mass of the category, that is, the proportion in the marginal distribution. The masses of
all categories of a variable add up to 1.

e The quality of the approximation for a category, expressed as a number between O (very
bad) and 1 (perfect). In a saturated model, quality is 1.

e The percentage of inertia contained in the category. Categories are divided through by the
total inertia; the inertias of the categories of a variable add up to 100%.

For each of the dimensions, the panel lists the following:
e The coordinate of the category.

e The squared residuals between the profile and the categories. The sum of the squared residuals
over the dimensions adds up to the quality of the approximation for the category.

e The contribution made by the categories to the dimensions. These add up to 1 over all
categories of a variable.

The table with point statistics becomes pretty large, especially with more than two dimensions.
ca can also list the second panel in a more compact form, saving space by multiplying all entries by
1,000; see Greenacre (2017).

. ca rank smoking, dim(2) compact

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51
Singular Principal Cumul.

Dimension value inertia chi2 Percent  percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76

Dim 2 .1000859 .0100172 1.93 11.76 99.51

Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
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Statistics for row and column categories in symmetric norm. (x 1000)

Overall —— Dimension 1 ———— Dimension 2 —
Categories Mass Qualt %inert Coord Sqcor Contr | Coord Sqcor Contr
rank
Senior mngr 57 893 31 126 92 3 612 800 214
Junior mngr 93 991 139 -495 526 84 769 465 551
Senior empl 264 1000 450 728 999 512 34 1 3
Junior empl 456 1000 308 -446 942 331 -183 58 152
Secretary 130 999 71 385 865 70 -249 133 81
smoking
None 316 1000 577 752 994 654 96 6 29
Light 233 984 83 -190 327 31 -446 657 463
Medium 321 983 148 -375 982 166 -23 1 2
Heavy 130 995 192 -562 684 150 625 310 506

Normalization and interpretation of correspondence analysis

The normalization method used in CA determines whether and how the similarity of the row
categories, the similarity of the column categories, and the relationship (association) between the row
and column variables can be interpreted in terms of the row and column coordinates and the origin
of the plot.

How does one compare row points—provided that the normalization method allows such a
comparison? Formally, the Euclidean distance between the row points approximates the x? distances
between the corresponding row profiles. Thus in the biplot, row categories mapped close together
have similar row profiles; that is, the distributions on the column variable are similar. Row categories
mapped widely apart have dissimilar row profiles. Moreover, the Euclidean distance between a row
point and the origin approximates the x2 distance from the row profile and the row centroid, so it
indicates how different a category is from the population.

An analogous interpretation applies to column points.

For the association between the row and column variables: in the CA biplot, you should not interpret
the distance between a row point 7 and a column point c¢ as the relationship of 7 and c. Instead, think
in terms of the vectors origin to r (OR) and origin to ¢ (OC). Remember that CA decomposes scaled
deviations d(r, ¢) from independence and d(r, ¢) is approximated by the inner product of OR and OC.
The larger the absolute value of d(r, ¢), the stronger the association between r and ¢. In geometric
terms, d(r, c) can be written as the product of the length of OR, the length of OC, and the cosine of
the angle between OR and OC.

What does this mean? First, consider the effects of the angle. The association in (r, c) is strongly
positive if OR and OC point in roughly the same direction; the frequency of (7, ¢) is much higher than
expected under independence, so 7 tends to flock together with c—if the points 7 and c are close
together. Similarly, the association is strongly negative if OR and OC point in opposite directions.
Here the frequency of (r, ¢) is much lower than expected under independence, so r and ¢ are unlikely
to occur simultaneously. Finally, if OR and OC are roughly orthogonal (angle = £90), the deviation
from independence is small.

Second, the association of 7 and c¢ increases with the lengths of OR and OC. Points far from the
origin tend to have large associations. If a category is mapped close to the origin, all its associations
with categories of the other variable are small: its distribution resembles the marginal distribution.
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Here are the interpretations enabled by the main normalization methods as specified in the
normalize() option.

Normalization Similarity Similarity Association
method row cat. column cat. row vs. column
symmetric No No Yes
principal Yes Yes No

row Yes No Yes
column No Yes Yes

If we say that a comparison between row categories or between column categories is not possible,
we really mean that the y? distance between row profiles or column profiles is actually approximated
by a weighted Euclidean distance between the respective plots in which the weights depend on the
inertia of the dimensions rather than on the standard Euclidean distance.

You may want to do a CA in principal normalization to study the relationship between the categories
of a variable and do a CA in symmetric normalization to study the association of the row and column
categories.

Plotting the points

> Example 4: A correspondence biplot

In our discussion of normalizations, we stated that CA offers simple geometric interpretations to
the similarity of categories and the association of the variables. We may specify the option plot with
ca during estimation or during replay.
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. ca, norowpoints nocolpoints plot

Correspondence analysis

5 active rows

Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
Number of dim. = 2

4 active columns Expl. inertia (%) = 99.51
Singular Principal Cumul.
Dimension value inertia chi2 Percent  percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00
Total .0851899 16.44 100

Correspondence analysis biplot
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Coordinates in symmetric normalization

The options norowpoints and nocolpoints suppress the large tables of statistics for the rows
and columns. If we did not request the plot during estimation, we can still obtain it with the
cabiplot postestimation command. Unlike requesting the plot at estimation time, cabiplot allows
us to fine-tune the plot; see [MV] ca postestimation plots.

The horizontal dimension seems to distinguish smokers from nonsmokers, whereas the vertical
dimensions can be interpreted as intensity of smoking. Because the orientations from the origin to
None and from the origin to Senior_empl are so close, we conclude that senior employees tend
not to smoke. Similarly, junior managers tend to be heavy smokers, and junior employees tend to be

medium smokers.

Supplementary points

N

A useful feature of CA is the ability to locate supplementary rows and columns in the space generated
by the “active” rows and columns (see Greenacre [1984, 70—74]; Greenacre [2017, chap. 12], for
an extensive discussion). Think of supplementary rows and columns as having mass O; therefore,
supplementary points do not influence the approximating space—their contribution values are zero.
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> Example 5: Supplementary rows and columns

In our example, we want to include the national distribution of smoking intensity as a supplementary
row.

ca requires that we define the supplementary row distributions as rows of a matrix. In this example,
we have only one supplementary row, with the percentages of the smoking categories in a national
sample. The matrix should have one row per supplementary row category and as many columns as
there are active columns. We define the row name to obtain appropriately labeled output.

. matrix S_row = (42, 29, 20, 9)

. matrix rowname S_row = National

Before we show the CA analysis with the supplementary row, we also include two supplementary
columns for the rank distribution of alcoholic beverage drinkers and nondrinkers. It will be interesting
to see where smoking is located relative to drinking and nondrinking.

matrix S_col = ( 0, 11 \
1, 19\
5, 44 \
10, 78 \
7, 18)

. matrix colnames S_col = Nondrink Drink

VvV V V V.

We now invoke ca, specifying the names of the matrices with supplementary rows and columns
with the options rowsupp () and colsupp().

ca rank smoking, rowsupp(S_row) colsupp(S_col) plot

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active + 1 supplementary rows Number of dim. = 2
4 active + 2 supplementary columns Expl. inertia (%) = 99.51
Singular Principal Cumul.

Dimension value inertia chi2 Percent  percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76

Dim 2 .1000859 .0100172 1.93 11.76 99.51

Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
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Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality  Jinert Coord Sqcorr Contrib
rank
Senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
Senior empl 0.264 1.000 0.450 0.728 0.999 0.512
Junior empl 0.456 1.000 0.308 -0.446 0.942 0.331
Secretary 0.130 0.999 0.071 0.385 0.865 0.070
suppl_rows
National 0.518 0.761 0.644 0.494 0.631
smoking
None 0.316 1.000 0.577 0.752 0.994 0.654
Light 0.233 0.984 0.083 -0.190 0.327 0.031
Medium 0.321 0.983 0.148 -0.375 0.982 0.166
Heavy 0.130 0.995 0.192 -0.562 0.684 0.150
suppl_cols
Nondrink 0.119 0.439 0.460 0.220 0.040
Drink 0.881 0.838 0.095 -0.082 0.202
Dimension_2
Categories Coord Sqcorr Contrib
rank
Senior mngr 0.612 0.800 0.214
Junior mngr 0.769 0.465 0.551
Senior empl 0.034 0.001 0.003
Junior empl -0.183 0.058 0.152
Secretary -0.249 0.133 0.081
suppl_rows
National -0.372 0.131
smoking
None 0.096 0.006 0.029
Light -0.446 0.657 0.463
Medium -0.023 0.001 0.002
Heavy 0.625 0.310 0.506
suppl_cols
Nondrink -1.144 0.398
Drink 0.241 0.636
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Correspondence analysis biplot
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The first panel and the information about the five active rows and the four active columns have
not changed—the approximating space is fully determined by the active rows and columns and is
independent of the location of the supplementary rows and columns.

The table with statistics for the row and column categories now also contains entries for the
supplementary rows and columns. The contrib entries for the supplementary points are blank.
Supplementary points do not “contribute to” the location of the dimensions—their contribution is
0.000, but displaying blanks makes the point more clearly. All other columns for the supplementary
points are informative. The inertia of supplementary points is the }? distance to the respective centroid.
The coordinates of supplementary points are obtained by applying the transition equations of the CA.
Correlations of the supplementary profiles with the dimensions are also well defined. Finally, we may
consider the quality of the two-dimensional approximation for the supplementary points. These are
lower than for the active points, which will be the case in most applications—the active points exercise
influence on the dimensions to improve their quality, whereas the supplementary points simply have
to accept the dimensions as determined by the active points.

If we look at the biplot, the supplementary points are shown along with the active points. We
may interpret the supplementary points just like the active points. Secretaries are close to the national
sample in terms of smoking. Drinking alcohol is closer to the smoking categories than to nonsmoking,
indicating that alcohol consumption and smoking are similar behaviors—but concluding that the same
people smoke and drink is not possible because we do not have three-way data.

N

Matrix input

> Example 6: Correspondence analysis of a frequency table

If we want to do a CA of a published two-way frequency table, we typically do not have immediate
access to the data in the form of a dataset. We could enter the data with frequency weights.
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input rank smoking freq

1. 1 1 4
2. 1 2 2
3. 1 3 3
(output omitted )

19. 5 3 7
20. 5 4 2
21. end

. label define vl_rank 1 "Senior_mngr" ...
. label value rank vl_rank

. label define vl_smoke 1 "None" ...

. label value smoke vl_smoke

. ca rank smoking [fw=freq]
(output omitted )

Or we may enter the data as a matrix and use camat. First, we enter the frequency matrix with
proper column and row names and then list the matrix for verification.
. matrix F = (4,2,3,2 \ 4,3,7,4 \ 25,10,12,4 \ 18,24,33,13 \ 10,6,7,2)
. matrix colnames F = None Light Medium Heavy
. matrix rownames F = Senior_mngr Junior_mngr Senior_empl Junior_empl Secretary

. matlist F, border

None Light Medium Heavy

Senior_mngr 4 2 3 2
Junior_mngr 4 3 7 4
Senior_empl 25 10 12 4
Junior_empl 18 24 33 13
Secretary 10 6 7 2

We can use camat on F to obtain the same results as from the raw data. We use the compact
option for a more compact table.
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. camat F, compact

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51
Singular Principal Cumul.

Dimension value inertia chi2 Percent  percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76

Dim 2 .1000859 .0100172 1.93 11.76 99.51

Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100

Statistics for row and column categories in symmetric norm.

(x 1000)

Overall —— Dimension 1 ———— Dimension 2 —
Categories Mass Qualt %inert Coord Sqcor Contr | Coord Sqcor Contr
rows
Senior mngr 57 893 31 126 92 3 612 800 214
Junior mngr 93 991 139 -495 526 84 769 465 551
Senior empl 264 1000 450 728 999 512 34 1 3
Junior empl 456 1000 308 -446 942 331 -183 58 152
Secretary 130 999 71 385 865 70 -249 133 81
columns
None 316 1000 577 752 994 654 96 6 29
Light 233 984 83 -190 327 31 -446 657 463
Medium 321 983 148 -375 982 166 -23 1 2
Heavy 130 995 192 -562 684 150 625 310 506

> Example 7: Correspondence analysis of nonfrequency data

The command camat may also be used for a CA of nonfrequency data. The data should be
nonnegative, with strictly positive margins. An example are the compositional data on the distribution
of government R&D funds over 11 areas in five European countries in 1989; the data are listed in
Greenacre (1993, 82). The expenditures are scaled to 1,000 within country, to focus the analysis on
the intranational distribution policies. Moreover, with absolute expenditures, small countries, such as

The Netherlands, would have been negligible in the analysis.

We enter the data as a Stata matrix. The command matrix input (see [P] matrix define) allows us
to input row entries separated by blanks, rather than by commas; rows are separated by the backward

slash (\).

18
12
44
37
42
90
28
165
48
484
32

VVVVVVVVVYVYV.:.

19
34
33
88
20
156
50
299
128
127
46

14
4
36
67
36
107
59
120
147
342
68

matrix input RandD = (

14
15
58
101
28
224
88
303

6
31
25
40
43

176
28
407
62 103
70 28
37 113)

P A g G
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. matrix colnames RandD = Britain West_Germany France Italy Netherlands

. matrix rownames RandD = Earth_exploration Pollution Human_health
> Energy Agriculture Industry Space University
> Nonoriented Defense Other

We perform a CA, suppressing the voluminous row- and column-point statistics. We want to show

a biplot, and therefore we select symmetric normalization.

. camat RandD, dim(2) norm(symm) rowname (Source) colname(Country) norowpoints

> nocolpoints plot

Correspondence analysis Number of obs = 5,000
Pearson chi2(40) = 1321.55
Prob > chi2 0.0000
Total inertia = 0.2643
11 active rows Number of dim. = 2
5 active columns Expl. inertia (%) = 89.08
Singular Principal Cumul.
Dimension value inertia chi2 Percent  percent
Dim 1 .448735 .2013631 1006.82 76.18 76.18
Dim 2 .1846219 .0340852 170.43 12.90 89.08
Dim 3 .1448003 .0209671 104.84 7.93 97.01
Dim 4 .0888532 .0078949 39.47 2.99 100.00
Total .2643103 1321.55 100

Correspondence analysis biplot
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Coordinates in symmetric normalization

The two dimensions account for 89% of the inertia in this example, justifying an interpretation
of the biplot. Let us focus on the position of The Netherlands. The orientation of The Netherlands
from the origin is in the same direction as the orientation of pollution and university from the
origin, indicating that The Netherlands spends more on academic research and on research to reduce
environmental pollution than the average country. Earth exploration and human health are in the
opposite direction, indicating investments much lower than average in these areas. Industry and
agriculture are approximately orthogonal to the orientation of The Netherlands, indicating average
investments by The Netherlands in these areas. Britain and France have big military investments,
whereas Germany and Italy have more of an industrial orientation.

4
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Q Technical note

The interpretation of the biplot is not fully in line with what we easily see in the row and column
profiles—surprisingly, Greenacre does not seem to feel the need to comment on this. Why is this the
case? The clue is in the statistics we did not show. Although the two dimensions account for 90% of
the total inertia, this does not mean that all rows and columns are approximated to this extent. There
are some row and column categories that are not well described in two dimensions. For instance,
the quality of the Source categories Nonoriented, Agriculture, and Earth_exploration are
only 0.063, 0.545, and 0.584, respectively, indicating that these rows are poorly represented in a
two-dimensional space. The quality of West_Germany is also rather low at 0.577. Adding a third
dimension improves the quality of the category Nonoriented but hardly affects the other two
problematic categories. This effect can be seen only from the squared correlations between the third
dimension and the profiles of the row and column categories—these correlations are small for all
categories but Nonoriented. Thus, Nonoriented does not seem to really belong with the other

categories and should probably be omitted from the analysis. a

Crossed variables

ca can include interactions between variables in the analysis; variables that contain interactions
are called crossed or stacked variables, whereas the variables that make them up are the crossing or
stacking variables.

> Example 8: Correspondence analysis with crossed variables

We illustrate crossed variables with ca by using the ISSP (1993) data from [MV] mca, which
explores attitudes toward science and the environment. We are interested in whether responses to item
A differ with education and gender. The item asks for a response to the statement “We believe too
often in science, and not enough in feelings or faith,” with a 1 indicating strong agreement and a 5
indicating strong disagreement. We are interested in how education and gender influence response.
We cross the variables sex and edu into one demographic variable labeled Demo to explore this
question.

. use https://www.stata-press.com/data/r18/issp93
(Selection from ISSP (1993))
. tabulate A edu

Too much science, not
enough feelings & Education (6 categories)
faith | Primary i Primary ¢ Secondary Secondary Total
Agree strongly 7 59 29 11 119
Agree 15 155 84 27 322
Neither agree nor dis 7 84 65 18 204
Disagree 8 68 54 26 178
Disagree strongly 1 12 10 12 48
Total 38 378 242 94 871
Too much science, not Education (6
enough feelings & categories)
faith | Tertiary  Tertiary Total
Agree strongly 5 8 119
Agree 20 21 322
Neither agree nor dis 11 19 204
Disagree 8 14 178
Disagree strongly 5 8 48
Total 49 70 871
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We notice immediately the long labels for variable A and on edu. We replace these labels with
short labels that can be abbreviated, so that in our analysis we will easily be able to identify categories.
We use the length(2) option to ca to ensure that labels from each of the crossing variables are
restricted to two characters.

. label define response 1 "++" 2 "4" 3 "4/-" 4 n-n 5 n--—v

. label values A response

. label define education 1 "-pri" 2 "pri" 3 "-sec" 4 "sec" 5 "-ter" 6 "ter"
. label values edu education

. ca A (Demo: sex edu), norowpoints nocolpoints length(2) plot norm(symmetric)

Correspondence analysis Number of obs = 871

Pearson chi2(44) = 72.52

Prob > chi2 = 0.0043

Total inertia = 0.0833

5 active rows Number of dim. = 2

12 active columns Expl. inertia (%) = 80.17

Singular Principal Cumul.

Dimension value inertia chi2 Percent percent

Dim 1 .2108455 .0444558 38.72 53.39 53.39

Dim 2 .14932 .0222965 19.42 26.78 80.17

Dim 3 .1009876 .0101985 8.88 12.25 92.42

Dim 4 .0794696 .0063154 5.50 7.58 100.00
Total .0832662 72.52 100

Correspondence analysis biplot
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We see clearly that the responses of the males vary more widely than those of the females.
Strong agreement with item A is most closely associated with females with little education, and
strong disagreement is most closely associated with males with a secondary or tertiary education.
Educated males are more closely associated with a negative response than educated females are, and
females with little education are more closely associated with a positive response than males with
little education are.

N



52 ca — Simple correspondence analysis

Stored results

Let r be the number of rows, ¢ be the number of columns, and f be the number of retained
dimensions. ca and camat store the following in e():

Scalars
e() number of observations
e(f) number of dimensions (factors, axes); maximum of min(r—1,c—1)
e(inertia) total inertia = e (X2) /e (N)
e(pinertia) inertia explained by e (f) dimensions
e(X2) x2 statistic
e(X2_df) degrees of freedom (r—1)(c—1)
e(X2_p) p-value for e (X2)
Macros
e(cmd) ca (even for camat)
e(cmdline) command as typed
e(Rcrossvars) row crossing variable names (ca only)
e(Ccrossvars) column crossing variable names (ca only)
e(varlist) the row and column variable names (ca only)
e(wtype) weight type (ca only)
e (wexp) weight expression (ca only)
e(title) title in estimation output
e(ca_data) variables or crossed
e (Cname) name for columns
e (Rname) name for rows
e(norm) normalization method
e(sv_unique) 1 if the singular values are unique, O otherwise
e(properties) nob noV eigen
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
Matrices
e(Ccoding) column categories (1xc) (ca only)
e(Rcoding) row categories (1xr) (ca only)
e(GSC) column statistics (c¢x3(1+f£))
e(GSR) row statistics (rx3(1+f))
e(TC) normalized column coordinates (cx f)
e(TR) normalized row coordinates (rx f)
e(Sv) singular values (1x f)
e(C) column coordinates (cx f)
e(R) row coordinates (rx f)
e(c) column mass (margin) (c¢x1)
e(r) row mass (margin) (rx1)
e(P) analyzed matrix (rxc)
e (GSC_supp) supplementary column statistics
e (GSR_supp) supplementary row statistics
e (PC_supp) principal coordinates supplementary column points
e (PR_supp) principal coordinates supplementary row points
e (TC_supp) normalized coordinates supplementary column points
e (TR_supp) normalized coordinates supplementary row points
Functions
e(sample) marks estimation sample (ca only)

Methods and formulas

Our presentation of simple CA follows that of Greenacre (1984, 83-125); see also Blasius and
Greenacre (1994) and Rencher and Christensen (2012, 565-580). See Greenacre and Blasius (1994)
for a concise presentation of CA from a computational perspective. Simple CA seeks a geometric
representation of the rows and column of a (two mode) matrix with nonnegative entries in a common



ca — Simple correspondence analysis 53

low-dimensional space so that y? distances between the rows and between the columns are well
approximated by the Euclidean distances in the common space.

Let N be an I x J matrix with nonnegative entries and strictly positive margins. N may be
frequencies of a two-way cross-tabulation, but this is not assumed in most of CA. Let n = N, be
the overall sum of N;; (“number of observations”). Define the correspondence table as the matrix P
where P;; = N;;/n, so the overall sum of P;; is Py = 1. Let r = P 1 be the row margins, also
known as the row masses, with elements r; > 0. Similarly, ¢ = P’1 contains the column margins,
or column masses, with elements c; > 0.

CA is defined in terms of the generalized singular value decomposition (GSVD) of P — rc’ with
respect to the inner products normed by D! and D!, where D,. = diag(r) and D, = diag(c). The
GSVD can be expressed in terms of the orthonormal (or standard) SVD of the standardized residuals

Pi' — ’l"iCj
VTiCj

Denote by Z = RAC’ the SVD of Z with R’'R = C'C =1 and A a diagonal matrix with singular
values in decreasing order. ca displays a warning message if Z has common singular values.

1 1
Z=D, %P —rc)D.? with elements Z;; =

The total principal inertia of the correspondence table P is defined as y?/n = > j Z?2., where

j’
x? is Pearson’s x? statistic. We can express the inertia of P in terms of the singular values of Z:

min(r—1,J—1)

1 2 2 : 2
inertia = — = A
nX k

k=1

The inertia accounted for by d dimensions is ZZ:1 )\z. The fraction of inertia accounted for (explained)
by the d dimensions is defined as

d 2

D k=1 Ak
min(I—1,J—1) 22
k=1 k

explained inertia =

Principal row (Eik) and principal column (C~‘j k) coordinates are defined as

~ Rik/\k _1 ~ Cjk)\ -1
&= —22F — (D, 2RA); x = 228 — (D, 2CA);
Rix NG ( RA); Cik N ( CA)

The a-normalized row and column coordinates are defined as

Rir Ay, o) _ CixA,
Vi i VG

The row principal coordinates are obtained with o = 1. The column principal coordinates are obtained
with o = 0. The symmetric coordinates are obtained with o = 1/2.

Ry -

Decomposition of inertia by rows (In(r)) and by columns (In(c)) is defined as

J I
Ingr) = Z sz Ing-c) = Z ij
j=1 i=1
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Quality of subspace approximations for the row and column categories are defined as

d
(r _ () _ G ~2
Q I(T)ZR Qj _In(c)zck
k=1
If d = min(I — 1, J — 1), the quality index satisfies Ql(-r) = Qgc) =1

CA provides several diagnostics for a more detailed analysis of inertia: what do the categories
contribute to the inertia explained by the dimensions, and what do the dimensions contribute to the
inertia explained for the categories?

The relative contributions of row ¢ (Gl(-,:)) and of column j (Gﬁ)) to the inertia of principal
dimension k are defined as

o _ il @ _ &Gk
ik )\i ik )\%
(r) _ (o) _
el =cll=1.

The correlations H (k) of the ith row profile and kth principal row dimension and, analogously,

HJ(.k) for columns are

Y = TR HY) = .03
k <r> 0@

We now define the quantities returned by the estat subcommands after ca. The row profiles are
U=D, 1P, The X2 distance between rows 77 and i9 of P is defined as the Mahalanobis distance
between the respective row profiles U;, and U;, with respect to Dy,

(U;, —Uy,)D (U, — Uy,

C

The column profiles and the x? distances between columns are defined analogously. The x? distances
for the approximated correspondence table are defined analogously in terms of P.

The fitted or reconstructed values P;; are

d
k=1
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Postestimation commands

The following postestimation commands are of special interest after ca and camat:

Command Description
cabiplot biplot of row and column points
caprojection CA dimension projection plot
estat coordinates display row and column coordinates
estat distances display x? distances between row and column profiles
estat inertia display inertia contributions of the individual cells
estat loadings display correlations of profiles and axes
estat profiles display row and column profiles
*estat summarize estimation sample summary
estat table display fitted correspondence table
screeplot plot singular values

*estat summarize is not available after camat.

The following standard postestimation commands are also available:

Command Description
*estimates cataloging estimation results
Jrpredict fitted values, row and column coordinates

*All estimates subcommands except table and stats are available.

Tpredict is not available after camat.

56
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predict

Description for predict

predict creates a new variable containing predictions such as fitted values and row or column
scores.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [rype] newvar [lf] [zn] [, statistic]

statistic Description

Main
fit fitted values; the default
rowscore (#) row score for dimension #
colscore (#) column score for dimension #

predict is not available after camat.

Options for predict
Main

fit specifies that fitted values for the correspondence analysis model be computed. fit displays the
fitted values p;; according to the correspondence analysis model. fit is the default.

rowscore(#) generates the row score for dimension #, that is, the appropriate elements from the
normalized row coordinates.

colscore(#) generates the column score for dimension #, that is, the appropriate elements from the
normalized column coordinates.
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estat

Description for estat

estat coordinates displays the row and column coordinates.

estat distances displays the Y2 distances between the row profiles and between the column
profiles. Also, the x? distances between the row and column profiles to the respective centers (marginal
distributions) are displayed. Optionally, the fitted profiles rather than the observed profiles are used.

estat inertia displays the inertia (x?/NN) contributions of the individual cells.

estat loadings displays the correlations of the row and column profiles and the axes, comparable
to the loadings of principal component analysis.

estat profiles displays the row and column profiles; the row (column) profile is the conditional
distribution of the row (column) given the column (row). This is equivalent to specifying the row
and column options with the tabulate command; see [R] tabulate twoway.

estat summarize displays summary information about the row and column variables over the
estimation sample.

estat table displays the fitted correspondence table. Optionally, the observed “correspondence
table” and the expected table under independence are displayed.

Menu for estat

Statistics > Postestimation

Syntax for estat

Display row and column coordinates

estat coordinates [, norow nocolumn format (%ﬁnt)]

Display x? distances between row and column profiles

estat distances [, norow nocolumn approx format(%ﬁnt)]

Display inertia contributions of cells

estat inertia [, total noscale format(%fmt)]

Display correlations of profiles and axes

estat loadings [, norow nocolumn format (%fmt)}

Display row and column profiles

estat profiles [, norow nocolumn format (%fmt)}
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Display summary information

estat summarize [, labels noheader noweights]

Display fitted correspondence table

estat table [, fit obs independence noscale format(%fmt)}

options Description

norow suppress display of row results

nocolumn suppress display of column results

format (% fimt) display format; default is format (%9.4f)

approx display distances between fitted (approximated) profiles
total add row and column margins

noscale display x? contributions; default is inertias = x?/IN (with estat inertia)
labels display variable labels

noheader suppress the header

noweights ignore weights

fit display fitted values from correspondence analysis model
obs display correspondence table (“observed table”)
independence display expected values under independence

noscale suppress scaling of entries to 1 (with estat table)

collect is allowed with all estat commands; see [U] 11.1.10 Prefix commands.

Options for estat
norow, an option used with estat coordinates, estat distances, and estat profiles,
suppresses the display of row results.

nocolumn, an option used with estat coordinates, estat distances, and estat profiles,
suppresses the display of column results.

format (% fimt), an option used with many of the subcommands of estat, specifies the display format
for the matrix, for example, format (%8.3f). The default is format (%9.4£).

approx, an option used with estat distances, computes distances between the fitted profiles. The
default is to compute distances between the observed profiles.

total, an option used with estat inertia, adds row and column margins to the table of inertia
or x2 (x?/N) contributions.

noscale, as an option used with estat inertia, displays Y2 contributions rather than inertia
(= X2 /N) contributions. (See below for the description of noscale with estat table.)

labels, an option used with estat summarize, displays variable labels.
noheader, an option used with estat summarize, suppresses the header.

noweights, an option used with estat summarize, ignores the weights, if any. The default when
weights are present is to perform a weighted summarize on all variables except the weight variable
itself. An unweighted summarize is performed on the weight variable.

fit, an option used with estat table, displays the fitted values for the correspondence analysis
model. fit is implied if obs and independence are not specified.



60 ca postestimation — Postestimation tools for ca and camat

obs, an option used with estat table, displays the observed table with nonnegative entries (the
“correspondence table”).

independence, an option used with estat table, displays the expected values p;; assuming
independence of the rows and columns, p;; = r;c;, where r; is the mass of row i and c; is the
mass of column j.

noscale, as an option used with estat table, normalizes the displayed tables to the sum of
the original table entries. The default is to scale the tables to overall sum 1. (See above for the
description of noscale with estat inertia.)

Remarks and examples

Remarks are presented under the following headings:

Postestimation statistics
Predicting new variables

Postestimation statistics

After you conduct a correspondence analysis, there are several additional tables to help you
understand and interpret your results. Some of these tables resemble tables produced by other Stata
commands but are provided as part of the ca postestimation suite of commands for a unified presentation
style.

> Example 1: estat profiles, estat distances, estat table

We continue with the classic example of correspondence analysis, namely, the data on smoking in
organizations. We extract only one dimension.

. use https://www.stata-press.com/data/r18/ca_smoking

. ca rank smoking, dim(1)

Correspondence analysis Number of obs = 193
Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852
5 active rows Number of dim. = 1
4 active columns Expl. inertia (%) = 87.76
Singular Principal Cumul.
Dimension value inertia chi2 Percent percent
Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00
Total .0851899 16.44 100
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Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality  Jinert Coord Sqcorr Contrib
rank
Senior mngr 0.057 0.092 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.526 0.139 -0.495 0.526 0.084
Senior empl 0.264 0.999 0.450 0.728 0.999 0.512
Junior empl 0.456 0.942 0.308 -0.446 0.942 0.331
Secretary 0.130 0.865 0.071 0.385 0.865 0.070
smoking
None 0.316 0.994 0.577 0.752 0.994 0.654
Light 0.233 0.327 0.083 -0.190 0.327 0.031
Medium 0.321 0.982 0.148 -0.375 0.982 0.166
Heavy 0.130 0.684 0.192 -0.562 0.684 0.150

CA analyzes the similarity of row and of column categories by comparing the row profiles and the
column profiles—some may prefer to talk about conditional distributions for a two-way frequency
distribution, but CA is not restricted to this type of data.

. estat profiles

Row profiles (rows normalized to 1)

None Light Medium Heavy Mass
Senior mngr 0.3636 0.1818 0.2727 0.1818 0.0570
Junior mngr 0.2222 0.1667 0.3889 0.2222 0.0933
Senior empl 0.4902 0.1961 0.2353 0.0784 0.2642
Junior empl 0.2045 0.2727 0.3750 0.1477 0.4560
Secretary 0.4000 0.2400 0.2800 0.0800 0.1295
Mass 0.3161 0.2332 0.3212 0.1295
Column profiles (columns normalized to 1)
None Light Medium Heavy Mass
Senior mngr 0.0656 0.0444 0.0484 0.0800 0.0570
Junior mngr 0.0656 0.0667 0.1129 0.1600 0.0933
Senior empl 0.4098 0.2222 0.1935 0.1600 0.2642
Junior empl 0.2951 0.5333 0.5323 0.5200 0.4560
Secretary 0.1639 0.1333 0.1129 0.0800 0.1295
Mass 0.3161 0.2332 0.3212 0.1295

The tables also include the row and column masses—marginal probabilities. Two row categories
are similar to the extent that their row profiles (that is, their distribution over the columns) are the
same. Similar categories could be collapsed without distorting the information in the table. In CA,
similarity or dissimilarity of the row categories is expressed in terms of the 2 distances between the
rows. These are sums of squares, weighted with the inverse of the column masses. Thus a difference
is counted “heavier” (inertia!) the smaller the respective column mass. In the table, we also add the
x2 distances of the rows to the row centroid, that is, to the marginal distribution. This allows us to
easily see which row categories are similar to each other as well as which row categories are similar
to the population.
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. estat distances, nocolumn

Chi2 distances between the row profiles

rank Junior_~r Senior_~1 Junior_~1 Secretary center
Senior_mngr 0.3448 0.3721 0.3963 0.3145 0.2166
Junior_mngr 0.6812 0.3044 0.5622 0.3569
Senior_empl 0.6174 0.2006 0.3808
Junior_empl 0.4347 0.2400
Secretary 0.2162

We see that senior employees are especially dissimilar from junior managers in terms of their
smoking behavior but are rather similar to secretaries. Also the senior employees are least similar to
the average staff member among all staff categories.

One of the goals of CA is to come up with a low-dimensional representation of the rows and
columns in a common space. One way to see the adequacy of this representation is to inspect the
implied approximation for the x? distances—are the similarities between the row categories and
between the column categories adequately represented in lower dimensions?

. estat distances, nocolumn approx

Chi2 distances between the dim=1 approximations of the row profiles

rank | Junior_~r Senior_~1 Junior_~1 Secretary center
Senior_mngr 0.3247 0.3148 0.2987 0.1353 0.0658
Junior_mngr 0.6396 0.0260 0.4600 0.2590
Senior_empl 0.6135 0.1795 0.3806
Junior_empl 0.4340 0.2330
Secretary 0.2011

Some of the row distances are obviously poorly approximated, whereas the quality of other
approximations is hardly affected. The dissimilarity in smoking behavior between junior managers
and junior employees is particularly poorly represented in one dimension. From the CA with two
dimensions, the second dimension is crucial to adequately represent the senior managers and the
junior managers. By itself, this does not explain where the one-dimensional approximation fails; for
this, we would have to take a closer look at the representation of the smoking categories as well.

A correspondence analysis can also be seen as equivalent to fitting the model
Pij = TZ'Cj(l + Rile] + RiQCjQ + - )

to the correspondence table P by some sort of least squares, with parameters 7;, Cj, Rl-j, and C’jk.
We may compare the (observed) table P with the fitted table P to assess goodness of fit informally.
Here we extract only one dimension, and so the fitted table is

~ ~

Pij = TiCj(l + Riléjl)

with R and C the coordinates in symmetric (or row principal or column principal) normalization.
We display the observed and fitted tables.
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. estat table, fit obs

Correspondence table (normalized to overall sum = 1)

None Light Medium Heavy
Senior_mngr 0.0207 0.0104 0.0155 0.0104
Junior_mngr 0.0207 0.0155 0.0363 0.0207
Senior_empl 0.1295 0.0518 0.0622 0.0207
Junior_empl 0.0933 0.1244 0.1710 0.0674
Secretary 0.0518 0.0311 0.0363 0.0104

Approximation for dim = 1 (normalized to overall sum = 1)
None Light Medium Heavy
Senior_mngr 0.0197 0.0130 0.0174 0.0069
Junior_mngr 0.0185 0.0238 0.0355 0.0154
Senior_empl 0.1292 0.0531 0.0617 0.0202
Junior_empl 0.0958 0.1153 0.1710 0.0738
Secretary 0.0528 0.0280 0.0356 0.0132

Interestingly, some categories (for example, the junior employees, the nonsmokers, and the medium
smokers) are very well represented in one dimension, whereas the quality of the fit of other categories
is rather poor. This can, of course, also be inferred from the quality column in the ca output. We

would consider the fit unsatisfactory and would refit the model with a second dimension.

Q Technical note

4

If the data are two-way cross-classified frequencies, as with ca, it may make sense to assume that
the data are multinomial distributed, and the parameters can be estimated by maximum likelihood.
The estimator has well-established properties in contrast to the estimation method commonly used
in CA. One advantage is that sampling variability, for example, in terms of standard errors of the
parameters, can be easily assessed. Also, the likelihood-ratio test against the saturated model may be
used to select the number of dimensions to be extracted. See Van der Heijden and de Leeuw (1985).

Predicting new variables

a

If you use ca to obtain the optimal scaling positions for the rows and columns, you may use
predict to obtain the corresponding scores in the normalization used.
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> Example 2: Predictions

First, we obtain scores for the first dimension.

. quietly ca rank smoking, normalize(symmetric) dim(2)
. predict ri1, row(1l)
. predict c1l, col(1)

. describe r1 ci

Variable Storage Display Value
name type format label Variable label
rl float  %9.0g rank score(1) in symmetric norm.
cl float  %9.0g smoking score(l) in symmetric
norm.
. correlate rl ci
(obs=193)
| rl cl
rl 1.0000
cl 0.2734 1.0000

The correlation of r1 and c1 is 0.2734, which equals the first singular value reported in the first
panel by ca. In the same way, we may obtain scores for the second dimension.
. predict r2, row(2)
. predict c2, col(2)

. correlate rl r2 cl1 c2

(obs=193)
rl r2 cl c2
rl 1.0000
r2 -0.0000 1.0000
cl 0.2734  0.0000 1.0000
c2 0.0000 0.1001 0.0000 1.0000

The correlation between the row and column scores r2 and c2 for the second dimension is 0.1001,
which is the same as the second singular value. Moreover, the row scores for dimensions 1 and 2
are not correlated, nor are the column scores.

d
Obtaining the fitted values of the CA model is also possible,
mij = 1:¢j (1 + RinCin + Ri2C2)
where R and C are the row and column scales in symmetric normalization. These may be used, say,

to compute fit measures, for instance, from the Cressie—Read power family to analyze the fit of the
CA model (Weesie 1997).
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Stored results

estat distances stores the following in r():

Matrices
r(Dcolumns) x?2 distances between the columns and between the columns and the column center
r(Drows) x2 distances between the rows and between the rows and the row center

estat inertia stores the following in r():

Matrices
r(Q) matrix of (squared) inertia (or x?) contributions

estat loadings stores the following in r():

Matrices
r(LC) column loadings
r(LR) row loadings

estat profiles stores the following in r():

Matrices
r(Pcolumns) column profiles (columns normalized to 1)
r(Prows) row profiles (rows normalized to 1)

estat table stores the following in r():

Matrices
r(Fit) fitted (reconstructed) values
r(Fit0) fitted (reconstructed) values, assuming independence of row and column variables
r(0Obs) correspondence table

Methods and formulas

See Methods and formulas in [MV] ca for information.
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Also see
[MV] ca — Simple correspondence analysis
[MV] ca postestimation plots — Postestimation plots for ca and camat
[MV] screeplot — Scree plot of eigenvalues
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Postestimation commands

The following postestimation commands are of special interest after ca and camat:

Command Description
cabiplot biplot of row and column points
caprojection CA dimension projection plot
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cabiplot

Description for cabiplot

cabiplot produces a plot of the row points or column points, or a biplot of the row and column
points. In this plot, the (Euclidean) distances between row (column) points approximates the x?
distances between the associated row (column) profiles if the CA is properly normalized. Similarly,
the association between a row and column point is approximated by the inner product of vectors from
the origin to the respective points (see [MV] ca).

Menu for cabiplot

Statistics > Multivariate analysis > Correspondence analysis > Postestimation after CA > Biplot of row and column
points

Syntax for cabiplot

cabiplot [, options]

options Description
Main
dim(# #) the two dimensions to be displayed; default is dim(2 1)
norow suppress row coordinates
nocolumn suppress column coordinates
Xnegate negate the data relative to the = axis
ynegate negate the data relative to the y axis
maxlength (#) maximum number of characters for labels; default is maxlength(12)
origin display the origin on the plot

originlopts (line_options) affect rendition of origin axes

Rows

rowopts (row_opts) affect rendition of rows
Columns

colopts(col_opts) affect rendition of columns

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in [G-3] twoway_options

row_opts and col_opts Description

plot_options change look of markers (color, size, etc.) and look or position of
marker labels

suppopts (plot_options) change look of supplementary markers and look or position of

supplementary marker labels

plot_options Description

marker_options change look of markers (color, size, etc.)
marker_label _options add marker labels; change look or position




68 ca postestimation plots — Postestimation plots for ca and camat

Options for cabiplot
Main

dim(# #) identifies the dimensions to be displayed. For instance, dim(3 2) plots the third dimension
(vertically) versus the second dimension (horizontally). The dimension number cannot exceed the
number of extracted dimensions. The default is dim(2 1).

norow suppresses plotting of row points.

nocolumn suppresses plotting of column points.

xnegate specifies that the x-axis values are to be negated (multiplied by —1).
ynegate specifies that the y-axis values are to be negated (multiplied by —1).

maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

origin specifies that the origin be displayed on the plot. This is equivalent to adding the options
x1line(0, lcolor(black) lwidth(vthin)) yline(0, lcolor(black) lwidth(vthin)) to
the cabiplot command.

originlopts (line_options) affects the rendition of the origin axes; see [G-3] line_options.

Rows

rowopts (row_opts) affects the rendition of the rows. The following row_opts are allowed:

plot_options affect the rendition of row markers, including their shape, size, color, and outline
(see [G-3] marker_options) and specify if and how the row markers are to be labeled (see
[G-3] marker_label _options).

suppopts (plot_options) affects supplementary markers and supplementary marker labels; see
above for description of plot_options.

Columns

colopts(col_opts) affects the rendition of columns. The following col_opts are allowed:

plot_options affect the rendition of column markers, including their shape, size, color, and outline
(see [G-3] marker_options) and specify if and how the column markers are to be labeled (see
[G-3] marker_label _options).

suppopts (plot_options) affects supplementary markers and supplementary marker labels; see
above for description of plot_options.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

cabiplot automatically adjusts the aspect ratio on the basis of the range of the data and ensures
that the axes are balanced. As an alternative, the twoway_option aspectratio() can be used to
override the default aspect ratio. cabiplot accepts the aspectratio() option as a suggestion
only and will override it when necessary to produce plots with balanced axes; that is, distance on
the = axis equals distance on the y axis.

twoway_options, such as xlabel(), xscale(), ylabel(), and yscale() should be used with
caution. These axis_options are accepted but may have unintended side effects on the aspect ratio.
See [G-3] twoway _options.
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caprojection

Description for caprojection

caprojection produces a line plot of the row and column coordinates. The goal of this graph
is to show the ordering of row and column categories on each principal dimension of the analysis.
Each principal dimension is represented by a vertical line; markers are plotted on the lines where the
row and column categories project onto the dimensions.

Menu for caprojection

Statistics > Multivariate analysis > Correspondence analysis > Postestimation after CA > Dimension projection
plot

Syntax for caprojection

caprojection [, options]

options Description
Main
dim (numlist) dimensions to be displayed; default is all
norow suppress row coordinates
nocolumn suppress column coordinates
alternate alternate labels
maxlength (#) number of characters displayed for labels; default is maxlength(12)
combine_options affect the rendition of the combined column and row graphs
Rows
rowopts (row_opts) affect rendition of rows
Columns
colopts(col_opts) affect rendition of columns

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in [G-3] twoway _options

row_opts and col_opts Description

plot_options change look of markers (color, size, etc.) and look or position of
marker labels

suppopts (plot_options) change look of supplementary markers and look or position of

supplementary marker labels

plot_options Description

marker_options change look of markers (color, size, etc.)
marker_label _options add marker labels; change look or position
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Options for caprojection
Main

dim(numlist) identifies the dimensions to be displayed. By default, all dimensions are displayed.
norow suppresses plotting of rows.

nocolumn suppresses plotting of columns.

alternate causes adjacent labels to alternate sides.

maxlength(#) specifies the maximum number of characters for row and column labels; the default
is maxlength(12).

combine_options affect the rendition of the combined plot; see [G-2] graph combine. combine_options
may not be specified with either norow or nocolumn.

Rows

rowopts (row_opts) affects the rendition of rows. The following row_opts are allowed:

plot_options affect the rendition of row markers, including their shape, size, color, and outline
(see [G-3] marker_options) and specify if and how the row markers are to be labeled (see
[G-3] marker_label _options).

suppopts (plot_options) affects supplementary markers and supplementary marker labels; see
above for description of plot_options.

Columns

colopts(col_opts) affects the rendition of columns. The following col_opts are allowed:

plot_options affect the rendition of column markers, including their shape, size, color, and outline
(see [G-3] marker_options) and specify if and how the column markers are to be labeled (see
[G-3] marker_label _options).

suppopts (plot_options) affects supplementary markers and supplementary marker labels; see
above for description of plot_options.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

In example 4 of [MV] ca, we showed that plots can be obtained simply by specifying the plot
option during estimation (or replay). If the default plot is not exactly what you want, the cabiplot
postestimation command provides control over the appearance of the plot.

> Example 1: cabiplot

For instance, if we constructed a CA in row principal normalization, we would want to look
only at the (points for the) row categories, omitting the column categories. In this normalization, the
Euclidean distances between the row points approximate the x? distances between the corresponding
row profiles, but the Euclidean distances between the column categories are a distortion of the x?
distances of the column profiles. We can use cabiplot with the nocolumn option to suppress the
graphing of the column points.
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. use https://www.stata-press.com/data/r18/ca_smoking
. quietly ca rank smoking, norm(principal)

. cabiplot, nocolumn legend(on label(l rank))

Correspondence analysis biplot
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Coordinates in principal normalization

The default graph would not have provided a legend, so we included legend(on label(1 rank))
to produce one. We see that secretaries have smoking behavior that is rather similar to that of
senior employees but rather dissimilar to that of the junior managers, with the other two ranks
taking intermediate positions. Because we actually specified the principal normalization, we may also
interpret the distances between the smoking categories as approximations to Y2 distances.

. cabiplot, norow legend(on label(l smoking))

Correspondence analysis biplot

.31
27 AHeavy
S
[se]
—
4 14
N
5 ANone
2 04 AMedium
(5]
£
[a]
S14
AlLight
-2
T T T T T
-4 -2 0 2 4

Dimension 1 (87.8%)

4 smoking

Coordinates in principal normalization

You may not like the orientation of the dimensions. For instance, in this plot, the smokers are on
the left and the nonsmokers are on the right. It is more natural to locate the nonsmokers on the left

and the smokers on the right so that smoking increases from left to right. This is accomplished with
the xnegate option.
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. cabiplot, xnegate norow legend(on label(l smoking))

Correspondence analysis biplot
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Q Technical note

To see that negating is possible, think in terms of the fitted values
Pij = TZ-Cj(l + Rﬂle + RiQCjQ + - )

If the sign of the first column of R and C is changed at the same time, the fitted values are not
affected. This is true for all CA statistics, and it holds true for other columns of R and C as well.

a

> Example 2: cabiplot with symmetric normalization

Using the symmetric normalization allows us to display a biplot where row categories may be
compared with column categories. We execute ca again, with the normalize (symmetric) option,
but suppress the output. This normalization somewhat distorts the interpretation of the distances
between row points (or column points) as approximations to x? distances. Thus the similarity of the
staff categories (or smoking categories) cannot be adequately assessed. However, this plot allows us
to study the association between smoking and rank.
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. quietly ca rank smoking, normalize(symmetric) dim(2)

cabiplot, origin

Dimension 2 (11.8%)

Correspondence analysis biplot
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With this symmetric normalization, we do not interpret the distances between categories of smoking
and rank. Rather, we have to think in terms of vectors from the origin. The inner product of vectors
approximates the residuals from a model of independence of the rows and columns. The inner product
depends on the lengths of the vectors and the (cosine of the) angle between the vectors. If the vectors
point in the same direction, the residuals are positive—these row and column categories tend to occur
together. In our example, we see that senior employees tend to be nonsmokers. If the vectors point in
opposite directions, the residuals are negative—these row and column categories tend to be exclusive.
In our example, senior managers tend not to be light smokers. Finally, if the vectors are orthogonal
(£90 degrees), the residuals tend to be small; that is, the observed frequencies correspond to what
we expect under independence. For instance, junior managers have an average rate of light smoking.

Using various graph options, we can enhance the look of the plot.

cabiplot, origin subtitle("Fictitious data, N = 193")

> legend(pos(2) ring(0) col(1l) lab(l Employee rank) lab(2 Smoking status))

Correspondence analysis biplot
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> Example 3: caprojection

caprojection produces a projection plot of the row and column coordinates after ca or camat
and is especially useful if we think of CA as optimal scaling of the categories of the variables to
maximize the correlations between the row and column variables. We continue where we left off with
our previous example.

. caprojection
CA dimension projection plot
14 14
Senior_empl Junior_mngr None
Senior_mngr Heavy
54 5
Secretary
<4
8 e rank o smoking
n
Senior_mngr None
Senior_empl
01 - 07 Medium
Junior_empl Light
Secretary
Medium
Juynior_empl Light
-.8gnior_mngr -5
Heavy
Dimensions Dimensions

Symmetric normalization

This example has relatively few categories, so we could visualize the orderings of the rows and
columns from the previous biplots. However, CA is often used with larger problems, and in those
cases, a projection plot is a useful presentation device.

d

References

See References in [MV] ca.

Also see
[MV] ca — Simple correspondence analysis
[MV] ca postestimation — Postestimation tools for ca and camat

[MV] screeplot — Scree plot of eigenvalues



Title

candisc — Canonical linear discriminant analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

candisc performs canonical linear discriminant analysis (LDA). What is computed is the same
as with [MV] discrim lda. The difference is in what is presented. See [MV] discrim for other
discrimination commands.

Quick start

Canonical linear discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar
candisc vl v2 v3 v4, group(catvar)

Same as above, but use prior probabilities proportional to group size
candisc vl v2 v3 v4, group(catvar) priors(proportional)

Present the leave-one-out classification table in addition to standard output
candisc vl v2 v3 v4, group(catvar) lootable

Same as above, but suppress the resubstitution classification table
candisc vl v2 v3 v4, group(catvar) lootable notable

Menu

Statistics > Multivariate analysis > Discriminant analysis > Canonical linear discriminant analysis
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Syntax
candisc varlist [lf] [zn] [weight} » group(groupvar) [options}

options Description

Model

* group (groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting
notable suppress resubstitution classification table
lootable display leave-one-out classification table
nostats suppress display of canonical statistics
nocoef suppress display of standardized canonical discriminant function coefficients
nostruct suppress display of canonical structure matrix
nomeans suppress display of group means on canonical variables
priors Description
equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

*group() is required.

collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

group (groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.
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priors(matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the

default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Reporting

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

nostats suppresses the display of the table of canonical statistics.

nocoef suppresses the display of the standardized canonical discriminant function coefficients.

nostruct suppresses the display of the canonical structure matrix.

nomeans suppresses the display of group means on canonical variables.

Remarks and examples

See [MV] discrim for background on discriminant analysis (classification) and see [MV] discrim
Ida for more information on linear discriminant analysis. What candisc displays by default with

. candisc x y z, group(group)

you can also obtain with the following sequence of discrim commands and estat postestimation

commands.

. discrim x y z, group(group) notable

. estat
. estat
. estat
. estat
. estat

canontest

loadings

structure

grmeans, canonical
classtable

The candisc command will appeal to those performing descriptive LDA.

> Example 1

Example 2 of [MV] discrim knn introduces a head-measurement dataset from Rencher and
Christensen (2012, 291) that has six discriminating variables and three groups. The three groups are
high school football players, college football players, and nonplayers. The data were collected as a
preliminary step in determining the relationship between helmet design and neck injuries.

Descriptive discriminant analysis allows us to explore the relationship in this dataset between head
measurements and the separability of the three groups.
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. use https://www.stata-press.com/data/r18/head
(Table 8.3. Head measurements, Rencher and Christensen (2012))

. candisc wdim circum fbeye eyehd earhd jaw, group(group)

Canonical linear

discriminant analysis

Like-
Canon. Eigen- Variance lihood
Fcn | Corr. value  Prop. Cumul. Ratio F df1 df2 Prob>F
1 [ 0.8107 1.91776 0.9430 0.9430 | 0.3071 10.994 12 164 0.0000 e
2 | 0.3223 .115931 0.0570 1.0000 | 0.8961 1.9245 5 83 0.0989 e
HO: This and smaller canon. corr. are zero; e = exact F
Standardized canonical discriminant function coefficients
functionl function2
wdim .6206412 .9205834
circum | -.0064715 -.0009114
fbeye | -.0047581  -.021145
eyehd | -.7188123 .5997882
earhd | -.3965116 -.3018196
jaw [ -.5077218 -.9368745
Canonical structure
functionl function2
wdim .1482946 .3766581
circum | -.2714134 .1305383
fbeye | -.1405813 -.061071
eyehd -.824502 .5363578
earhd | -.5177312 .1146999
jaw [ -.2119042 -.3895934
Group means on canonical variables
group | functionl function2
High school -1.910378 -.0592794
College 1.16399 -.3771343
Nonplayer .7463888 .4364137
Resubstitution classification summary
Key
Number
Percent
Classified
True group High school College Nonplayer Total
High school 26 1 3 30
86.67 3.33 10.00 100.00
College 1 20 9 30
3.33 66.67 30.00 100.00
Nonplayer 2 8 20 30
6.67 26.67 66.67 100.00
Total 29 29 32 90
32.22 32.22 35.56 100.00
Priors 0.3333 0.3333 0.3333
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As seen in the canonical correlation table, the first linear discriminant function accounts for almost
95% of the variance. The standardized discriminant function coefficients (loadings) indicate that two
of the variables, circum (head circumference) and fbeye (front-to-back measurement at eye level),
have little discriminating ability for these three groups. The first discriminant function is contrasting
wdim (head width at widest dimension) to a combination of eyehd (eye-to-top-of-head measurement),
earhd (ear-to-top-of-head measurement), and jaw (jaw width).

The canonical structure coefficients, which measure the correlation between the discriminating
variables and the discriminant function, are also shown. There is controversy on whether the stan-
dardized loadings or the structure coefficients should be used for interpretation; see Rencher and
Christensen (2012, 301) and Huberty (1994, 262-264).

The group means on the canonical variables are shown, giving some indication of how the groups
are separated. The means on the first function show the high school group separated farthest from
the other two groups.

The resubstitution classification table, also known as a confusion matrix, indicates how many
observations from each group are classified correctly or misclassified into the other groups. The
college and nonplayer groups appear to have more misclassifications between them, indicating that
these two groups are harder to separate.

All the postestimation tools of discrim 1da are available after candisc; see [MV] discrim lda
postestimation. For example, estat grsummarize can produce discriminating-variable summaries
for each of our three groups.

. estat grsummarize

Estimation sample candisc
Summarized by group

group
Mean High school College Nonplayer Total
wdim 15.2 15.42 15.58 15.4

circum 58.937 57.37967 57.77 58.02889

fbeye 20.10833 19.80333 19.81 19.90722

eyehd 13.08333 10.08 10.94667 11.37

earhd 14.73333 13.45333 13.69667 13.96111

jaw 12.26667 11.94333 11.80333 12.00444

N 30 30 30 920

A score plot graphs observation scores from the first two discriminant functions; see [MV] scoreplot.
After candisc, scoreplot automatically labels the points with the value labels assigned to the
groups. The value labels for our three groups are long—the resulting graph is too crowded.

To overcome this, we create a new label language (see [D] label language), define one letter labels
for the groups, assign this label to our group variable, and then call scoreplot. We then reset the
label language back to the default containing the longer, more descriptive value labels.

. label language short, new

(language short now current language)
. label define fball 1 "H" 2 "C" 3 "X"
. label values group fball

. scoreplot, msymbol(i) aspect(.625)

. label language default
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Discriminant function scores
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Discriminant score 1

The score plot illustrates the separation due to the first and second canonical linear discriminant
functions. As expected from our examination of the earlier descriptive output, the high school group
(labeled H) is reasonably well separated from the college (labeled C) and nonplayer (labeled X) groups.
There is some separation in the second dimension between the college and nonplayer groups, but
with substantial overlap.

A loading plot provides a graphical way of looking at the standardized discriminant function
coefficients (loadings) that we previously examined in tabular form.

. loadingplot

Standardized discriminant function loadings

.
wdim

eeyehd

[
qee

.
earhd

Standardized discriminant function 2

-1 -5 0 5
Standardized discriminant function 1

circum and fbeye are near the origin, indicating that they provide almost no discriminating ability
in comparison to the other discriminating variables. The relative locations of the remaining variables
indicate their contribution to the discriminant functions.

d
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Stored results

candisc stores the following in e():

Scalars
e(N) number of observations
e(N_groups) number of groups
e(k) number of discriminating variables
e(f) number of nonzero eigenvalues
Macros
e(cmd) candisc

e(cmdline)
e(groupvar)
e(grouplabels)
e(varlist)
e(wtype)
e(wexp)
e(title)
e(ties)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

Matrices

e(groupcounts)
e(grouppriors)
e(groupvalues)
e (means)

e (SSCP_W)
e(SSCP_B)
e(SSCP_T)

e (SSCP_W#)
e(W_eigvals)
e(W_eigvecs)
e(8)

e(Sinv)
e(sqrtSinv)
e(Ev)

e(L_raw)
e(L_unstd)
e(L_std)
e(L_totalstd)
e(C)

e(cmeans)
e(canstruct)
e(candisc_stat)

command as typed

name of group variable

labels for the groups
discriminating variables

weight type

weight expression

title in estimation output

how ties are to be handled

nob noV eigen

program used to implement estat
program used to implement predict
predictions disallowed by margins

number of observations for each group

prior probabilities for each group

numeric value for each group

group means on discriminating variables

pooled within-group SSCP matrix

between-groups SSCP matrix

total SSCP matrix

within-group SSCP matrix for group #

eigenvalues of e (SSCP_W)

eigenvectors of e (SSCP_W)

pooled within-group covariance matrix

inverse of e(8)

Cholesky (square root) of e(Sinv)

eigenvalues of W~'B

eigenvectors of W~'B

unstandardized canonical discriminant function coefficients
within-group standardized canonical discriminant function coefficients
total-sample standardized canonical discriminant function coefficients
classification coefficients

unstandardized canonical discriminant functions evaluated at group means
canonical structure matrix

canonical discriminant analysis statistics

Functions

e(sample) marks estimation sample

Methods and formulas

See Methods and formulas in [MV] discrim lda for information.

References

Huberty, C. J. 1994. Applied Discriminant Analysis. New York: Wiley.
Rencher, A. C., and W. F. Christensen. 2012. Methods of Multivariate Analysis. 3rd ed. Hoboken, NJ: Wiley.
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Also see
[MV] discrim lda — Linear discriminant analysis
[MV] discrim lda postestimation — Postestimation tools for discrim lda

[U] 20 Estimation and postestimation commands



Title

canon — Canonical correlations

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

canon estimates canonical correlations and provides the coefficients for calculating the appropriate
linear combinations corresponding to those correlations.

canon typed without arguments redisplays previous estimation results.

Quick start

Canonical correlations between 2 sets of variables
canon (x1 x2 x3 x4) (y1l y2 y3 y4)

Same as above, but display y1-y4 first and then x1-x4
canon (y1 y2 y3 y4) (x1 x2 x3 x4)

Same as above, and display linear combinations for only the first 2 canonical correlations
canon (y1 y2 y3 y4) (x1 x2 x3 x4), first(2)

Same as above, and display the linear combinations for only the second canonical correlation
canon (y1 y2 y3 y4) (x1 x2 x3 x4), 1c(2)

With different numbers of variables in each set
canon (y1 y2 y3) (x1 x2 x3 x4 x5)

Menu

Statistics > Multivariate analysis > MANOVA, multivariate regression, and related > Canonical correlations
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Syntax
canon (varlisty) (varlists) [zf} [zn} [weighz] [ R options]
options Description
Model
lc(#) calculate the linear combinations for canonical correlation #
first(#) calculate the linear combinations for the first # canonical correlations
noconstant do not subtract means when calculating correlations
Reporting
stdcoef output matrices of standardized coefficients
stderr display raw coefficients and conditionally estimated standard errors
level (#) set confidence level; default is 1level (95)
test (numlist) display significance tests for the specified canonical correlations
notests do not display tests
format (% fmt) numerical format for coefficient matrices; default is format (%8.4f)

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ [Model

1c(#) specifies that linear combinations for canonical correlation # be calculated. By default, all are
calculated.

first (#) specifies that linear combinations for the first # canonical correlations be calculated. By
default, all are calculated.

noconstant specifies that means not be subtracted when calculating correlations.

Reporting

stdcoef specifies that the first part of the output contain the standard coefficients of the canonical
correlations in matrix form. The default is to present the raw coefficients of the canonical correlations
in matrix form.

stderr specifies that the first part of the output contains the raw coefficients of the canonical
correlations, the conditionally estimated standard errors, and the conditionally estimated confidence
intervals in the standard estimation table. The default is to present the raw coefficients of the
canonical correlations in matrix form.

level (#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients.
The default is level(95) or as set by set level; see [U] 20.8 Specifying the width of
confidence intervals. These “confidence intervals” are the result of an approximate calculation;
see the technical note later in this entry.

test (numlist) specifies that significance tests of the canonical correlations in the numlist be displayed.
Because of the nature of significance testing, if there are three canonical correlations, test (1)
will test the significance of all three correlations, test (2) will test the significance of canonical
correlations 2 and 3, and test(3) will test the significance of the third canonical correlation
alone.
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notests specifies that significance tests of the canonical correlation not be displayed.

format (% fint) specifies the display format for numbers in coefficient matrices; see [D] format.
format (%8.4f) is the default. format () may not be specified with stderr.

Remarks and examples

Canonical correlations attempt to describe the relationships between two sets of variables. Given
two sets of variables, X = (z1,22,...,2x) and Y = (y1,¥2,...,yr), the goal is to find linear
combinations of X and Y so that the correlation between the linear combinations is as high as
possible. That is, letting Z; and 7; be the linear combinations,

1 = furs + frexa + -+ Pk Tk
Y1 =yuy +vi2y2 + -+ 1LyL

you wish to find the maximum correlation between Z; and %; as functions of the 8’s and the 7’s.
The second canonical correlation coefficient is defined as the ordinary correlation between

ZTo = Po1x1 + Po2xe + - -+ Paxrk and

Yo = Yo1y1 + Yo2y2 + - - + YorLyL

This correlation is maximized subject to the constraints that Z; and Z, along with %; and %>, are
orthogonal and that Z; and ¥, along with To and ¥, are also orthogonal. The third and further
correlations are defined similarly. There are m = min(K, L) such correlations.

Canonical correlation analysis originated with the work of Hotelling (1935, 1936). For an intro-
duction, see Rencher and Christensen (2012, chap. 11), Johnson and Wichern (2007), or Afifi et al.
(2020).

> Example 1

Consider two scientists trying to describe how “big” a car is. The first scientist takes physical
measurements— the length, weight, headroom, and trunk space— whereas the second takes mechanical
measurements—the engine displacement, mileage rating, gear ratio, and turning circle. Can they agree
on a conceptual framework?

. use https://www.stata-press.com/data/r18/auto

(1978 automobile data)

. canon (length weight headroom trunk) (displ mpg gear_ratio turn)

Canonical correlation analysis Number of obs = 74

Raw coefficients for the first variable set

1 2 3 4

length 0.0095 0.1441 0.0329 0.0212
weight 0.0010 -0.0037 -0.0010 0.0007
headroom 0.0351 -0.3701 1.5361 -0.0440
trunk -0.0023 -0.0343 -0.2135 -0.3253
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Raw coefficients for the second variable set

1 2 3 4

displacement 0.0054 -0.0125 0.0191  -0.0005
mpg -0.0461  -0.0413 0.0683 0.2478
gear_ratio 0.0330 1.0280 3.6596 -1.0311
turn 0.0794 0.3113 0.0033 0.2240

Canonical correlations:
0.9476 0.3400 0.0634 0.0447

Tests of significance of all canonical correlations

Statistic df1 df2 F Prob>F
Wilks’ lambda .0897314 16 202.271 15.1900 0.0000 a
Pillai’s trace 1.01956 16 276 5.9009 0.0000 a
Lawley-Hotelling trace 8.93344 16 258 36.0129 0.0000 a
Roy’s largest root 8.79667 4 69 151.7426 0.0000 u

e = exact, a = approximate, u = upper bound on F

By default, canon presents the raw coefficients of the canonical correlations in matrix form, reports
the canonical correlations, and finally reports the tests of significance of all canonical correlations. The
two views on car size are closely related: the best linear combination of the physical measurements
is correlated at almost 0.95 with the best linear combination of the mechanical measurements. All
the tests are significant.

To see the standardized coefficients instead of the raw coefficients, we can use the stdcoef option
on replay, which gives the standardized coefficients in matrix form. We specify the notests option
to suppress the display of tests this time.

. canon, stdcoef notests

Canonical correlation analysis Number of obs = 74

Standardized coefficients for the first variable set

1 2 3 4

length 0.2110 3.2095 0.7334 0.4714
weight 0.7898 -2.8469 -0.7448 0.5308
headroom 0.0297 -0.3131 1.2995 -0.0373
trunk -0.0098 -0.1466 -0.9134 -1.3914

Standardized coefficients for the second variable set

1 2 3 4

displacement 0.4932 -1.15625 1.7568 -0.0493
mpg -0.2670 -0.2388 0.3954 1.4337
gear_ratio 0.0150 0.4691 1.6698  -0.4705
turn 0.3493 1.3694 0.0145 0.9857

Canonical correlations:
0.9476 0.3400 0.0634 0.0447
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Q Technical note

canon, with the stderr option, reports standard errors for the coefficients in the linear combinations;
most other software does not. You should view these standard errors as lower bounds for the true
standard errors. It is based on the assumption that the coefficients for one set of measurements are
correct for calculating the coefficients and standard errors of the other relationship on the basis of a
linear regression.

After canon, if you predict a canonical variate and regress it on the other variable set, the variance
you get from the regression will be the variance you get from canon multiplied by the square of the
corresponding canonical correlation.

a

Stored results

canon stores the following in e():

Scalars
e(N) number of observations
e(df_r) residual degrees of freedom
e(df) degrees of freedom
e(df1) numerator degrees of freedom for significance tests
e(df2) denominator degrees of freedom for significance tests
e(n_lc) the linear combination calculated
e(n_cc) number of canonical correlations calculated
e(rank) rank of e(V)
Macros
e(cmd) canon
e(cmdline) command as typed
e(wtype) weight type
e(wexp) weight expression
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
Matrices
e(b) coefficient vector
e(stat_#) statistics for canonical correlation #
e(stat_m) statistics for overall model
e(canloadil) canonical loadings for varlist;
e(canload22) canonical loadings for varlists
e(canload12) correlation between varlist; and the canonical variates from varlists
e(canload21) correlation between varlisto and the canonical variates from varlist;
e(rawcoef_varl) raw coefficients for varlist,
e(rawcoef _var2) raw coefficients for varlists
e(stdcoef_varl) standardized coefficients for varlist;
e(stdcoef_var2) standardized coefficients for varlist,
e(ccorr) canonical correlation coefficients
e(corr_varl) correlation matrix for varlisty
e(corr_var2) correlation matrix for varlists
e(corr_mixed) correlation matrix between varlist; and varlists
e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample
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Methods and formulas

Let the covariance matrix between the two sets of variables be

Syy Syx
Sxy Sxx
Here y indicates the first variable set and x indicates the second variable set.

The squared canonical correlations are the eigenvalues of V. = SU 1Sy, S 1S, or W =

S;,} SxyS;)}Syx (either will work), which are both nonsymmetric matrices (Rencher 1998, 312-317;
Rencher and Christensen 2012, 385-389). Let the eigenvalues of V (and W) be called i, the
eigenvectors of V be called ay, and the eigenvectors of W be called by. These eigenvectors are the
raw coefficients for calculating the canonical variates, which are the linear combinations for the two
sets of variables with maximal correlation. The eigenvalue equation for V is

S,y SyxSyx Sxyar — rhar =0
Premultiplying by Sl Sxy, we see that
(S;:}Sxys;; SyX)(S;:}Sxyak‘) - les;isxyak =0

so the by, are proportional to S, Sxyay. Eigenvectors are determined up to a scale factor, and we
choose the eigenvectors to give canonical variates with variance one. The canonical variates with
correlation 7 are given by
u; = apx and vi = bry
In fact
1

b, = —S

S ag
Tk xy

-1

XX

To calculate lower bounds for the standard errors in this form, assume that the eigenvectors ay are

fixed. The formula relating a; and by, is given above. The coefficients given by by, have covariance
matrix

1— 7“,% g-1

ri(n—k—1)

Here n is the number of observations and k is the number of variables in the set x.

Likewise, we can let the correlation matrix between the two sets of variables be

Ryy Ryx
ny Rxx
That is, Ryy is the correlation matrix of the first set of variables with themselves, Ry« is the

correlation matrix of the second set of variables with themselves, and Ry (and Ryy) contains the
cross-correlations.

Using correlation matrices, the squared canonical correlations are the eigenvalues of V =
R;;RyXR;,}RXy or W = R 1nyR;;Ryx (Rencher 1998, 318-319; Rencher and Chris-

X
tensen 2012, 389). The corresponding eigenvectors are the standardized coefficients for determining
the canonical variates from the centered and standardized original variables (mean O and variance 1).
Eigenvectors are determined only up to a scale factor; we choose the scale to give the canonical

variates in standardized (variance 1) form.
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If the eigenvalues are r1, 73, ..., 7, Where m is the number of canonical correlations, we test the
hypothesis that there is no (linear) relationship between the two variable sets. This is equivalent to
the statement that none of the correlations 71,79, ...,7,, is significant.

Wilks’s (1932) lambda statistic is

M=TJa =)

i=1

and is a likelihood-ratio statistic. This statistic is distributed as the Wilks A-distribution. Rejection of
the null hypothesis is for small values of A;.

Pillai’s (1955) trace for canonical correlations is

ym — i 2
i=1

and the Lawley—Hotelling trace (Lawley 1938 and Hotelling 1951) is

m) _ N~ _ "
v= Z 1—r?
i=1 i

Roy’s (1939) largest root is given by )
0 =ri

Rencher and Christensen (2012, 391-395) has tables providing critical values for these statistics
and discussion on significance testing for canonical correlations.

Canonical loadings, the correlation between a variable set and its corresponding canonical variate
set, are calculated by canon and used in [MV] canon postestimation.

For a note about Harold Hotelling, see [MV] hotelling.
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canon postestimation — Postestimation tools for canon

Postestimation commands predict estat
Remarks and examples Stored results Methods and formulas
References Also see

Postestimation commands

The following postestimation commands are of special interest after canon:

Command

Description

estat correlations show correlation matrices

estat loadings

estat rotate

show loading matrices
rotate raw coefficients, standard coefficients, or loading matrices

estat rotatecompare compare rotated and unrotated coefficients or loadings

screeplot

plot canonical correlations

The following standard postestimation commands are also available:

Command

Description

estat summarize
estat vce
estimates
etable

lincom
nlcom

predict
predictnl
test
testnl

summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

point estimates, standard errors, testing, and inference for linear combinations of
coefficients

point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

linear combinations and their SEs

point estimates, standard errors, testing, and inference for generalized predictions
Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

91
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predict

Description for predict

predict creates a new variable containing predictions such as linear combinations and their
standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in], statistic* [gorrelation(#)}

statistic* Description
Main
u calculate linear combination of varlisty
v calculate linear combination of varlisto
stdu calculate standard error of the linear combination of varlist;
stdv calculate standard error of the linear combination of varlisty

* There is no default statistic; you must specify one stafistic from the list.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample.

Options for predict
Main

u and v calculate the linear combinations of varlist; and varlist, respectively. For the first canonical
correlation, u and v are the linear combinations having maximal correlation. For the second
canonical correlation, specified in predict with the correlation(2) option, u and v have
maximal correlation subject to the constraints that u is orthogonal to the u from the first canonical
correlation, and v is orthogonal to the v from the first canonical correlation. The third and higher
correlations are defined similarly. Canonical correlations may be chosen either with the 1c()
option to canon or by specifying the correlation() option to predict.

stdu and stdv calculate the standard errors of the respective linear combinations.

correlation(#) specifies the canonical correlation for which the requested statistic is to be computed.
The default is correlation(1). If the 1c() option to canon was used to calculate a particular
canonical correlation, then only this canonical correlation is in the estimation results. You can
obtain estimates for it either by specifying correlation(1) or by omitting the correlation()
option.
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estat

Description for estat

estat correlations displays the correlation matrices calculated by canon for varlist; and
varlists and between the two lists.

estat loadings displays the canonical loadings computed by canon.

estat rotate performs orthogonal varimax rotation of the raw coefficients, standard coefficients,
or canonical loadings. Rotation is calculated on the canonical loadings regardless of which coefficients
or loadings are actually rotated.

estat rotatecompare displays the rotated and unrotated coefficients or loadings and the most
recently rotated coefficients or loadings. This command may be used only if estat rotate has been
performed first.

Menu for estat

Statistics > Postestimation

Syntax for estat

Display the correlation matrices

estat correlations [, iormat(%fml)]

Display the canonical loadings

estat loadings [ , format (% fint) ]

Perform orthogonal varimax rotation

estat rotate [, rawcoefs stdcoefs loadings iormat(%fmt)]

Display the rotated and unrotated coefficients or loadings

estat rotatecompare [, ;ormat(%ﬁnl)]

collect is allowed with estat correlations, estat loadings, and estat rotate; see [U] 11.1.10 Prefix
commands.

Option for estat
format (% fint) specifies the display format for numbers in matrices; see [D] format. format (% 8.4f)
is the default.
rawcoefs, an option for estat rotate, requests the rotation of raw coefficients. It is the default.
stdcoefs, an option for estat rotate, requests the rotation of standardized coefficients.

loadings, an option for estat rotate, requests the rotation of the canonical loadings.
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Remarks and examples

In addition to the coefficients presented by canon in computing canonical correlations, several
other matrices may be of interest.

> Example 1: Predictions

Recall from canon the example of two scientists trying to describe how “big” a car is. One took
physical measurements—the length, weight, headroom, and trunk space—whereas the second took
mechanical measurements—engine displacement, mileage rating, gear ratio, and turning radius. We
discovered that these two views are closely related, with the best linear combination of the two types
of measurements, the largest canonical correlation, at 0.9476. We can prove that the first canonical
correlation is correct by calculating the two linear combinations and then calculating the ordinary
correlation.

. use https://www.stata-press.com/data/r18/auto

(1978 automobile data)

. quietly canon (length weight headroom trunk) (displ mpg gear_ratio turn)
. predict physical, u corr(1l)

. predict mechanical, v corr(1)

. correlate mechanical physical
(obs=74)

| mechan~1 physical
mechanical 1.0000
physical 0.9476 1.0000

. drop mechanical physical

> Example 2: Canonical loadings

Researchers are often interested in the canonical loadings, the correlations between the original
variable lists and their canonical variates. The canonical loadings are used to interpret the canonical
variates. However, as shown in the technical note later in this entry, Rencher (1988; 1992; 1998,
sec. 8.6.3) and Rencher and Christensen (2012, 397) have shown that there is no information in these
correlations about how one variable list contributes jointly to canonical correlation with the other.
Loadings are still often discussed, and estat loadings reports these as well as the cross-loadings
or correlations between varlist; and the canonical variates for varlists and the correlations between
varlists and the canonical variates for varlist;. The loadings and cross-loadings are all computed by
canon.
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. estat loadings

Canonical loadings for variable list 1

1 2 3 4

length 0.9664 0.2481 0.0361 -0.0566
weight 0.9972 -0.0606 -0.0367 0.0235
headroom 0.5140 -0.1295 0.7134  -0.4583
trunk 0.6941 0.0644  -0.0209 -0.7167

Canonical loadings for variable list 2

1 2 3 4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697
gear_ratio -0.7945 0.3511 0.4474  -0.2129
turn 0.9142 0.3286  -0.0345 0.2345

Correlation between variable list 1 and canonical variates from list 2

1 2 3 4

length 0.9158 0.0844 0.0023 -0.0025
weight 0.9449 -0.0206 -0.0023 0.0011
headroom 0.4871 -0.0440 0.0452 -0.0205
trunk 0.6577 0.0219 -0.0013 -0.0320

Correlation between variable list 2 and canonical variates from list 1

1 2 3 4

displacement 0.8912 -0.1051 0.0067 0.0042
mpg -0.8120 -0.0413 0.0110 0.0210
gear_ratio -0.7529 0.1194 0.0284 -0.0095
turn 0.8663 0.1117  -0.0022 0.0105

. matrix load2 = r(canload22)
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> Example 3: Predictions and correlation matrices

In example 2, we saved the loading matrix for varlists, containing the mechanical variables, and
we wish to verify that it is correct. We predict the canonical variates for varlista and then find the
canonical correlations between the canonical variates and the original mechanical variables as a means
of getting the correlation matrices, which we then display using estat correlations. The mixed

correlation matrix is the same as the loading matrix that we saved.

. predict mechan
. predict mechan
. predict mechan

. predict mechan

. quietly canon (mechanicall-mechanical4) (displ mpg gear_ratio turn)

. estat correlat

icall, v co
ical2, v co
ical3, v co

icald4, v co

ion

rr(1)
rr(2)
rr(3)
rr(4)

Correlations for variable list 1

mechan~1 mechan~2 mechan~3 mechan~4
mechanicall 1.0000
mechanical2 -0.0000 1.0000
mechanical3 -0.0000 0.0000 1.0000
mechanicald -0.0000 -0.0000 -0.0000 1.0000

Correlations for variable list 2

displa~t mpg gear_r~o turn
displacement 1.0000
mpg -0.7056 1.0000
gear_ratio -0.8289 0.6162 1.0000
turn 0.7768 -0.7192 -0.6763 1.0000

Correlations between variable lists 1 and 2

mechan~1 mechan~2 mechan~3 mechan~4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697
gear_ratio -0.7945 0.3511 0.4474 -0.2129
turn 0.9142 0.3286 -0.0345 0.2345

. matlist load2, format(%8.4f) border(bottom)

1 2 3 4

displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.8569 -0.1213 0.1741 0.4697
gear_ratio -0.7945 0.3511 0.4474  -0.2129
turn 0.9142 0.3286 -0.0345 0.2345

> Example 4: Rotated canonical loadings

Here we observe the results of rotation of the canonical loadings, via the Kaiser varimax method
outlined in CIliff and Krus (1976). This observation is often done for interpretation of the results;
however, rotation destroys several fundamental properties of canonical correlation.
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. quietly canon (length weight headroom trunk) (displ mpg gear_ratio turn)

. estat rotate, loadings

Criterion varimax
Rotation class orthogonal
Normalization none

Rotated canonical loadings

1 2 3 4
length 0.3796 0.7603 0.4579 0.2613
weight 0.6540 0.5991 0.3764 0.2677
headroom 0.0390 0.1442 0.3225 0.9347
trunk 0.1787 0.2052 0.8918 0.3614
displacement 0.7638 0.4424 0.2049 0.4230
mpg -0.3543 -0.4244 -0.8109 -0.1918
gear_ratio -0.9156 -0.3060 -0.2292 0.1248
turn 0.3966 0.8846 0.2310 0.0832
Rotation matrix
1 2 3 4
1 0.5960 0.6359 0.3948 0.2908
2 -0.6821 0.6593 0.1663 -0.2692
3 -0.3213 0.1113  -0.3400 0.8768
4 0.2761 0.3856 -0.8372 -0.2724
. estat rotatecompare
Rotated canonical loadings — orthogonal varimax
1 2 3 4
length 0.3796 0.7603 0.4579 0.2613
weight 0.6540 0.5991 0.3764 0.2677
headroom 0.0390 0.1442 0.3225 0.9347
trunk 0.1787 0.2052 0.8918 0.3614
displacement 0.7638 0.4424 0.2049 0.4230
mpg -0.3543 -0.4244 -0.8109 -0.1918
gear_ratio -0.9156 -0.3060 -0.2292 0.1248
turn 0.3966 0.8846 0.2310 0.0832

Unrotated canonical loadings

1 2 3 4

length 0.9664 0.2481 0.0361 -0.0566
weight 0.9972 -0.0606 -0.0367 0.0235
headroom 0.5140 -0.1295 0.7134  -0.4583
trunk 0.6941 0.0644 -0.0209 -0.7167
displacement 0.9404 -0.3091 0.1050 0.0947
mpg -0.85669 -0.1213 0.1741 0.4697
gear_ratio -0.7945 0.3511 0.4474  -0.2129
turn 0.9142 0.3286 -0.0345 0.2345
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Q Technical note

estat loadings reports the canonical loadings or correlations between a varlist and its corre-
sponding canonical variates. It is widely claimed that the loadings provide a more valid interpretation
of the canonical variates. Rencher (1988; 1992; 1998, sec. 8.6.3) and Rencher and Christensen (2012,
397) has shown that a weighted sum of the correlations between an x; € varlist; and the canonical
variates from varlist; is equal to the squared multiple correlation between x; and the variables in
varlisty. The correlations do not give new information on the importance of a given variable in the
context of the others. Rencher and Christensen (2012, 397) notes, “The researcher who uses these

correlations for interpretation is unknowingly reducing the multivariate setting to a univariate one.”
a

Stored results

estat correlations stores the following in r():

Matrices
r(corr_varl) correlations for varlist,
r(corr_var2) correlations for varlists

r(corr_mixed) correlations between varlist; and varlists

estat loadings stores the following in r():

Matrices
r(canloadil) canonical loadings for varlist,
r(canload22) canonical loadings for varlists
r(canload21) correlations between varlists and the canonical variates for varlist;
r(canload12) correlations between varlist; and the canonical variates for varlisty

estat rotate stores the following in r():

Macros
r(coefficients) coefficients rotated
r(class) rotation classification
r(criterion) rotation criterion
Matrices
r(AT) rotated coefficient matrix
r(T) rotation matrix

Methods and formulas

Cliff and Krus (1976) state that they use the Kaiser varimax method with normalization for rotation.
The loading matrix, the correlation matrix between the original variables and their canonical variates,
is already normalized. Consequently, normalization is not required, nor is it offered as an option.

Rotation after canonical correlation is a subject fraught with controversy. Although some researchers
wish to rotate coefficients and loadings for greater interpretability, and Cliff and Krus (1976) have
shown that some properties of canonical correlations are preserved by orthogonal rotation, rotation
does destroy some of the fundamental properties of canonical correlation. Rencher (1992), Rencher
and Christensen (2012), and Thompson (1984) contribute on the topic. Rencher speaks starkly against
rotation. Thompson explains why rotation is desired as well as why it is at odds with the principles
of canonical correlation analysis.

The researcher is encouraged to consider carefully his or her goals in canonical correlation analysis
and these references when evaluating whether rotation is an appropriate tool to use.
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Harris (2001) gives an amusing critique on the misuse of canonical loadings in the interpretation
of canonical correlation analysis results. As mentioned, Rencher (1988; 1992; 1998, sec. 8.6.3) and
Rencher and Christensen (2012, 397) critique the use of canonical loadings.
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Also see

[MV] canon — Canonical correlations
[MV] rotatemat — Orthogonal and oblique rotations of a Stata matrix
[MV] screeplot — Scree plot of eigenvalues
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cluster — Introduction to cluster-analysis commands

Description

Description

Syntax Remarks and examples

References Also see

Stata’s cluster-analysis routines provide several hierarchical and partition clustering methods,
postclustering summarization methods, and cluster-management tools. This entry presents an overview
of cluster analysis, the cluster and clustermat commands (also see [MV] clustermat), as well
as Stata’s cluster-analysis management tools. The hierarchical clustering methods may be applied to
the data by using the cluster command or to a user-supplied dissimilarity matrix by using the
clustermat command.

The cluster command has the following subcommands, which are detailed in their respective

manual entries.

Partition-clustering methods for observations

kmeans
kmedians

[MV] cluster kmeans and kmedians
[MV] cluster kmeans and kmedians

Hierarchical clustering methods for observations

singlelinkage
averagelinkage
completelinkage
waveragelinkage

medianlinkage
centroidlinkage
wardslinkage

[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage

[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage

Postclustering commands

stop
dendrogram

generate

User utilities
notes
dir
list
drop
use

rename
renamevar

[MV] cluster stop
[MV] cluster dendrogram

[MV] cluster generate

[MV] cluster notes

[MV] cluster utility
[MV] cluster utility
[MV] cluster utility
[MV] cluster utility

[MV] cluster utility
[MV] cluster utility

100

Kmeans cluster analysis
Kmedians cluster analysis

Single-linkage cluster analysis
Average-linkage cluster analysis
Complete-linkage cluster analysis
Weighted-average linkage cluster
analysis

Median-linkage cluster analysis
Centroid-linkage cluster analysis
Ward’s linkage cluster analysis

Cluster-analysis stopping rules

Dendrograms for hierarchical
cluster analysis

Generate grouping variables from
a cluster analysis

Cluster analysis notes

Directory list of cluster analyses
List cluster analyses
Drop cluster analyses

Mark cluster analysis as most recent
one

Rename cluster analyses
Rename cluster-analysis variables
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Programmer utilities

query
set

delete
parsedistance

measures

[MV] cluster programming subroutines Add cluster-analysis routines

[MV] cluster programming utilities
[MV] cluster programming utilities
[MV] cluster programming utilities
[MV] cluster programming utilities

[MV] cluster programming utilities

Obtain cluster-analysis attributes
Set cluster-analysis attributes
Delete cluster-analysis attributes

Parse (dis)similarity measure
names

Compute (dis)similarity measures

The clustermat command has the following subcommands, which are detailed along with the
related cluster command manual entries. Also see [MV] clustermat.

Hierarchical clustering
singlelinkage
averagelinkage
completelinkage
waveragelinkage

medianlinkage
centroidlinkage
wardslinkage

methods for matrices
[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage

[MV] cluster linkage
[MV] cluster linkage
[MV] cluster linkage

Single-linkage cluster analysis
Average-linkage cluster analysis
Complete-linkage cluster analysis
Weighted-average linkage cluster
analysis

Median-linkage cluster analysis
Centroid-linkage cluster analysis
Ward’s linkage cluster analysis

Also, the clustermat stop postclustering command has syntax similar to that of the cluster
stop command; see [MV] cluster stop. For the remaining postclustering commands and user utilities,
you may specify either cluster or clustermat—it does not matter which.

If you are new to Stata’s cluster-analysis commands, we recommend that you first read this entry
and then read the following:

[MV] measure_option

[MV] clustermat

[MV] cluster kmeans and kmedians

[MV] cluster linkage

[MV] cluster dendrogram

[MV] cluster stop

[MV] cluster generate

Option for similarity and dissimilarity measures

Cluster analysis of a dissimilarity matrix

Kmeans and kmedians cluster analysis

Hierarchical cluster analysis

Dendrograms for hierarchical cluster analysis

Cluster-analysis stopping rules

Generate grouping variables from a cluster analysis



102 cluster — Introduction to cluster-analysis commands

Syntax
Cluster analysis of data

cluster subcommand ...

Cluster analysis of a dissimilarity matrix

clustermat subcommand ...

Remarks and examples

Remarks are presented under the following headings:

Introduction to cluster analysis
Stata’s cluster-analysis system
Data transformations and variable selection
Similarity and dissimilarity measures
Partition cluster-analysis methods
Hierarchical cluster-analysis methods
Agglomerative methods
Lance and Williams’s recurrence formula
Dissimilarity transformations and the Lance and Williams formula
Warning concerning similarity or dissimilarity choice
Synonyms
Reversals
Hierarchical cluster analysis applied to a dissimilarity matrix
User-supplied dissimilarities
Clustering variables instead of observations
Postclustering commands
Cluster-management tools

Introduction to cluster analysis

Cluster analysis attempts to determine the natural groupings (or clusters) of observations. Sometimes
this process is called “classification”, but this term is used by others to mean discriminant analysis,
which is related but is not the same; see [MV] discrim. To avoid confusion, we will use ‘“cluster
analysis” or “clustering” when referring to finding groups in data. Defining cluster analysis is difficult
(maybe impossible). Kaufman and Rousseeuw (1990) start their book by saying, “Cluster analysis
is the art of finding groups in data.” Everitt et al. (2011, 7) use the terms “cluster”, “group”, and
“class” and say, concerning a formal definition for these terms, “In fact it turns out that such formal
definition is not only difficult but may even be misplaced.”

Everitt et al. (2011) and Gordon (1999) provide examples of the use of cluster analysis, such
as in refining or redefining diagnostic categories in psychiatry, detecting similarities in artifacts by
archaeologists to study the spatial distribution of artifact types, discovering hierarchical relationships
in taxonomy, and identifying sets of similar cities so that one city from each class can be sampled in a
market research task. Also, the activity now called “data mining” relies extensively on cluster-analysis
methods.

We view cluster analysis as an exploratory data-analysis technique. According to Everitt, “Many
cluster-analysis techniques have taken their place alongside other exploratory data-analysis techniques
as tools of the applied statistician. The term exploratory is important here because it explains the
largely absent ‘p-value’, ubiquitous in many other areas of statistics. ... Clustering methods are
intended largely for generating rather than testing hypotheses” (1993, 10).
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Although some have said that there are as many cluster-analysis methods as there are people
performing cluster analysis. This is a gross understatement! There exist infinitely more ways to
perform a cluster analysis than people who perform them.

There are several general types of cluster-analysis methods, each having many specific methods.
Also, most cluster-analysis methods allow a variety of distance measures for determining the similarity
or dissimilarity between observations. Some of the measures do not meet the requirements to be
called a distance metric, so we use the more general term “dissimilarity measure” in place of distance.
Similarity measures may be used in place of dissimilarity measures. There are an infinite number
of similarity and dissimilarity measures. For instance, there are an infinite number of Minkowski
distance metrics, with the familiar Euclidean, absolute-value, and maximum-value distances being
special cases.

In addition to cluster method and dissimilarity measure choice, if you are performing a cluster
analysis, you might decide to perform data transformations and/or variable selection before clustering.
Then you might need to determine how many clusters there really are in the data, which you can
do using stopping rules. There is a surprisingly large number of stopping rules mentioned in the
literature. For example, Milligan and Cooper (1985) compare 30 different stopping rules.

Looking at all of these choices, you can see why there are more cluster-analysis methods than
people performing cluster analysis.

Stata’s cluster-analysis system

Stata’s cluster and clustermat commands were designed to allow you to keep track of the various
cluster analyses performed on your data. The main clustering subcommands—singlelinkage,
averagelinkage, completelinkage, waveragelinkage, medianlinkage, centroidlinkage,
wardslinkage (see [MV] cluster linkage), kmeans, and kmedians (see [MV] cluster kmeans and
kmedians)—create named Stata cluster objects that keep track of the variables these methods create
and hold other identifying information for the cluster analysis. These cluster objects become part of
your dataset. They are saved with your data when your data are saved and are retrieved when you
again use your dataset; see [D] save and [D] use.

Post—cluster-analysis subcommands are available with the cluster and clustermat commands so
that you can examine the created clusters. Cluster-management tools are provided that allow you to add
information to the cluster objects and to manipulate them as needed. The main clustering subcommands,
postclustering subcommands, and cluster-management tools are discussed in the following sections.

Stata’s clustering methods fall into two general types: partition and hierarchical. These two types
are discussed below. There exist other types, such as fuzzy partition (where observations can belong
to more than one group). Stata’s cluster command is designed so that programmers can extend it by
adding more methods; see [MV] cluster programming subroutines and [MV] cluster programming
utilities for details.

Q Technical note

If you are familiar with Stata’s large array of estimation commands, be careful to distinguish between
cluster analysis (the cluster command) and the vce (cluster clustvar) option (see [R] vce_option)
allowed with many estimation commands. Cluster analysis finds groups in data. The vce(cluster
clustvar) option allowed with various estimation commands indicates that the observations are
independent across the groups defined by the option but are not necessarily independent within those
groups. A grouping variable produced by the cluster command will seldom satisfy the assumption
behind the use of the vce(cluster clustvar) option.

a
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Data transformations and variable selection

Stata’s cluster command has no built-in data transformations, but because Stata has full data
management and statistical capabilities, you can use other Stata commands to transform your data
before calling the cluster command. Standardizing the variables is sometimes important to keep
a variable with high variability from dominating the cluster analysis. In other cases, standardizing
variables hides the true groupings present in the data. The decision to standardize or perform other
data transformations depends on the type of data and the nature of the groups.

Data transformations (such as standardization of variables) and the variables selected for use in
clustering can also greatly affect the groupings that are discovered. These and other cluster-analysis
data issues are covered in Milligan and Cooper (1988) and Schaffer and Green (1996) and in many
of the cluster-analysis texts, including Anderberg (1973); Gordon (1999); Everitt et al. (2011); and
Spith (1980).

Similarity and dissimilarity measures

Several similarity and dissimilarity measures have been implemented for Stata’s clustering commands
for both continuous and binary variables. For information, see [MV] measure_option.

Partition cluster-analysis methods

Partition methods break the observations into a distinct number of nonoverlapping groups. Stata
has implemented two partition methods, kmeans and kmedians.

One of the more commonly used partition clustering methods is called kmeans cluster analysis. In
kmeans clustering, the user specifies the number of clusters, k, to create using an iterative process.
Each observation is assigned to the group whose mean is closest, and then based on that categorization,
new group means are determined. These steps continue until no observations change groups. The
algorithm begins with k seed values, which act as the k& group means. There are many ways to specify
the beginning seed values.

A variation of kmeans clustering is kmedians clustering. The same process is followed in kmedians
as in kmeans, except that medians, instead of means, are computed to represent the group centers
at each step. See [MV] cluster kmeans and kmedians for the details of the cluster kmeans and
cluster kmedians commands.

These partition-clustering methods will generally be quicker and will allow larger datasets than the
hierarchical clustering methods outlined next. However, if you wish to examine clustering to various
numbers of clusters, you will need to execute cluster many times with the partition methods.
Clustering to various numbers of groups by using a partition method typically does not produce
clusters that are hierarchically related. If this relationship is important for your application, consider
using one of the hierarchical methods.

Hierarchical cluster-analysis methods

Hierarchical clustering creates hierarchically related sets of clusters. Hierarchical clustering methods
are generally of two types: agglomerative or divisive.

Agglomerative hierarchical clustering methods begin with each observation’s being considered as
a separate group (N groups each of size 1). The closest two groups are combined (/N — 1 groups,
one of size 2 and the rest of size 1), and this process continues until all observations belong to the
same group. This process creates a hierarchy of clusters.
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In addition to choosing the similarity or dissimilarity measure to use in comparing 2 observations,
you can choose what to compare between groups that contain more than 1 observation. The method
used to compare groups is called a linkage method. Stata’s cluster and clustermat commands
provide several hierarchical agglomerative linkage methods, which are discussed in the next section.

Unlike hierarchical agglomerative clustering, divisive hierarchical clustering begins with all obser-
vations belonging to one group. This group is then split in some fashion to create two groups. One
of these two groups is then split to create three groups; one of these three is then split to create
four groups, and so on, until all observations are in their own separate group. Stata currently has no
divisive hierarchical clustering commands. There are relatively few mentioned in the literature, and
they tend to be particularly time consuming to compute.

To appreciate the underlying computational complexity of both agglomerative and divisive hierarchi-
cal clustering, consider the following information paraphrased from Kaufman and Rousseeuw (1990).
The first step of an agglomerative algorithm considers N (N — 1)/2 possible fusions of observations
to find the closest pair. This number grows quadratically with V. For divisive hierarchical clustering,
the first step would be to find the best split into two nonempty subsets, and if all possibilities were
considered, it would amount to 2N "1 — 1 comparisons. This number grows exponentially with V.

Agglomerative methods

Stata’s cluster and clustermat commands provide the following hierarchical agglomerative
linkage methods: single, complete, average, Ward’s method, centroid, median, and weighted average.
There are others mentioned in the literature, but these are the best-known methods.

Single-linkage clustering computes the similarity or dissimilarity between two groups as the
similarity or dissimilarity between the closest pair of observations between the two groups. Complete-
linkage clustering, on the other hand, uses the farthest pair of observations between the two groups
to determine the similarity or dissimilarity of the two groups. Average-linkage clustering uses the
average similarity or dissimilarity of observations between the groups as the measure between the
two groups. Ward’s method joins the two groups that result in the minimum increase in the error
sum of squares. The other linkage methods provide alternatives to these basic linkage methods.

The cluster singlelinkage and clustermat singlelinkage commands implement single-
linkage hierarchical agglomerative clustering; see [MV] cluster linkage for details. Single-linkage
clustering suffers (or benefits, depending on your point of view) from what is called chaining.
Because the closest points between two groups determine the next merger, long, thin clusters can
result. If this chaining feature is not what you desire, consider using one of the other methods, such
as complete linkage or average linkage. Because of special properties that can be computationally
exploited, single-linkage clustering is faster and uses less memory than the other linkage methods.

Complete-linkage hierarchical agglomerative clustering is implemented by the cluster
completelinkage and clustermat completelinkage commands; see [MV] cluster linkage for
details. Complete-linkage clustering is at the other extreme from single-linkage clustering. Complete
linkage produces spatially compact clusters, so it is not the best method for recovering elongated
cluster structures. Several sources, including Kaufman and Rousseeuw (1990), discuss the chaining
of single linkage and the clumping of complete linkage.

Kaufman and Rousseeuw (1990) indicate that average linkage works well for many situations and is
reasonably robust. The cluster averagelinkage and clustermat averagelinkage commands
provide average-linkage clustering; see [MV] cluster linkage.



106 cluster — Introduction to cluster-analysis commands

Ward (1963) presented a general hierarchical clustering approach where groups were joined to
maximize an objective function. He used an error-sum-of-squares objective function to illustrate. Ward’s
method of clustering became synonymous with using the error-sum-of-squares criteria. Kaufman and
Rousseeuw (1990) indicate that Ward’s method does well with groups that are multivariate normal
and spherical but does not do as well if the groups are of different sizes or have unequal numbers
of observations. The cluster wardslinkage and clustermat wardslinkage commands provide
Ward’s linkage clustering; see [MV] cluster linkage.

At each step of the clustering, centroid linkage merges the groups whose means are closest. The
centroid of a group is the componentwise mean and can be interpreted as the center of gravity
for the group. Centroid linkage differs from average linkage in that centroid linkage is concerned
with the distance between the means of the groups, whereas average linkage looks at the average
distance between the points of the two groups. The cluster centroidlinkage and clustermat
centroidlinkage commands provide centroid-linkage clustering; see [MV] cluster linkage.

Weighted-average linkage and median linkage are variations on average linkage and centroid
linkage, respectively. In both cases, the difference is in how groups of unequal size are treated
when merged. In average linkage and centroid linkage, the number of elements of each group is
factored into the computation, giving correspondingly larger influence to the larger group. These two
methods are called unweighted because each observation carries the same weight. In weighted-average
linkage and median linkage, the two groups are given equal weighting in determining the combined
group, regardless of the number of observations in each group. These two methods are said to be
weighted because observations from groups with few observations carry more weight than observations
from groups with many observations. The cluster waveragelinkage and clustermat waver-
agelinkage commands provide weighted-average linkage clustering. The cluster medianlinkage
and clustermat medianlinkage commands provide median linkage clustering; see [MV] cluster
linkage.

Lance and Williams’s recurrence formula

Lance and Williams (1967) developed a recurrence formula that defines, as special cases, most of
the well-known hierarchical clustering methods, including all the hierarchical clustering methods found
in Stata. Anderberg (1973); Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Gordon (1999);
Everitt et al. (2011); and Rencher and Christensen (2012) discuss the Lance—Williams formula and
how most popular hierarchical clustering methods are contained within it.

From the notation of Everitt et al. (2011, 78), the Lance—Williams recurrence formula is

di(iz) = idyi + ojdig + Bdij + y|diki — di

where d;; is the distance (or dissimilarity) between cluster ¢ and cluster j; dj(;;) is the distance (or
dissimilarity) between cluster k£ and the new cluster formed by joining clusters ¢ and j; and oy, oy,
0, and -y are parameters that are set based on the particular hierarchical cluster-analysis method.

The recurrence formula allows, at each new level of the hierarchical clustering, the dissimilarity
between the newly formed group and the rest of the groups to be computed from the dissimilarities
of the current grouping. This approach can result in a large computational savings compared with
recomputing at each step in the hierarchy from the observation-level data. This feature of the recurrence
formula allows clustermat to operate on a similarity or dissimilarity matrix instead of the data.

The following table shows the values of «;, ;, 3, and -y for the hierarchical clustering methods
implemented in Stata. n;, n;, and ny are the number of observations in group ¢, j, and k, respectively.
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Clustering linkage method Q; Q; B Y
. 1 1 1
Single ) 2 0 )
1 1 1
Complete 2 b 0 2
n Uz
Average n; +z n; n; +n; 0 0
Weighted average % % 0 0
Centroid o —|—an m e 0
. 1 1 1
Median bl b -z 0
Ward’s n; + ng n; + ng —ny 0

ng+n;+ng n;+n;+ng  n;+n; +ng

For information on the use of various similarity and dissimilarity measures in hierarchical clustering,
see the next two sections.

Dissimilarity transformations and the Lance and Williams formula

The Lance—Williams formula, which is used as the basis for computing hierarchical clustering in
Stata, is designed for use with dissimilarity measures. Before performing hierarchical clustering, Stata
transforms similarity measures, both continuous and binary, to dissimilarities. After cluster analysis,
Stata transforms the fusion values (heights at which the various groups join in the hierarchy) back to
similarities.

Stata’s cluster command uses
dissimilarity = 1 — similarity

to transform from a similarity to a dissimilarity measure and back again; see Kaufman and
Rousseeuw (1990, 21). Stata’s similarity measures range from either O to 1 or —1 to 1. The resulting
dissimilarities range from 1 down to 0 and from 2 down to 0, respectively.

For continuous data, Stata provides both the L2 and L2squared dissimilarity measures, as well
as both the L(#) and Lpower (#) dissimilarity measures. Why have both an L2 and L2squared
dissimilarity measure, and why have both an L(#) and Lpower (#) dissimilarity measure?

For single- and complete-linkage hierarchical clustering (and for kmeans and kmedians partition
clustering), there is no need for the additional L2squared and Lpower (#) dissimilarities. The same
cluster solution is obtained when using L2 and L2squared (or L(#) and Lpower (#)), except that
the resulting heights in the dendrogram are raised to a power.

However, for the other hierarchical clustering methods, there is a difference. For some of these
other hierarchical clustering methods, the natural default for dissimilarity measure is L2squared.
For instance, the traditional Ward’s (1963) method is obtained by using the L2squared dissimilarity
option.
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Warning concerning similarity or dissimilarity choice

With hierarchical centroid, median, Ward’s, and weighted-average linkage clustering, Lance and
Williams (1967); Anderberg (1973); Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Everitt
et al. (2011); and Gordon (1999) give various levels of warnings about using many of the similarity
and dissimilarity measures ranging from saying that you should never use anything other than the
default squared Euclidean distance (or Euclidean distance) to saying that the results may lack a useful
interpretation.

Example 2 of [MV] cluster linkage illustrates part of the basis for this warning. The simple
matching coefficient is used on binary data. The range of the fusion values for the resulting hierarchy
is not between 1 and 0, as you would expect for the matching coefficient. The conclusions from the
cluster analysis, however, agree well with the results obtained in other ways.

Stata does not restrict your choice of similarity or dissimilarity. If you are not familiar with these
hierarchical clustering methods, use the default dissimilarity measure.

Synonyms
Cluster-analysis methods have been developed by researchers in many different disciplines. Because

researchers did not always know what was happening in other fields, many synonyms for the different
hierarchical cluster-analysis methods exist.

Blashfield and Aldenderfer (1978) provide a table of equivalent terms. Jain and Dubes (1988) and
Day and Edelsbrunner (1984) also mention some of the synonyms and use various acronyms. Here
is a list of synonyms:

Single linkage Weighted-average linkage
Nearest-neighbor method Weighted pair-group method using
Minimum method arithmetic averages
Hierarchical analysis WPGMA
Space-contracting method Weighted group-average method
Elementary linkage analysis
Connectedness method Centroid linkage

Unweighted centroid method

Complete linkage Unweighted pair-group centroid method
Furthest-neighbor method UPGMC
Maximum method Nearest-centroid sorting
Compact method
Space-distorting method Median linkage
Space-dilating method Gower’s method
Rank-order typal analysis Weighted centroid method
Diameter analysis Weighted pair-group centroid method

WPGMC

Average linkage Weighted pair method
Arithmetic-average clustering Weighted group method
Unweighted pair-group method using

arithmetic averages Ward’s method
UPGMA Minimum-variance method
Unweighted clustering Error-sum-of-squares method
Group-average method Hierarchical grouping to minimize tr(W)
Unweighted group mean HGROUP

Unweighted pair-group method
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Reversals

Unlike the other hierarchical methods implemented in Stata, centroid linkage and median linkage (see
[MV] cluster linkage) can (and often do) produce reversals or crossovers; see Anderberg (1973), Jain
and Dubes (1988), Gordon (1999), and Rencher and Christensen (2012). Normally, the dissimilarity
or clustering criterion increases monotonically as the agglomerative hierarchical clustering progresses
from many to few clusters. (For similarity measures, it monotonically decreases.) The dissimilarity
value at which k + 1 clusters form will be larger than the value at which k clusters form. When the
dissimilarity does not increase monotonically through the levels of the hierarchy, it is said to have
reversals or crossovers.

The word crossover, in this context, comes from the appearance of the resulting dendrogram (see
[MV] cluster dendrogram). In a hierarchical clustering without reversals, the dendrogram branches
extend in one direction (increasing dissimilarity measure). With reversals, some of the branches reverse
and go in the opposite direction, causing the resulting dendrogram to be drawn with crossing lines
(crossovers).

When reversals happen, Stata still produces correct results. You can still generate grouping variables
(see [MV] cluster generate) and compute stopping rules (see [MV] cluster stop). However, the cluster
dendrogram command will not draw a dendrogram with reversals; see [MV] cluster dendrogram.
In all but the simplest cases, dendrograms with reversals are almost impossible to interpret visually.

Hierarchical cluster analysis applied to a dissimilarity matrix

What if you want to perform a cluster analysis using a similarity or dissimilarity measure that Stata
does not provide? What if you want to cluster variables instead of observations? The clustermat
command gives you the flexibility to do either; see [MV] clustermat.

User-supplied dissimilarities

There are situations where the dissimilarity between objects is evaluated subjectively (perhaps on
a scale from 1 to 10 by a rater). These dissimilarities may be entered in a matrix and passed to
the clustermat command to perform hierarchical clustering. Likewise, if Stata does not offer the
dissimilarity measure you desire, you may compute the dissimilarities yourself and place them in a
matrix and then use clustermat to perform the cluster analysis. [MV] clustermat illustrates both of
these situations.

Clustering variables instead of observations

Sometimes you want to cluster variables rather than observations, so you can use the cluster
command. One approach to clustering variables in Stata is to use xpose (see [D] xpose) to transpose
the variables and observations and then to use cluster. Another approach is to use the matrix
dissimilarity command with the variables option (see [MV] matrix dissimilarity) to produce
a dissimilarity matrix for the variables. This matrix is then passed to clustermat to obtain the
hierarchical clustering. See [MV] clustermat.

Postclustering commands

Stata’s cluster stop and clustermat stop commands are used to determine the number of
clusters. Two stopping rules are provided, the Califiski and Harabasz (1974) pseudo-F' index and the
Duda, Hart, and Stork (2001, sec. 10.10) Je(2)/Je(1) index with associated pseudo-T’ 2. You can easily
add stopping rules to the cluster stop command; see [MV] cluster stop for details.
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The cluster dendrogram command presents the dendrogram (cluster tree) after a hierarchical
cluster analysis; see [MV] cluster dendrogram. Options allow you to view the top portion of the tree
or the portion of the tree associated with a group. These options are important with larger datasets
because the full dendrogram cannot be presented.

The cluster generate command produces grouping variables after hierarchical clustering; see
[MV] cluster generate. These variables can then be used in other Stata commands, such as those that
tabulate, summarize, and provide graphs. For instance, you might use cluster generate to create
a grouping variable. You then might use the pca command (see [MV] pca) to obtain the first two
principal components of the data. You could follow that with a graph (see Stata Graphics Reference
Manual) to plot the principal components, using the grouping variable from the cluster generate
command to control the point labeling of the graph. This method would allow you to get one type
of view into the clustering behavior of your data.

Cluster-management tools

You may add notes to your cluster analysis with the cluster notes command; see [MV] cluster
notes. This command also allows you to view and delete notes attached to the cluster analysis.

The cluster dir and cluster list commands allow you to list the cluster objects and attributes
currently defined for your dataset. cluster drop lets you remove a cluster object. See [MV] cluster
utility for details.

Cluster objects are referred to by name. If no name is provided, many of the cluster commands
will, by default, use the cluster object from the most recently performed cluster analysis. The cluster
use command tells Stata which cluster object to use. You can change the name attached to a cluster
object with the cluster rename command and the variables associated with a cluster analysis with
the cluster renamevar command. See [MV] cluster utility for details.

You can exercise fine control over the attributes that are stored with a cluster object; see [MV] cluster
programming utilities.
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Description

clustermat performs hierarchical cluster analysis on the dissimilarity matrix matname. clus-
termat is part of the cluster suite of commands; see [MV] cluster. All Stata hierarchical clustering
methods are allowed with clustermat. The partition-clustering methods (kmeans and kmedians)
are not allowed because they require the data.

See [MV] cluster for a listing of all the cluster and clustermat commands. The cluster
dendrogram command (see [MV] cluster dendrogram) will display the resulting dendrogram, the
clustermat stop command (see [MV] cluster stop) will help in determining the number of groups,
and the cluster generate command (see [MV] cluster generate) will produce grouping variables.
Other useful cluster subcommands include notes, dir, 1ist, drop, use, rename, and renamevar;
see [MV] cluster notes and [MV] cluster utility.

Syntax
clustermat linkage matname ...

linkage Description
singlelinkage single-linkage cluster analysis
averagelinkage average-linkage cluster analysis
completelinkage complete-linkage cluster analysis
waveragelinkage weighted-average linkage cluster analysis
medianlinkage median-linkage cluster analysis
centroidlinkage centroid-linkage cluster analysis
wardslinkage Ward’s linkage cluster analysis

See [MV] cluster linkage.

clustermat stop has similar syntax to that of cluster stop; see [MV] cluster stop. For
the remaining postclustering subcommands and user utilities, you may specify either cluster or
clustermat—it does not matter which.

Remarks and examples
If you are clustering observations by using one of the similarity or dissimilarity measures provided
by Stata, the cluster command is what you need. If, however, you already have a dissimilarity

matrix or can produce one for a dissimilarity measure that Stata does not provide, or if you want to
cluster variables instead of observations, the clustermat command is what you need.

112
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> Example 1

Table 6 of Kaufman and Rousseeuw (1990) provides a subjective dissimilarity matrix among 11
sciences. Fourteen postgraduate economics students from different parts of the world gave subjective
dissimilarities among these 11 sciences on a scale from 0O (identical) to 10 (very different). The final
dissimilarity matrix was obtained by averaging the results from the students.

We begin by creating a label variable and a shorter version of the label variable corresponding to
the 11 sciences. Then we create a row vector containing the lower triangle of the dissimilarity matrix.

. input stri13 science

science
Astronomy
Biology
Chemistry
Computer sci.
Economics
Geography
History
Mathematics
Medicine
10. Physics
11. Psychology
12. end

. generate str4 shortsci = substr(science,1,4)

0 ~N O O WN -

©

. matrix input D = (

> 0.00

> 7.86 0.00

> 6.50 2.93 0.00

> 5.00 6.86 6.50 0.00

> 8.00 8.14 8.21 4.79 0.00

> 4.29 7.00 7.64 7.71 5.93 0.00

> 8.07 8.14 8.71 8.57 5.86 3.86 0.00

> 3.64 7.14 4.43 1.43 3.57 7.07 9.07 0.00

> 8.21 2.50 2.93 6.36 8.43 7.86 8.43 6.29 0.00

> 2.71 5.21 4.57 4.21 8.36 7.29 8.64 2.21 5.07 0.00
> 9.36 5.57 7.29 7.21 6.86 8.29 7.64 8.71 3.79 8.64 0.00 )

There are several ways that we could have stored the dissimilarity information in a matrix. To
avoid entering both the upper and lower triangle of the matrix, we entered the dissimilarities as a
row vector containing the lower triangular entries of the dissimilarity matrix, including the diagonal
of zeros (although there are options that would allow us to omit the diagonal of zeros). We typed
matrix input D = ... instead of matrix D = ... so that we could omit the commas between entries;
see [P] matrix define.

We now perform a complete-linkage cluster analysis on these dissimilarities. The name () option
names the cluster analysis. We will name it complink. The shape(lower) option is what signals
that the dissimilarity matrix is stored as a row vector containing the lower triangle of the dissimilarity
matrix, including the diagonal of zeros. The add option indicates that the resulting cluster information
should be added to the existing dataset. Here the existing dataset consists of the science label
variable and the shortened version shortsci. See [MV] cluster linkage for details concerning these
options. The short labels are passed to cluster dendrogram so that we can see which subjects were
most closely related when viewing the dendrogram; see [MV] cluster dendrogram.
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. clustermat completelinkage D, shape(lower) add name(complink)

. cluster dendrogram complink, labels(shortsci)
> title(Complete-linkage clustering)
> ytitle("Subjective dissimilarity" "O = Same, 10 = Very different")

Complete-linkage clustering
10

for]
I

Very different
(o]
L

Subjective dissimilarity

Same, 10

0=

07Astr Phys Comp Math Econ Biol Medi Chem Psyc Geog Hist

From the dendrogram, we see that mathematics and computer science were deemed most similar
and that the economists most closely related their field of study to those two disciplines.

N

> Example 2

Stata does not provide the Bray and Curtis (1957) dissimilarity measure first described by
Odum (1950). Using the same notation as that found in [MV] measure_option, we find that the
Bray—Curtis dissimilarity between observations ¢ and j is

> _1 |Tia — Tjal

22:1(@@ + Tja)

Stata does not provide this measure because of the many cases where the measure is undefined
(because of dividing by zero). However, when the data are positive the Bray—Curtis dissimilarity is
well behaved.

Even though Stata does not automatically provide this measure, it is easy to obtain it and then use it
with clustermat to perform hierarchical clustering. The numerator of the Bray—Curtis dissimilarity
measure is the L1 (absolute value) distance. We use the matrix dissimilarity command (see
[MV] matrix dissimilarity) to obtain the L1 dissimilarity matrix and then divide the elements of that
matrix by the appropriate values to obtain the Bray—Curtis dissimilarity.

Fisher (1936) presented data, originally from Anderson (1935), on three species of iris. Measure-
ments of the length and width of the sepal and petal were obtained for 50 samples of each of the
three iris species. We obtained the data from Morrison (2005). Here we demonstrate average-linkage
clustering of these 150 observations.
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. use https://www.stata-press.com/data/r18/iris, clear
(Iris data)

. summarize seplen sepwid petlen petwid

Variable Obs Mean Std. dev. Min Max
seplen 150 5.843333 .8280661 4.3 7.9
sepwid 150 3.057333 .4358663 2 4.4
petlen 150 3.758 1.765298 1 6.9
petwid 150 1.199333 . 7622377 .1 2.5

. matrix dissimilarity irisD = seplen sepwid petlen petwid, L1
. egen rtot = rowtotal(seplen sepwid petlen petwid)
. forvalues a = 1/150 {

2. forvalues b = 1/150 {
3. mat irisD[‘a’,‘b’] = irisD[‘a’, ‘b’]/(rtot[‘a’]+rtot[‘b’])
4. }
5. }
. matlist irisD[1..5,1..5]
obs1 obs2 obs3 obs4 obsb
obs1 0
obs2 .035533 0
obs3 .0408163 .026455 0
obs4 .0510204 .026455 .0212766 0
obsb .0098039 .035533 .0408163 .0510204 0

The egen rowtotal () function provided the row totals used in the denominator of the Bray—Curtis
dissimilarity measure; see [D] egen. We listed the dissimilarities between the first 5 observations.

We now compute the average-linkage cluster analysis on these 150 observations (see [MV] cluster
linkage) and examine the Calinski—Harabasz pseudo-F index and the Duda—Hart Je(2)/Je(1) index
(cluster stopping rules; see [MV] cluster stop) to try to determine the number of clusters.

. clustermat averagelink irisD, name(iris) add

. clustermat stop, variables(seplen sepwid petlen petwid)

Calinski/
Number of Harabasz
clusters pseudo-F
2 502.82
3 299.96
4 201.58
5 332.89
6 288.61
7 244 .61
8 252.39
9 223.28
10 268.47
11 241.51
12 232.61
13 233.46
14 255.84
15 273.96
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. clustermat stop, variables(seplen sepwid petlen petwid) rule(duda)

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared
1 0.2274 502.82
2 0.8509 17.18
3 0.8951 5.63
4 0.4472 116.22
5 0.6248 28.23
6 0.9579 2.55
7 0.5438 28.52
8 0.8843 5.10
9 0.5854 40.37
10 0.0000 .
11 0.8434 6.68
12 0.4981 37.28
13 0.5526 25.91
14 0.6342 16.15
15 0.6503 3.23

The stopping rules are not conclusive here. From the Duda—Hart pseudo-72 (small values) you
might best conclude that there are three, six, or eight natural clusters. The Caliniski and Harabasz
pseudo-F' (large values) indicates that there might be two, three, or five groups.

With the iris data, we know the three species. Let’s compare the average-linkage hierarchical cluster
solutions with the actual species. The cluster generate command (see [MV] cluster generate)
will generate grouping variables for our hierarchical cluster analysis.

. cluster generate g = groups(2/6)
. tabulate g2 iris

Iris species

g2 Setosa Versicolo Virginica Total

1 50 0 0 50

2 0 50 50 100
Total 50 50 50 150

. tabulate g3 iris

Iris species

g3 Setosa Versicolo Virginica Total

1 50 0 0 50

2 0 46 50 96

3 0 4 0 4
Total 50 50 50 150

. tabulate g4 iris

Iris species

g4 Setosa Versicolo Virginica Total
1 49 0 0 49
2 1 0 0 1
3 0 46 50 96
4 0 4 0 4

Total 50 50 50 150



clustermat — Introduction to clustermat commands 117

. tabulate gb iris

Iris species

gb Setosa Versicolo Virginica Total

1 49 0 0 49

2 1 0 0 1

3 0 45 15 60

4 0 1 35 36

5 0 4 0 4
Total 50 50 50 150

. tabulate g6 iris

Iris species

g6 Setosa Versicolo Virginica Total

1 41 0 0 41

2 8 0 0 8

3 1 0 0 1

4 0 45 15 60

5 0 1 35 36

6 0 4 0 4
Total 50 50 50 150

The two-group cluster solution splits Iris setosa from Iris versicolor and Iris virginica. The three-
and four-group cluster solutions appear to split off some outlying observations from the two main
groups. The five-group solution finally splits most of Iris virginica from the Iris versicolor but leaves
some overlap.

Though this is not shown here, cluster solutions that better match the known species can be found
by using dissimilarity measures other than Bray—Curtis.

4

> Example 3

The cluster command clusters observations. If you want to cluster variables, you have two
choices. You can use xpose (see [D] xpose) to transpose the variables and observations, or you can
use matrix dissimilarity with the variables option (see [MV] matrix dissimilarity) and then
use clustermat.

In example 2 of [MV] cluster kmeans and kmedians, we introduce the women’s club data. Thirty
women were asked 35 yes—no questions. In [MV] cluster kmeans and kmedians, our interest was
in clustering the 30 women for placement at luncheon tables. Here our interest is in understanding
the relationship among the 35 variables. Which questions produced similar response patterns from
the 30 women?
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. use https://www.stata-press.com/data/r18/wclub, clear
. describe

Contains data from https://www.stata-press.com/data/r18/wclub.dta

Observations: 30

Variables: 35 1 May 2022 16:56
Variable Storage Display Value

name type format label Variable label
bike byte %8.0g Enjoy bicycle riding Y/N
bowl byte %8.0g Enjoy bowling Y/N
swim byte %8.0g Enjoy swimming Y/N
jog byte %8.0g Enjoy jogging Y/N
hock byte %8.0g Enjoy watching hockey Y/N
foot byte %8.0g Enjoy watching football Y/N
base byte %8.0g Enjoy baseball Y/N
bask byte %8.0g Enjoy basketball Y/N
arob byte %8.0g Participate in aerobics Y/N
fshg byte %8.0g Enjoy fishing Y/N
dart byte %8.0g Enjoy playing darts Y/N
clas byte %8.0g Enjoy classical music Y/N
cntr byte %8.0g Enjoy country music Y/N
jazz byte %8.0g Enjoy jazz music Y/N
rock byte %8.0g Enjoy rock and roll music Y/N
west byte %8.0g Enjoy reading western novels Y/N
romc byte %8.0g Enjoy reading romance novels Y/N
scif byte %8.0g Enjoy reading sci. fiction Y/N
biog byte %8.0g Enjoy reading biographies Y/N
fict byte %8.0g Enjoy reading fiction Y/N
hist byte %8.0g Enjoy reading history Y/N
cook byte %8.0g Enjoy cooking Y/N
shop byte %8.0g Enjoy shopping Y/N
soap byte %8.0g Enjoy watching soap operas Y/N
sew byte %8.0g Enjoy sewing Y/N
crft byte %8.0g Enjoy craft activities Y/N
auto byte %8.0g Enjoy automobile mechanics Y/N
pokr byte %8.0g Enjoy playing poker Y/N
brdg byte %8.0g Enjoy playing bridge Y/N
kids byte %8.0g Have children Y/N
hors byte %8.0g Have a horse Y/N
cat byte %8.0g Have a cat Y/N
dog byte %8.0g Have a dog Y/N
bird byte %8.0g Have a bird Y/N
fish byte %8.0g Have a fish Y/N
Sorted by:

The matrix dissimilarity command allows us to compute the Jaccard similarity measure (the
Jaccard option), comparing variables (the variables option) instead of observations, saving one
minus the Jaccard measure (the dissim(oneminus) option) as a dissimilarity matrix.

. matrix dissimilarity clubD = , variables Jaccard dissim(oneminus)

. matlist clubD[1..5,1..5]

| bike bowl swim jog hock
bike 0
bowl .7333333 0
swim .5625 .625 0
jog 6 .8235294 .5882353 0

hock .8461538 .6 .8 .8571429 0
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We pass the clubD matrix to clustermat and ask for a single-linkage cluster analysis. We
need to specify the clear option to replace the 30 observations currently in memory with the 35
observations containing the cluster results. Using the labelvar() option, we also ask for a label
variable, question, to be created from the clubD matrix row names. To see the resulting cluster
analysis, we call cluster dendrogram; see [MV] cluster dendrogram.

. clustermat singlelink clubD, name(club) clear labelvar(question)
Number of observations (_N) was O, now 35.
. describe

Contains data

Observations: 35
Variables: 4
Variable Storage Display Value
name type format label Variable label
club_id byte %8.0g
club_ord byte %8.0g
club_hgt double %10.0g
question str4 %9s
Sorted by:

Note: Dataset has changed since last saved.

. cluster dendrogram club, labels(question)

> xlabel(, angle(90) labsize(*.75))
> title(Single-linkage clustering)
> ytitle(1 - Jaccard similarity, suffix)

Single-linkage clustering

User matrix clubD dissimilarity measure

bike
bowl
dog
cntr
west
romc
fshg
pokr
shop
soap
kids
Jjog
clas
fict
biog
hist
sew
crft
jazz
scif
base
cook
arob
swim
dart
brdg
fish
hock
foot
bask
cat
rock
auto
hors
bird

From these 30 women, we see that the biog (enjoy reading biographies) and hist (enjoy reading
history) questions were most closely related. auto (enjoy automobile mechanics), hors (have a horse),
and bird (have a bird) seem to be the least related to the other variables. These three variables, in
turn, merge last into the supergroup containing the remaining variables.

d
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cluster dendrogram — Dendrograms for hierarchical cluster analysis

Description Quick start Menu Syntax
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Description

cluster dendrogram produces dendrograms (also called cluster trees) for a hierarchical clustering.
See [MV] cluster for a discussion of cluster analysis, hierarchical clustering, and the available cluster
commands.

Dendrograms graphically present the information concerning which observations are grouped
together at various levels of (dis)similarity. At the bottom of the dendrogram, each observation is
considered its own cluster. Vertical lines extend up for each observation, and at various (dis)similarity
values, these lines are connected to the lines from other observations with a horizontal line. The
observations continue to combine until, at the top of the dendrogram, all observations are grouped
together.

The height of the vertical lines and the range of the (dis)similarity axis give visual clues about the
strength of the clustering. Long vertical lines indicate more distinct separation between the groups.
Long vertical lines at the top of the dendrogram indicate that the groups represented by those lines
are well separated from one another. Shorter lines indicate groups that are not as distinct.

Quick start

Dendrogram of most recent cluster analysis
cluster dendrogram

Same as above
cluster tree

Same as above, but orient horizontally instead of vertically
cluster tree, horizontal

Dendrogram of cluster analysis named myclus
cluster tree myclus

Same as above, and apply leaf labels from variable mylabels instead of observation numbers
cluster tree myclus, labels(mylabels)

Same as above, but rotate leaf labels 90 degrees and reduce text size by half

cluster tree myclus, labels(mylabels) ///
xlabel(, angle(90) labsize(*.5))

Show top 20 branches and associated frequencies from most recent cluster analysis
cluster tree, cutnumber(20) showcount

121
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Menu

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Dendrograms

Syntax
cluster dendrogram [clname] [lf] [in} [ , options]
option Description
Main
quick do not center parent branches
labels (varname) name of variable containing leaf labels
cutnumber (#) display top # branches only
cutvalue (#) display branches above # (dis)similarity measure only
showcount display number of observations for each branch
countprefix(string) prefix the branch count with string; default is “n="
countsuffix(string) suffix the branch count with string; default is empty string
countinline put branch count in line with branch label
vertical orient dendrogram vertically (default)
horizontal orient dendrogram horizontally
Plot
line_options affect rendition of the plotted lines
Add plots
addplot (plot) add other plots to the dendrogram

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

Note: cluster tree is a synonym for cluster dendrogram.
In addition to the restrictions imposed by if and in, the observations are automatically restricted to those
that were used in the cluster analysis.

Options
Main

quick switches to a different style of dendrogram in which the vertical lines go straight up from the
observations instead of the default action of being recentered after each merge of observations in
the dendrogram hierarchy. Some people prefer this representation, and it is quicker to render.

labels (varname) specifies that varname be used in place of observation numbers for labeling the
observations at the bottom of the dendrogram.

cutnumber (#) displays only the top # branches of the dendrogram. With large dendrograms, the
lower levels of the tree can become too crowded. With cutnumber (), you can limit your view
to the upper portion of the dendrogram. Also see the cutvalue() option.

cutvalue (#) displays only those branches of the dendrogram that are above the # (dis)similarity
measure. With large dendrograms, the lower levels of the tree can become too crowded. With
cutvalue(), you can limit your view to the upper portion of the dendrogram. Also see the
cutnumber () option.
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showcount requests that the number of observations associated with each branch be displayed below
the branches. showcount is most useful with cutnumber () and cutvalue() because, otherwise,
the number of observations for each branch is one. When this option is specified, a label for each
branch is constructed by using a prefix string, the branch count, and a suffix string.

countprefix(string) specifies the prefix string for the branch count label. The default is
countprefix(n=). This option implies the use of the showcount option.

countsuffix(string) specifies the suffix string for the branch count label. The default is an empty
string. This option implies the use of the showcount option.

countinline requests that the branch count be put in line with the corresponding branch label.
The branch count is placed below the branch label by default. This option implies the use of the
showcount option.

vertical and horizontal specify whether the x and y coordinates are to be swapped before
plotting—vertical (the default) does not swap the coordinates, whereas horizontal does.

Plot

line_options affect the rendition of the lines; see [G-3] line_options.

Add plots

addplot (plot) allows adding more graph twoway plots to the graph; see [G-3] addplot_option.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option).

Remarks and examples

Examples of the cluster dendrogram command can be found in [MV] cluster linkage, [MV] clus-
termat, [MV] cluster stop, and [MV] cluster generate. Here we illustrate some of the additional
options available with cluster dendrogram.
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> Example 1
Example 1 of [MV] cluster linkage introduces a dataset with 50 observations on four variables.
Here we show the dendrogram for a complete-linkage analysis:

. use https://www.stata-press.com/data/r18/labtech
. cluster completelinkage x1 x2 x3 x4, name(L2clnk)
. cluster dendrogram L2clnk, labels(labtech) xlabel(, angle(90) labsize(*.75))

Dendrogram for L2cInk cluster analysis

250+

200+

150

100+

L2 dissimilarity measure

50

The same dendrogram can be rendered in a slightly different format by using the quick option:

. cluster dendrogram L2clnk, quick labels(labtech)
> xlabel(, angle(90) labsize(*.75))

Dendrogram for L2cInk cluster analysis

250

200

150

100

L2 dissimilarity measure

50+

Some people prefer this style of dendrogram. As the name implies, this style of dendrogram is quicker
to render.

You can use the if and in conditions to restrict the dendrogram to the observations for one
subgroup. This task is usually accomplished with the cluster generate command, which creates
a grouping variable; see [MV] cluster generate.

Here we show the third of three groups in the dendrogram by first generating the grouping variable
for three groups and then using if in the command for cluster dendrogram to restrict it to the
third of those three groups.
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. cluster generate g3 = group(3)
. cluster tree if g3==3

Dendrogram for L2cInk cluster analysis

150

100+

L2 dissimilarity measure

50

073 14 31 8 30 17 48 6 42 27 22 39 41 26 33 36 37 47 9 29 24 25 28 10

Because we find it easier to type, we used the synonym tree instead of dendrogram. We did not
specify the cluster name, allowing it to default to the most recently performed cluster analysis. We
also omitted the labels() and xlabel() options, which brings us back to the default action of
showing, horizontally, the observation numbers.

This example has only 50 observations. When there are many observations, the dendrogram can
become too crowded. You will need to limit which part of the dendrogram you display. One way to
view only part of the dendrogram is to use if and in to limit to one particular group, as we did
above.

The other way to limit your view of the dendrogram is to specify that you wish to view only the
top portion of the tree. The cutnumber () and cutvalue() options allow you to do this:
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. cluster tree, cutn(15) showcount

Dendrogram for L2cInk cluster analysis

250

2004

150

100

L2 dissimilarity measure

50+

Gl G2 G3 G4 G5 G6 G7 G8 GY9 G10 Gl1 G12 G13 Gl4 Gi15
n=3 n=1 n=2 n=5 n=1 n=2 n=2 n=5 n=5 np=10 n=3 n=5 n=3 n=2 n=1

We limited our view to the top 15 branches of the dendrogram with cutn(15). By default, the
15 branches were labeled G1-G15. The showcount option provided, below these branch labels, the
number of observations in each of the 15 groups.

The cutvalue() option provides another way to limit the view to the top branches of the
dendrogram. With this option, you specify the similarity or dissimilarity value at which to trim the
tree.

. cluster tree, cutvalue(75.3)

> countprefix (" (") countsuffix(" obs)") countinline
> ylabel(, angle(0)) horizontal

Dendrogram for L2clnk cluster analysis

G16 (1 obs)
G15 (2 obs)
G14 (3 obs)
G13 (5 obs)
G12 (3 obs)
G11 (10 obs)
G10 (5 obs)
G9 (5 obs)
G8 (2 obs)
G7 (2 obs)
G6 (1 obs)
G5 (3 obs) 1
G4 (2 obs) J
G3 (2 obs)
G2 (1 obs)
G1 (3 obs)

|
J

0 50 100 150 200 250
L2 dissimilarity measure

This time, we limited the dendrogram to those branches with dissimilarity greater than 75.3 by
using the cutvalue(75.3) option. There were 16 branches (groups) that met that restriction. We
used the countprefix() and countsuffix() options to display the number of observations in each
branch as “(# obs)” instead of “n=#". The countinline option puts the branch counts in line with
the branch labels. We specified the horizontal option and the angle(0) suboption of ylabel ()
to get a horizontal dendrogram with horizontal branch labels.

4



cluster dendrogram — Dendrograms for hierarchical cluster analysis 127

Q Technical note

Programmers can control the graphical procedure executed when cluster dendrogram is called.
This ability will be helpful to programmers adding new hierarchical clustering methods that require
a different dendrogram algorithm. See [MV] cluster programming subroutines for details.

a

In systematic zoology, Mayr, Linsley, and Usinger (1953, 312) introduced the term “dendrogram”
for “A diagrammatic drawing in the form of a tree designed to indicate degrees of relationship as
suggested by degrees of similarity.” The first root, “dendron”, means “tree”: other linked words
include “dendrite”, “dendritic”, and “rhododendron”.

But thereby hangs a tale, or two, or three.

The term “dendrogram” was in due course copied from biological systematics and taxonomy
into general scientific and statistical literature (for example, Sneath and Sokal [1962]; Hodson,
Sneath, and Doran [1966]; Joyce and Channon [1966]). On the way, its meaning became more
general, describing tree displays showing the structure of similarity and dissimilarity in nested
classifications. The term became widely used in publications on what is now most often called
cluster analysis: examples are the books of Sokal and Sneath (1963), Jardine and Sibson (1971),
Sneath and Sokal (1973), Everitt (1993), Hartigan (1975), and Gordon (1981), and many others
since.

Meanwhile, back in biology, Mayr emerged early as a leading critic of what some biologists,
led by Sokal and Sneath, were calling “numerical taxonomy”. His objections were evident in a
polemic paper (Mayr 1965) and in his lengthy but lively and lucid history of much of biological
thought (Mayr 1982). So there is some irony in his term being associated with projects he would
not have approved (at least in biological systematics). Those imagining that classification is dull
and dreary descriptive work will find ample documentation of scientists red in tooth and claw
in Hull (1988), which despite its grand titles is focused on a detailed story of taxonomists’
arguments with each other.

Inside biological taxonomy, the distinction is often now between “phenograms”, meant to classify
resemblance only, and “cladograms”, meant to show also evolutionary pedigree.

Naturally, tree diagrams did not spring into existence with the term “dendrogram”. Pietsch (2012)
and Archibald (2014) give many well-reproduced diagrams from over several centuries showing
supposed relationships between different organisms in biology. Lima (2011, 2014) sampled tree
imagery even more broadly from many fields and from ancient and modern history to the present.

Ernst Walter Mayr (1904-2005) was a leading evolutionary biologist whose work ranged across
systematics, taxonomy, exploration, ornithology, and history and philosophy of biology, especially
on and around the concept of species. Mayr was born in Kempten in Germany. He completed
his high school education in Dresden and went to university in Greifswald and Berlin. After
fieldwork in New Guinea and the Solomon Islands, Mayr joined the American Museum of
Natural History in 1931 and Harvard University in 1953, where he remained for the rest of his
career. His many honors included membership of the National Academy of Sciences, foreign
membership of the Royal Society, Balzan and Crafoord Prizes, and the U.S. National Medal of
Science.

Mayr’s coauthors, Earle Gorton Linsley (1910-2000) and Robert Leslie Usinger (1912—-1968),
were distinguished systematic entomologists based at the University of California at Berkeley.
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Title

cluster generate — Generate grouping variables from a cluster analysis

Description Quick start Menu Syntax Options
Remarks and examples Also see

Description

cluster generate creates summary or grouping variables from a hierarchical cluster analysis;
the result depends on the function. A single variable may be created containing a group number based
on the requested number of groups or cutting the dendrogram at a specified (dis)similarity value. A
set of new variables may be created if a range of group sizes is specified.

Users can add more cluster generate functions; see [MV] cluster programming subroutines.

Quick start

Generate grouping variable g with 5 groups from the most recent cluster analysis
cluster generate gb = groups(5)

Same as above, 4 grouping variables (g4, gb, g6, and g7) with 4, 5, 6, and 7 groups
cluster generate g = groups(4/7)

Same as above, but use the cluster analysis named myclus

cluster generate g = groups(4/7), name(myclus)

Generate grouping variable mygroups from the most recent cluster analysis by cutting the dendrogram
at dissimilarity value 38

cluster generate mygroups = cut(38)

Menu

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Summary variables from cluster analysis

129
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Syntax
Generate grouping variables for specified numbers of clusters

cluster generate {newvar|stub} = groups (numlist) [, options}

Generate grouping variable by cutting the dendrogram

cluster generate newvar = cut(#) [, game(clname)]

options Description

name (clname) name of cluster analysis to use in producing new variables

ties(error) produce error message for ties; default

ties(skip) ignore requests that result in ties

ties(fewer) produce results for largest number of groups smaller than your request

ties(more) produce results for smallest number of groups larger than your request
Options

name (clname) specifies the name of the cluster analysis to use in producing the new variables. The
default is the name of the cluster analysis last performed, which can be reset by using the cluster
use command; see [MV] cluster utility.

ties(error|skip|fewer |more) indicates what to do with the groups() function for ties. A
hierarchical cluster analysis has ties when multiple groups are generated at a particular (dis)similarity
value. For example, you might have the case where you can uniquely create two, three, and four
groups, but the next possible grouping produces eight groups because of ties.

ties(error), the default, produces an error message and does not generate the requested variables.

ties(skip) specifies that the offending requests be ignored. No error message is produced, and
only the requests that produce unique groupings will be honored. With multiple values specified in
the groups () function, ties(skip) allows the processing of those that produce unique groupings
and ignores the rest.

ties(fewer) produces the results for the largest number of groups less than or equal to your
request. In the example above with groups(6) and using ties(fewer), you would get the same
result that you would by using groups (4).

ties(more) produces the results for the smallest number of groups greater than or equal to your
request. In the example above with groups(6) and using ties(more), you would get the same
result that you would by using groups(8).
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Remarks and examples

cluster generate provides two built-in functions: groups() and cut (). Examples of how to
use the groups() function can be found in [MV] cluster dendrogram, [MV] cluster linkage, and
[MV] cluster stop. More examples of the groups () and cut () functions of cluster generate are
provided here.

The groups (numlist) function generates grouping variables, giving the grouping for the specified
numbers of clusters from a hierarchical cluster analysis. If one number is given, newvar is produced
with group numbers going from 1 to the number of clusters requested. If more than one number is
specified, a new variable is generated for each number by using the provided sfub name appended
with the number.

The cut (#) function generates a grouping variable corresponding to cutting the dendrogram (see
[MV] cluster dendrogram) of a hierarchical cluster analysis at the specified (dis)similarity value.

You may find it easier to understand these functions by looking at a dendrogram from a hierarchical
cluster analysis. The cluster dendrogram command produces dendrograms (cluster trees) from a
hierarchical cluster analysis; see [MV] cluster dendrogram.

> Example 1

Example 1 of [MV] cluster linkage examines a dataset with 50 observations with four variables.
Here we use complete-linkage clustering and use the groups () function of cluster generate to
produce a grouping variable, splitting the data into two groups.

. use https://www.stata-press.com/data/r18/labtech
. cluster completelinkage x1 x2 x3 x4, name(L2clnk)

. cluster dendrogram L2clnk, xlabel(, angle(90) labsize(*.75))
(graph omitted )

. cluster generate g2 = group(2), name(L2clnk)
. codebook g2

g2 (unlabeled)

Type: Numeric (byte)
Range: [1,2] Units: 1
Unique values: 2 Missing .: 0/50
Tabulation: Freq. Value

26 1
24 2
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. by g2, sort: summarize xx*

-> g2 =1
Variable Obs Mean Std. dev. Min Max
x1 26 91.5 37.29432 17.4 143
x2 26 74.58077 41.19319 4.8 142.1
x3 26 101.0077 36.95704 16.3 147.9
x4 26 71.77308 43.04107 6.6 146.1
-> g2 =2
Variable Obs Mean Std. dev. Min Max
x1 24 18.8 23.21742 0 7
x2 24 30.05833 37.66979 0 143.6
x3 24 18.54583 21.68215 .2 69.7
x4 24 41.89167 43.62025 .1 130.9

The group() function of cluster generate created a grouping variable named g2, with ones
indicating the 26 observations that belong to the left main branch of the dendrogram and twos
indicating the 24 observations that belong to the right main branch of the dendrogram. The summary
of the x variables used in the cluster analysis for each group shows that the second group is
characterized by lower values.

We could have obtained the same grouping variable by using the cut() function of cluster
generate.

. cluster generate g2cut = cut(200)
. table g2 g2cut, nototals

g2cut
1 2
g2
1 26
2 24

We did not need to specify the name () option because this was the latest cluster analysis performed,
which is the default. The table output shows that we obtained the same result with cut (200) as
with group(2) for this example.
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How many groups are produced if we cut the tree at the value 105.2?

. cluster generate z = cut(105.2)
. codebook z, tabulate(20)

z (unlabeled)

Type: Numeric (byte)

Range: [1,11] Units: 1
Unique values: 11 Missing .: 0/50
Tabulation: Freq. Value
3 1
3 2
5 3
1 4
2 5
2 6
10 7
10 8
8 9
5 10
1 11

The codebook command (see [D] codebook) shows that the result of cutting the dendrogram at the
value 105.2 produced 11 groups ranging in size from 1 to 10 observations.

The group() function of cluster generate may be used to create multiple grouping variables
with one call. Here we create the grouping variables for groups of size 3—12:

. cluster generate gp = gr(3/12)

. summarize gp*

Variable Obs Mean Std. dev. Min Max
gp3 50 2.26 .8033095 1 3
gp4 50 3.14 1.030356 1 4
gp5 50 3.82 1.438395 1 5
gpé 50 3.84 1.461897 1 6
gp7 50 3.96 1.603058 1 7
gp8 50 4.24 1.911939 1 8
gp9 50 5.18 2.027263 1 9

gpl0 50 5.94 2.385415 1 10
gpll 50 6.66 2.781939 1 11
gpl2 50 7.24 3.197959 1 12

Here we used abbreviations for generate and group(). The group () function takes a numlist; see
[U] 11.1.8 numlist. We specified 3/12, indicating the numbers 3—12. gp, the stub name we provide,
is appended with the number as the variable name for each group variable produced.

N

> Example 2

Example 2 of [MV] cluster linkage shows the following dendrogram from the single-linkage
clustering of 30 observations on 60 variables. In that example, we used the group() function of
cluster generate to produce a grouping variable for three groups. What happens when we try to
obtain four groups from this clustering?
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. use https://www.stata-press.com/data/r18/homework, clear

. cluster singlelinkage al-a60, measure(matching)
cluster name: _clus_1

. cluster tree

Dendrogram for _clus_1 cluster analysis

Matching similarity measure
©
1

1¥19 118216 7 91620232415121317 8 2511 5 28271014 4 3 222926 2 30

. cluster generate g4 = group(4)
cannot create 4 groups because of ties
r(198);

Stata complains that it cannot create four groups from this cluster analysis.

The ties() option gives us control over this situation. We just need to decide whether we want
more groups or fewer groups than we asked for when faced with ties. We demonstrate both ways.

. cluster generate more4 = gr(4), ties(more)
. cluster generate less4 = gr(4), ties(fewer)

. summarize more4 lessé4

Variable | Obs Mean Std. dev. Min Max
moreé 30 2.933333 1.638614 1 5
less4 30 2 .8304548 1 3

For this cluster analysis, ties(more) with group(4) produces five groups, whereas ties (fewer)
with group(4) produces three groups.
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The ties(skip) option is convenient when we want to produce a range of grouping variables.

. cluster generate group = gr(4/20), ties(skip)

. summarize group*

Variable | Obs Mean Std. dev. Min Max
groupb 30 2.933333 1.638614 1 5
group9 30 4.866667 2.622625 1 9

groupl3 30 7.066667 3.92106 1 13
groupl8 30 9.933333 5.419844 1 18

With this cluster analysis, the only unique groupings available are 5, 9, 13, and 18 within the range
4-20.
d

Also see
[MV] cluster — Introduction to cluster-analysis commands
[MV] clustermat — Introduction to clustermat commands
[D] egen — Extensions to generate

[D] generate — Create or change contents of variable
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cluster kmeans and kmedians — Kmeans and kmedians cluster analysis

Description Quick start

Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

cluster kmeans and cluster kmedians perform kmeans and kmedians partition cluster analysis,

respectively. See [MV] cluster for a general discussion of cluster analysis and a description of the
other cluster commands.

Quick start

Kmeans cluster analysis using Euclidean distance of v1, v2, v3, and v4 to create 5 groups
cluster kmeans vl v2 v3 v4, k(5)

Same as above, and name the cluster analysis myclus

cluster kmeans vl v2 v3 v4, k(5) name(myclus)

Kmedians cluster analysis to create 7 groups using Canberra distance of v1, v2, and v3
cluster kmedians vl v2 v3, k(7) measure(Canberra)

Menu
cluster kmeans
Statistics > Multivariate analysis > Cluster analysis > Cluster data > Kmeans
cluster kmedians

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Kmedians

136
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Syntax
Kmeans cluster analysis

cluster kmeans [varlist] [z_’f] [in] , k(#) [options}

Kmedians cluster analysis

cluster kmedians [varlist} [lf] [zn] , k(#) [options]

options Description
Main
"k (#) perform cluster analysis resulting in # groups
measure (measure) similarity or dissimilarity measure; default is L2 (Euclidean)
name (clname) name of resulting cluster analysis
Options
start (start—_option) obtain k initial group centers by using start_option
keepcenters append the k final group means or medians to the data
Advanced
generate (groupvar) mname of grouping variable
iterate (#) maximum number of iterations; default is iterate(10000)

*k(#) is required.

Options
Main

k(#) is required and indicates that # groups are to be formed by the cluster analysis.

measure (measure) specifies the similarity or dissimilarity measure. The default is measure(L2),
Euclidean distance. This option is not case sensitive. See [MV] measure_option for detailed
descriptions of the supported measures.

name (clname) specifies the name to attach to the resulting cluster analysis. If name () is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

start (start_option) indicates how the k initial group centers are to be obtained. The available
start_options are

klandom[(seed#)], the default, specifies that k& unique observations be chosen at random, from
among those to be clustered, as starting centers for the k& groups. Optionally, a random-number
seed may be specified to cause the command set seed seed# (see [R] set seed) to be applied
before the £ random observations are chosen.

;irstk[, gclude] specifies that the first k observations from among those to be clustered be
used as the starting centers for the & groups. With the exclude option, these first £ observations
are not included among the observations to be clustered.
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;astk[, gclude} specifies that the last k& observations from among those to be clustered be used
as the starting centers for the k£ groups. With the exclude option, these last k observations are
not included among the observations to be clustered.

;andom[(seed#)] specifies that k random initial group centers be generated. The values are
randomly chosen from a uniform distribution over the range of the data. Optionally, a random-
number seed may be specified to cause the command set seed seed# (see [R] set seed) to be
applied before the k& group centers are generated.

prandom[(seed#)] specifies that k partitions be formed randomly among the observations to be
clustered. The group means or medians from the k& groups defined by this partitioning are to
be used as the starting group centers. Optionally, a random-number seed may be specified to
cause the command set seed seed# (see [R] set seed) to be applied before the k partitions
are chosen.

everykth specifies that k£ partitions be formed by assigning observations 1, 1 + &, 1 + 2k, ...
to the first group; assigning observations 2, 2 + k, 2 + 2k, ... to the second group; and so
on, to form k£ groups. The group means or medians from these k groups are to be used as the
starting group centers.

segments specifies that k nearly equal partitions be formed from the data. Approximately the first
N/k observations are assigned to the first group, the second N/k observations are assigned to
the second group, and so on. The group means or medians from these k£ groups are to be used
as the starting group centers.

group (varname) provides an initial grouping variable, varname, that defines k groups among the
observations to be clustered. The group means or medians from these k& groups are to be used
as the starting group centers.

keepcenters specifies that the group means or medians from the k groups that are produced be
appended to the data. Alias variables are not allowed in varlist when this option is specified; see
[D] frunalias for advice on how to get around this restriction.

Advanced

generate (groupvar) provides the name of the grouping variable to be created by cluster kmeans
or cluster kmedians. By default, this will be the name specified in name ().

iterate (#) specifies the maximum number of iterations to allow in the kmeans or kmedians clustering
algorithm. The default is iterate(10000).

Remarks and examples

Two examples are presented, one using cluster kmeans with continuous data and the other using
cluster kmeans and cluster kmedians with binary data. Both commands work similarly with
the different types of data.

> Example 1

You have measured the flexibility, speed, and strength of the 80 students in your physical education
class. You want to split the class into four groups, based on their physical attributes, so that they can
receive the mix of flexibility, strength, and speed training that will best help them improve.
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Here is a summary of the data and a matrix graph showing the data:

. use https://www.stata-press.com/data/r18/physed

. summarize flex speed strength

Variable Obs Mean Std. dev. Min Max
flexibility 80 4.402625 2.788541 .03 9.97
speed 80 3.875875 3.121665 .03 9.79
strength 80 6.439875 2.449293 .05 9.57
. graph matrix flex speed strength
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As you expected, based on what you saw the first day of class, the data indicate a wide range of levels
of performance for the students. The graph seems to indicate that there are some distinct groups,
which leads you to believe that your plan will work well.

You decide to perform a cluster analysis to create four groups, one for each of your class assistants.
You have had good experience with kmeans clustering in the past and generally like the behavior of

the absolute-value

distance.

You do not really care what starting values are used in the cluster analysis, but you do want to be
able to reproduce the same results if you ever decide to rerun your analysis. You decide to use the
krandom() option to pick k of the observations at random as the initial group centers. You supply
a random-number seed for reproducibility. You also add the keepcenters option so that the means
of the four groups will be added to the bottom of your dataset.

. cluster k flex speed strength, k(4) name(g4abs) s(kr(385617)) mea(abs) keepcen

. cluster list gdabs

gdabs
vars:
other:

(type: partition,

method: kmeans,

gdabs (group variable)
cmd: cluster kmeans flex speed strength, k(4) name(géabs)

s(kr(385617)) mea(abs) keepcen
varlist: flexibility speed strength

k: 4

start: krandom(385617)

range: 0 .

dissimilarity: L1)
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. table gédabs

Frequency

Cluster ID
1 15
2 20
3 10
4 35
Total 80

. list flex speed strength in

81/L, abbrev(12)

flexibility speed strength
81. 8.852  8.743333 4.358
82. 5.9465 3.4485 6.8325
83. 3.157 6.988 1.641
84. 1.969429  1.144857  8.478857

. drop in 81/L

(4 observations deleted)

. tabstat flex speed strength,

by(g4abs) stat(min mean max)

Summary statistics: Min, Mean, Max
Group variable: gdabs (Cluster ID)

gdabs flexib~y speed strength

1 8.12 8.05 3.61

8.852 8.743333 4.358

9.97 9.79 5.42

2 4.32 1.05 5.46

5.9465 3.4485 6.8325

7.89 5.32 7.66

3 2.29 5.11 .05

3.157 6.988 1.641

3.99 8.87 3.02

4 .03 .03 7.38

1.969429 1.144857 8.478857

3.48 2.17 9.57

Total .03 .03 .05

4.402625 3.875875 6.439875

9.97 9.79 9.57

After looking at the last 4 observations (which are the group means because you specified keep-
centers), you decide that what you really wanted to see was the minimum and maximum values
and the mean for the four groups. You remove the last 4 observations and then use the tabstat
command to view the desired statistics.

Group 1, with 15 students, is already doing well in flexibility and speed but will need extra
strength training. Group 2, with 20 students, needs to emphasize speed training but could use some
improvement in the other categories as well. Group 3, the smallest, with 10 students, needs help
with flexibility and strength. Group 4, the largest, with 35 students, has serious problems with both
flexibility and speed, though they did well in the strength category.
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Because you like looking at graphs, you decide to view the matrix graph again but with group
numbers used as plotting symbols.

. graph matrix flex speed strength, m(i) mlabel(g4abs) mlabpos(0)
> mlabcolor(stblue)
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The groups, as shown in the graph, do appear reasonably distinct. However, you had hoped to
have groups that were about the same size. You are curious what clustering to three or five groups
would produce. For no good reason, you decide to use the first k observations as initial group centers
for clustering to three groups and random numbers within the range of the data for clustering to five
groups.

. cluster k flex speed strength, k(3) name(g3abs) start(firstk) measure(abs)

. cluster k flex speed strength, k(5) name(gbabs) start(random(33576))
> measure (abs)

. table g3abs géabs, totals(g3abs)

Cluster ID
1 2 3 4 Total
Cluster ID
1 10 10
2 18 35 53
3 15 2 17

. table gbabs gé4abs, totals(gbabs)

Cluster ID
1 2 3 4 Total
Cluster ID

1 15 15
2 9 9
3 10 10
4 11 11
5 35 35

With three groups, the unequal-group-size problem gets worse. With five groups, you still have one
group with 35 observations, which is much larger than all other groups. Four groups seem like the
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best option for this class. You will try to help the assistant assigned to group 4 in dealing with the
larger group.

You might want to investigate the results of using different random seeds in the command used
to generate the 4 groups earlier in this example. Because these data do not have clearly defined,
well-separated clusters, there is a good chance that clusters based on different starting values will be
different.

d

> Example 2

You have just started a women’s club. Thirty women from throughout the community have sent
in their requests to join. You have them fill out a questionnaire with 35 yes—no questions relating
to sports, music, reading, and hobbies. A description of the 35 variables is found in example 3 of
[MV] clustermat.

In planning the first meeting of the club, you want to assign seats at the five lunch tables on the
basis of shared interests among the women. You really want people placed together who share the
same positive interests, not who share dislikes. From all the available binary similarity measures, you
decide to use the Jaccard coefficient as the binary similarity measure because it does not include
jointly zero comparisons in its formula; see [MV] measure_option. The Jaccard coefficient is also
easy to understand.

You decide to examine the groupings produced by kmeans and kmedians clustering.

. use https://www.stata-press.com/data/r18/wclub, clear
. cluster kmeans bike-fish, k(5) measure(Jaccard) st(firstk) name(grb)
. cluster kmed bike-fish, k(5) measure(Jaccard) st(firstk) name(kmedian5)

. cluster list kmedianb
kmedianb (type: partition, method: kmedians, similarity: Jaccard)
vars: kmedian5 (group variable)
other: cmd: cluster kmedians bike-fish, k(5) measure(Jaccard) st(firstk)
name (kmedian5)
varlist: bike bowl swim jog hock foot base bask arob fshg dart clas
cntr jazz rock west romc scif biog fict hist cook shop soap
sew crft auto pokr brdg kids hors cat dog bird fish

k: 5
start: firstk
range: 1 0

You used the first k observations as starting centers for both kmeans and kmedians—the st (firstk)
option.

What size groups did each method produce, and how closely did the results agree?

. table grb5 kmedianb

Cluster ID
1 2 3 4 5 Total

Cluster ID
1 7 7
2 1 6 7
3 5 5
4 5 5
5 1 1 4 6
Total 9 6 6 5 4 30
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There is reasonably strong agreement between the results from cluster kmeans and cluster
kmedians. Because the tables can seat only eight comfortably, the grouping produced by cluster
kmeans will be used because the group sizes range from five to seven, whereas the groups from
cluster kmedians range from four to nine.

d

Methods and formulas

Kmeans cluster analysis and its variant, kmedians cluster analysis, are discussed in most cluster-
analysis books; see References in [MV] cluster. [MV] cluster also provides a general discussion of
cluster analysis, including kmeans and kmedians clustering, and discusses the available cluster
subcommands.

Kmeans and kmedians clustering are iterative procedures that partition the data into k groups or
clusters. The procedure begins with k initial group centers. Observations are assigned to the group
with the closest center. The mean or median of the observations assigned to each of the groups is
computed, and the process is repeated. These steps continue until all observations remain in the same
group from the previous iteration.

To avoid endless loops, an observation will be reassigned to a different group only if it is closer to
the other group center. For a tied distance between an observation and two or more group centers, the
observation is assigned to its current group if that is one of the closest and to the lowest numbered
group otherwise.

The start() option provides many ways to specify the beginning group centers. These include
methods that specify the actual starting centers, as well as methods that specify initial partitions of
the data from which the beginning centers are computed.

Some kmeans clustering algorithms recompute the group centers after each reassignment of an
observation. Other algorithms, including Stata’s cluster kmeans and cluster kmedians commands,
recompute the group centers only after a complete pass through the data. A disadvantage of this
method is that orphaned group centers—one that has no observations that are closest to it—can occur.
The advantage of recomputing means only at the end of each pass through the data is that the sort
order of the data does not potentially change your result.

Stata deals with orphaned centers by finding the observations that are farthest from the centers
and using them as new group centers. The observations are then reassigned to the closest groups,
including these new centers.

Continuous or binary data are allowed with cluster kmeans and cluster kmedians. The mean
of a group of binary observations for a variable is the proportion of ones for that group of observations
and variable. The median of a group of binary observations for a variable is almost always either
zero or one. However, if there are an equal number of zeros and ones for a group, the median is
0.5. The binary similarity measures can accommodate the comparison of a binary observation to a
proportion. See [MV] measure_option for details on this subject and for the formulas for all the
available (dis)similarity measures.

Reference
Makles, A. 2012. Stata tip 110: How to get the optimal k-means cluster solution. Stata Journal 12: 347-351.


http://www.stata-journal.com/article.html?article=st0262
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Also see

[MV] cluster — Introduction to cluster-analysis commands

[MV] cluster notes — Cluster analysis notes

[MV] cluster stop — Cluster-analysis stopping rules

[MV] cluster utility — List, rename, use, and drop cluster analyses

[MV] clustermat — Introduction to clustermat commands
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cluster linkage — Hierarchical cluster analysis

Description Quick start
Menu Syntax
Options for cluster linkage commands Options for clustermat linkage commands
Remarks and examples Methods and formulas
Also see
Description

cluster and clustermat, with a specified linkage method, perform hierarchical agglomerative
cluster analysis. The following common linkage methods are available: single, complete, average,
Ward’s method, centroid, median, and weighted average.

Quick start
Cluster analysis of data

Single-linkage cluster analysis using Euclidean distance of v1, v2, v3, and v4
cluster singlelinkage vl v2 v3 v4

Same as above
cluster single vl v2 v3 v4

Same as above, and name the cluster analysis singclus
cluster single vl v2 v3 v4, name(singclus)

Complete-linkage cluster analysis using absolute-value distance of v1, v2, and v3
cluster completelinkage vl v2 v3, measure(absolute)

Same as above
cluster complete vl v2 v3, measure(L1)

Cluster analysis of dissimilarity matrix

Replace current data with solution from single-linkage cluster analysis on matrix D
clustermat single D, clear

Same as above, and name the cluster analysis Dclus
clustermat single D, clear name(Dclus)

Add solution from average-linkage cluster analysis on matrix D to the existing data
clustermat averagelinkage D, add

145
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Menu
cluster singlelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Single linkage

cluster averagelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Average linkage

cluster completelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Complete linkage

cluster waveragelinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Weighted-average linkage

cluster medianlinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Median linkage

cluster centroidlinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Centroid linkage

cluster wardslinkage

Statistics > Multivariate analysis > Cluster analysis > Cluster data > Ward’s linkage
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Syntax
Cluster analysis of data

cluster linkage [varlist] [zf] [in] [, cluster_options]

Cluster analysis of a dissimilarity matrix

clustermat linkage matname [if ] [m} [, clustermat_options]

linkage Description

singlelinkage single-linkage cluster analysis
averagelinkage average-linkage cluster analysis
completelinkage complete-linkage cluster analysis
waveragelinkage weighted-average linkage cluster analysis
medianlinkage median-linkage cluster analysis
centroidlinkage centroid-linkage cluster analysis
wardslinkage Ward’s linkage cluster analysis

cluster_options Description
Main
measure (measure) similarity or dissimilarity measure

name (c/name)

Advanced
generate (stub)

name of resulting cluster analysis

prefix for generated variables; default prefix is clname

clustermat_options Description

Main
shape (shape) shape (storage method) of matname
add add cluster information to data currently in memory
clear replace data in memory with cluster information
labelvar (varname) place dissimilarity matrix row names in varname

name (c/name)

Advanced
force
generate (stub)

name of resulting cluster analysis

perform clustering after fixing matname problems
prefix for generated variables; default prefix is clname
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shape matname is stored as a

full square symmetric matrix; the default

lower vector of rowwise lower triangle (with diagonal)
llower vector of rowwise strict lower triangle (no diagonal)
upper vector of rowwise upper triangle (with diagonal)
uupper vector of rowwise strict upper triangle (no diagonal)

Options for cluster linkage commands
Main

measure (measure) specifies the similarity or dissimilarity measure. The default for averagelinkage,
completelinkage, singlelinkage, and waveragelinkage is L2 (synonym Euclidean). The
default for centroidlinkage, medianlinkage, and wardslinkage is L2squared. This option
is not case sensitive. See [MV] measure_option for a discussion of these measures.

Several authors advise using the L2squared measure exclusively with centroid, median, and
Ward’s linkage. See Dissimilarity transformations and the Lance and Williams formula and Warning
concerning similarity or dissimilarity choice in [MV] cluster for details.

name (clname) specifies the name to attach to the resulting cluster analysis. If name () is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

Advanced

generate (stub) provides a prefix for the variable names created by cluster linkage. By default,
the variable name prefix will be the name specified in name (). Three variables with the suffixes
_id, —ord, and _hgt are created and attached to the cluster-analysis results. Users generally will
not need to access these variables directly.

Centroid linkage and median linkage can produce reversals or crossovers; see [MV] cluster for
details. When reversals happen, cluster centroidlinkage and cluster medianlinkage also
create a fourth variable with the suffix _pht. This is a pseudoheight variable that is used by some
postclustering commands to properly interpret the _hgt variable.

Options for clustermat linkage commands
Main

shape (shape) specifies the storage mode of matname, the matrix of dissimilarities. shape (full)
is the default. The following shapes are allowed:

full specifies that matname is an n X n symmetric matrix.

lower specifies that matmame is a row or column vector of length n(n + 1)/2, with the rowwise
lower triangle of the dissimilarity matrix including the diagonal of zeros.

D11 D2y Dag D3y D32 D33 ... D1 D2 ... Dyp

1lower specifies that matname is a row or column vector of length n(n — 1)/2, with the rowwise
lower triangle of the dissimilarity matrix excluding the diagonal.
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D2y D3y D32 Dg1 D2 Dy3 ... D1 D2 oo Dy 1

upper specifies that matname is a row or column vector of length n(n + 1)/2, with the rowwise
upper triangle of the dissimilarity matrix including the diagonal of zeros.

Di1 Dyg ... DlnDQQDQB DgnD33D34 Dgn ... Dpn

uupper specifies that matname is a row or column vector of length n(n — 1)/2, with the rowwise
upper triangle of the dissimilarity matrix excluding the diagonal.

Di2 Dy3 ... D1y, Dag Doy ... Dgy, D3y D35 ... D3y, ... Dn—l,n

add specifies that clustermat’s results be added to the dataset currently in memory. The number
of observations (selected observations based on the if and in qualifiers) must equal the number
of rows and columns of matname. Either clear or add is required if a dataset is currently in
memory.

clear drops all the variables and cluster solutions in the current dataset in memory (even if that
dataset has changed since the data were last saved) before generating clustermat’s results. Either
clear or add is required if a dataset is currently in memory.

labelvar (varname) specifies the name of a new variable to be created containing the row names
of matrix matname.

name (clname) specifies the name to attach to the resulting cluster analysis. If name () is not specified,
Stata finds an available cluster name, displays it for your reference, and attaches the name to your
cluster analysis.

Advanced

force allows computations to continue when matname is nonsymmetric or has nonzeros on the
diagonal. By default, clustermat will complain and exit when it encounters these conditions.
force specifies that clustermat operate on the symmetric matrix (matmame x matname') /2, with
any nonzero diagonal entries treated as if they were zero.

generate (stub) provides a prefix for the variable names created by clustermat. By default, the
variable name prefix is the name specified in name (). Three variables are created and attached to
the cluster-analysis results with the suffixes _id, _ord, and _hgt. Users generally will not need
to access these variables directly.

Centroid linkage and median linkage can produce reversals or crossovers; see [MV] cluster for details.
When reversals happen, clustermat centroidlinkage and clustermat medianlinkage also
create a fourth variable with the suffix _pht. This is a pseudoheight variable that is used by some
of the postclustering commands to properly interpret the _hgt variable.
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Remarks and examples

cluster and clustermat, with a specified linkage method, perform hierarchical agglomerative
cluster analysis. The following command linkage methods are available: single, complete, average,
Ward’s method, centroid, median, and weighted average. These methods are described in Agglomerative
methods of [MV] cluster. Other methods are mentioned in the literature, but these are the best-known
methods.

The clustermat linkage commands perform hierarchical agglomerative cluster analysis on the
dissimilarity matrix matname. See [MV] clustermat for a general discussion of cluster analysis of
dissimilarity matrices and a description of the other clustermat commands. A general discussion of
agglomerative cluster analysis is provided in Hierarchical cluster-analysis methods of [MV] cluster.

After a cluster linkage or clustermat linkage command, the cluster dendrogram command
(see [MV] cluster dendrogram) displays the resulting dendrogram, the cluster stop or clustermat
stop command (see [MV] cluster stop) helps determine the number of groups, and the cluster
generate command (see [MV] cluster generate) produces grouping variables.

> Example 1

As the senior data analyst for a small biotechnology firm, you are given a dataset with four
chemical laboratory measurements on 50 different samples of a particular plant gathered from the
rain forest. The head of the expedition that gathered the samples thinks, based on information from
the natives, that an extract from the plant might reduce the negative side effects associated with your
company’s best-selling nutritional supplement.

While the company chemists and botanists continue exploring the possible uses of the plant and
plan future experiments, the head of product development asks you to look at the preliminary data
and to report anything that might be helpful to the researchers.

Although all 50 plants are supposed to be of the same type, you decide to perform a cluster analysis
to see if there are subgroups or anomalies among them. You arbitrarily decide to use single-linkage
clustering with the default Euclidean distance.

. use https://www.stata-press.com/data/r18/labtech
. cluster singlelinkage x1 x2 x3 x4, name(sngeuc)
. cluster list sngeuc
sngeuc (type: hierarchical, method: single, dissimilarity: L2)
vars: sngeuc_id (id variable)
sngeuc_ord (order variable)
sngeuc_hgt (height variable)
other: cmd: cluster singlelinkage x1 x2 x3 x4, name(sngeuc)
varlist: x1 x2 x3 x4
range: O .

The cluster singlelinkage command generated some variables and created a cluster object with
the name sngeuc, which you supplied as an argument. cluster list provides details about the
cluster object; see [MV] cluster utility.

What you really want to see is the dendrogram for this cluster analysis; see [MV] cluster
dendrogram.
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. cluster dendrogram sngeuc, xlabel(, angle(90) labsize(*.75))

Dendrogram for sngeuc cluster analysis
80

60

40

L2 dissimilarity measure

20

From your experience looking at dendrograms, two things jump out at you about this cluster analysis.
The first is the observations showing up in the middle of the dendrogram that are all close to each
other (short vertical bars) and are far from any other observations (the long vertical bar connecting
them to the rest of the dendrogram). Next you notice that if you ignore those 10 observations, the
rest of the dendrogram does not indicate strong clustering, as shown by the relatively short vertical
bars in the upper portion of the dendrogram.

You start to look for clues why these 10 observations are so peculiar. Looking at scatterplots is
usually helpful, so you examine the matrix of scatterplots.

. graph matrix x1 x2 x3 x4
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Unfortunately, these scatterplots do not indicate what might be going on.

Suddenly, from your past experience with the laboratory technicians, you have an idea of what
to check next. Because of past data mishaps, the company started the policy of placing within each
dataset a variable giving the name of the technician who produced the measurement. You decide
to view the dendrogram, using the technician’s name as the label instead of the default observation
number.

. cluster dendrogram sngeuc, labels(labtech) xlabel(, angle(90) labsize(*.75))
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Dendrogram for sngeuc cluster analysis
80

60

40+

L2 dissimilarity measure
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Your suspicions are confirmed. Sam, one of the laboratory technicians, has messed up again. You list
the data and see that all his observations are between zero and one, whereas the other four technicians’
data range up to about 150, as expected. It looks like Sam forgot, once again, to calibrate his sensor
before analyzing his samples. You decide to save a note of your findings with this cluster analysis

(see [MV] cluster notes for the details) and to send the data back to the laboratory to be fixed.
N

> Example 2

The sociology professor of your graduate-level class gives, as homework, a dataset containing 30
observations on 60 binary variables, with the assignment to tell him something about the 30 subjects
represented by the observations. You think that this assignment is too vague, but because your grade
depends on it, you get to work trying to figure something out.

Among the analyses you try is the following cluster analysis. You decide to use single-linkage
clustering with the simple matching binary coefficient because it is easy to understand. Just for fun,
though it makes no difference to you, you specify the generate() option to force the generated
variables to have zstub as a prefix. You let Stata pick a name for your cluster analysis by not
specifying the name () option.

. use https://www.stata-press.com/data/r18/homework, clear

. cluster s al-a60, measure(matching) gen(zstub)
cluster name: _clus_1

. cluster list
_clus_1 (type: hierarchical, method: single, similarity: matching)
vars: zstub_id (id variable)
zstub_ord (order variable)
zstub_hgt (height variable)
other: cmd: cluster singlelinkage al-a60, measure(matching) gen(zstub)
varlist: al a2 a3 a4 ab a6 a7 a8 a9 all0 all al2 al3 al4 alb al6 al7
al8 al9 a20 a2l a22 a23 a24 a25 a26 a27 a28 a29 a30 a3l a32
a33 a34 a35 a36 a37 a38 a39 a40 a4l a42 a43 ad44 ad4b5 ad6 a47
a48 a49 ab0 abl ab2 ab3 ab4 abb5 ab6 ab7 ab8 ab9 a60
range: 1 0

Stata selected _clus_1 as the cluster name and created the variables zstub_id, zstub_ord, and
zstub_hgt.
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You display the dendrogram by using the cluster tree command, which is a synonym for
cluster dendrogram. Because Stata uses the most recently performed cluster analysis by default,
you do not need to type the name.

. cluster tree

Dendrogram for _clus_1 cluster analysis

Matching similarity measure
[oe]
1

719118216 7 9 1620232415121317 8 2511 5 28271014 4 3 222926 2 30

The dendrogram seems to indicate the presence of three groups among the 30 observations. You
decide that this is probably the structure your teacher wanted you to find, and you begin to write
up your report. You want to examine the three groups further, so you use the cluster generate
command (see [MV] cluster generate) to create a grouping variable to make the task easier. You
examine various summary statistics and tables for the three groups and finish your report.

After the assignment is turned in, your professor gives you the same dataset with the addition
of one more variable, truegrp, which indicates the groupings he thinks are in the data. You do a
cross-tabulation of the truegrp and grp3, your grouping variable, to see if you are going to get a
good grade on the assignment.

. cluster generate grp3 = group(3)
. table grp3 truegrp, nototals

truegrp
1 2 3
grp3
1 10
2 10
3 10

Other than the numbers arbitrarily assigned to the three groups, both you and your professor agree.
You rest easier that night knowing that you may survive one more semester.

In addition to examining single-linkage clustering of these data, you decide to see what median-
linkage clustering shows. As with the single-linkage clustering, you pick the simple matching binary
coefficient to measure the similarity between groups. The name () option is used to attach the name
medlink to the cluster analysis. cluster list displays the details; see [MV] cluster utility.
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. cluster median al-a60, measure(match) name(medlink)
. cluster list medlink
medlink (type: hierarchical, method: median, similarity: matching)
vars: medlink_id (id variable)
medlink_ord (order variable)
medlink_hgt (real_height variable)
medlink_pht (pseudo_height variable)
other: cmd: cluster medianlinkage al-a60, measure(match) name(medlink)
varlist: al a2 a3 a4 ab a6 a7 a8 a9 all0 all al2 al3 al4 alb al6 al7
al8 al9 a20 a2l a22 a23 a24 a25 a26 a27 a28 a29 a30 a3l a32
a33 a34 a35 a36 a37 a38 a39 a40 a4l a42 a43 ad44 a45 ad6 a47
a48 a49 ab0 abl ab2 ab3 ab4 abb5 ab6 ab7 ab8 ab9 a60
range: 1 0

You attempt to use the cluster dendrogram command to display the dendrogram, but because
this particular cluster analysis produced reversals, cluster dendrogram refuses to produce the
dendrogram. You realize that with reversals, the resulting dendrogram would not be easy to interpret
anyway.

You use the cluster generate command (see [MV] cluster generate) to create a three-group
grouping variable, based on your median-linkage clustering, to compare with truegrp.

cluster generate medgrp3 = group(3)
. table medgrp3 truegrp, nototals

truegrp
1 2 3
medgrp3
1 10
2 10
3 10

Because you were unable to view a dendrogram by using median-linkage clustering, you turn to
Ward’s linkage clustering method.

. cluster ward al-a60, measure(match) name(wardlink)

. cluster list wardlink
wardlink (type: hierarchical, method: wards, similarity: matching)
vars: wardlink_id (id variable)
wardlink_ord (order variable)
wardlink_hgt (height variable)
other: cmd: cluster wardslinkage al-a60, measure(match) name(wardlink)
varlist: al a2 a3 a4 ab a6 a7 a8 a9 all0 all al2 al3 al4 alb al6 al7
al8 al9 a20 a2l a22 a23 a24 a25 a26 a27 a28 a29 a30 a3l a32
a33 a34 a35 a36 a37 a38 a39 a40 a4l a42 a43 ad44 ad4b5 ad6 a47
a48 a49 ab0 abl ab2 ab3 ab4 abb ab6 ab7 ab8 ab9 a60
range: 1 0
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. cluster tree wardlink

Dendrogram for wardlink cluster analysis

Matching similarity measure
AR
1
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As with single-linkage clustering, the dendrogram from Ward’s linkage clustering seems to indicate
the presence of three groups among the 30 observations. However, notice the y-axis range for the
resulting dendrogram. How can the matching similarity coefficient range from 1 to less than —2?
By definition, the matching coefficient is bounded between 1 and 0. This is an artifact of the way
Ward’s linkage clustering is defined, and it underscores the warning mentioned in the discussion of
the choice of measure. Also see Dissimilarity transformations and the Lance and Williams formula
and Warning concerning similarity or dissimilarity choice in [MV] cluster for more details.

A cross-tabulation of truegrp and wardgrp3, a three-group grouping variable from this cluster
analysis, is shown next.

. cluster generate wardgrp3 = group(3)

. table wardgrp3 truegrp, nototals

truegrp
1 2 3
wardgrp3
1 10
2 10
3 10

Other than the numbers arbitrarily assigned to the three groups, your teacher’s conclusions and the
results from the Ward’s linkage clustering agree. So, despite the warning against using something
other than squared Euclidean distance with Ward’s linkage, you were still able to obtain a reasonable
cluster-analysis solution with the matching similarity coefficient.

N

> Example 3

The wclub dataset contains answers from 30 women to 35 yes—no questions. The variables are
described in example 3 of [MV] clustermat. We are interested in seeing how weighted-average linkage
clustering will cluster the 35 variables (instead of the observations).

We use the matrix dissimilarity command to produce a dissimilarity matrix equal to one
minus the Jaccard similarity; see [MV] matrix dissimilarity.
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. use https://www.stata-press.com/data/r18/wclub, clear

. matrix dissimilarity clubD = , variables Jaccard dissim(oneminus)

. clustermat waverage clubD, name(clubwav) clear labelvar(question)

Number of observations (_N) was O, now 35.

. cluster dendrogram clubwav, labels(question)

> xlabel(, angle(90) labsize(*.75)) title(Weighted-average linkage clustering)

> ytitle(1 - Jaccard similarity, suffix)

Weighted-average linkage clustering

[

[

User matrix clubD dissimilarity measure
1 - Jaccard similarity

bike
swim
jazz
scif
arob
dart
jog
base
brdg
clas
fict
biog
hist
sew
crft
cook
kids
shop

soap

cat
fish
bowl

dog

cntr
west
rome

hors

hock

foot

bask

fshg
pokr

rock
auto

bird

From these 30 women, we see that the biog (enjoy reading biographies) and hist (enjoy reading
history) questions were most closely related. bird (have a bird) seems to be the least related to the

other variables. It merges last into the supergroup containing the remaining variables.

Q Technical note

N

cluster commands require a significant amount of memory and execution time. With many

observations, the execution time may be significant.

Methods and formulas

[MV] cluster discusses and compares the hierarchical clustering methods.

Q

Conceptually, hierarchical agglomerative linkage clustering proceeds as follows. The /N observations
start out as N separate groups, each of size one. The two closest observations are merged into one
group, producing N — 1 total groups. The closest two groups are then merged so that there are
N — 2 total groups. This process continues until all the observations are merged into one large group,
producing a hierarchy of groupings from one group to IV groups. The difference between the various

hierarchical-linkage methods depends on how they define “closest” when comparing groups.

For single-linkage clustering, the closest two groups are determined by the closest observations

between the two groups.

In complete linkage, the closest two groups are determined by the farthest observations between

the two groups.
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For average-linkage clustering, the closest two groups are determined by the average (dis)similarity
between the observations of the two groups.

The Lance—Williams formula provides the basis for extending the well-known Ward’s method
of clustering into the general hierarchical-linkage framework that allows a choice of (dis)similarity
measures.

Centroid linkage merges the groups whose means are closest.

Weighted-average linkage clustering is similar to average-linkage clustering, except that it gives
each group of observations equal weight. Average linkage gives each observation equal weight.

Median linkage is a variation on centroid linkage in that it treats groups of unequal size differently.
Centroid linkage gives each observation equal weight. Median linkage, however, gives each group
of observations equal weight, meaning that with unequal group sizes, the observations in the smaller
group will have more weight than the observations in the larger group.

The linkage clustering algorithm produces two variables that together act as a pointer representation
of a dendrogram. To this, Stata adds a third variable used to restore the sort order, as needed, so
that the two variables of the pointer representation remain valid. The first variable of the pointer
representation gives the order of the observations. The second variable has one less element and gives
the height in the dendrogram at which the adjacent observations in the order variable join.

When reversals happen, a fourth variable, called a pseudoheight, is produced and is used by
postclustering commands with the height variable to properly interpret the ordering of the hierarchy.

See [MV] measure_option for the details and formulas of the available measures, which include
(dis)similarity measures for continuous and binary data.

Joe H. Ward, Jr. (1926-2011) was born in Austin, Texas, and obtained degrees in mathematics
and educational psychology from the University of Texas. He worked as a personnel research
psychologist for the U.S. Air Force Human Resources Laboratory, applying educational psychol-
ogy, statistics, and computers to a wide variety of procedures, most notably the widely used
clustering method named for him. In retirement, he mentored and supported high school students
in computers, statistics, science fairs, and basketball.

Also see
[MV] cluster — Introduction to cluster-analysis commands
[MV] cluster dendrogram — Dendrograms for hierarchical cluster analysis
[MV] cluster generate — Generate grouping variables from a cluster analysis
[MV] cluster notes — Cluster analysis notes
[MV] cluster stop — Cluster-analysis stopping rules
[MV] cluster utility — List, rename, use, and drop cluster analyses

[MV] clustermat — Introduction to clustermat commands
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Description Menu Syntax Remarks and examples Also see

Description

cluster notes is a set of commands to manage notes for a previously run cluster analysis. You
can attach notes that become part of the data and are saved when the data are saved and retrieved
when the data are used. cluster notes may also be used to list notes for all defined cluster analyses
or for specific cluster analyses names.

cluster notes drop allows you to drop cluster notes.

Menu

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Cluster analysis notes

Syntax
Add a note to a cluster analysis

cluster notes clname : text

List all cluster notes

cluster notes

List cluster notes associated with specified cluster analyses

cluster notes clnamelist

Drop cluster notes

cluster notes drop clname [in numlist]

158
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Remarks and examples

The cluster-analysis system in Stata has many features that allow you to manage the various cluster
analyses that you perform. See [MV] cluster for information on all the available cluster-analysis
commands; see [MV] cluster utility for other cluster commands, including cluster list, that
help you manage your analyses. The cluster notes command is modeled after Stata’s notes
command (see [D] notes), but they are different systems and do not interact.

> Example 1

We illustrate the cluster notes command starting with three cluster analyses that have already
been performed. The cluster dir command shows us the names of all the existing cluster analyses;
see [MV] cluster utility.

. cluster dir
sngeuc

sngabs
kmn3abs

. cluster note sngabs : I used single linkage with absolute value distance
. cluster note sngeuc : Euclidean distance and single linkage
. cluster note kmn3abs : This has the kmeans cluster results for 3 groups

. cluster notes

sngeuc
notes: 1. Euclidean distance and single linkage
sngabs
notes: 1. I used single linkage with absolute value distance
kmn3abs
notes: 1. This has the kmeans cluster results for 3 groups

After adding a note to each of the three cluster analyses, we used the cluster notes command
without arguments to list all the notes for all the cluster analyses.

The * and 7 characters may be used when referring to cluster names; see [U] 11.2 Abbreviation
rules.
. cluster note k* : Verify that observation 5 is correct. I am suspicious that

> there was a typographical error or instrument failure in recording the
> information.

. cluster notes kmn3abs
kmn3abs
notes: 1. This has the kmeans cluster results for 3 groups
2. Verify that observation 5 is correct. I am suspicious that
there was a typographical error or instrument failure in
recording the information.
cluster notes expanded k* to kmn3abs, the only cluster name that begins with a k. Notes that
extend to multiple lines are automatically wrapped when displayed. When entering long notes, you
just continue to type until your note is finished. Pressing Return signals that you are done with that
note.

After examining the dendrogram (see [MV] cluster dendrogram) for the sngeuc single-linkage
cluster analysis and seeing one small group of data that split off from the main body of data at a
very large distance, you investigate further and find data problems. You decide to add some notes to
the sngeuc analysis.
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. cluster note *euc : All of Sam’s data looks wrong to me.
. cluster note *euc : I think Sam should be fired.

. cluster notes sng?x*

sngeuc
notes: 1. Euclidean distance and single linkage
2. All of Sam’s data looks wrong to me.
3. I think Sam should be fired.
sngabs
notes: 1. I used single linkage with absolute value distance

Sam, one of the lab technicians, who happens to be the owner’s nephew and is paid more than
you, really messed up. After adding these notes, you get second thoughts about keeping the notes
attached to the cluster analysis (and the data). You decide you really want to delete those notes and
to add a more politically correct note.

. cluster note sngeuc : Ask Jennifer to help Sam reevaluate his data.

. cluster note sngeuc
sngeuc
notes: 1. Euclidean distance and single linkage
2. All of Sam’s data looks wrong to me.
3. I think Sam should be fired.
4. Ask Jennifer to help Sam reevaluate his data.

. cluster note drop sngeuc in 2/3

. cluster notes kmn3abs s*

kmn3abs
notes: 1. This has the kmeans cluster results for 3 groups
2. Verify that observation 5 is correct. I am suspicious that
there was a typographical error or instrument failure in
recording the information.
sngeuc
notes: 1. Euclidean distance and single linkage
2. Ask Jennifer to help Sam reevaluate his data.
sngabs
notes: 1. I used single linkage with absolute value distance

Just for illustration purposes, the new note was added before deleting the two offending notes.
cluster notes drop can take an in argument followed by a list of note numbers. The numbers
correspond to those shown in the listing provided by the cluster notes command. After the
deletions, the note numbers are reassigned to remove gaps. So sngeuc note 4 becomes note 2 after
the deletion of notes 2 and 3 as shown above.

Without an in argument, the cluster notes drop command drops all notes associated with the
named cluster.

N

Remember that the cluster notes are stored with the data and, as with other updates you make to
the data, the additions and deletions are not permanent until you save the data; see [D] save.

Q Technical note

Programmers can access the notes (and all the other cluster attributes) by using the cluster
query command; see [MV] cluster programming utilities.
a
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Also see
[MV] cluster — Introduction to cluster-analysis commands
[MV] cluster programming utilities — Cluster-analysis programming utilities
[MV] cluster utility — List, rename, use, and drop cluster analyses
[MV] clustermat — Introduction to clustermat commands
[D] notes — Place notes in data

[D] save — Save Stata dataset
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cluster programming subroutines — Add cluster-analysis routines

Description Remarks and examples Reference Also see

Description

This entry describes how to extend Stata’s cluster command; see [MV] cluster. Programmers can
add subcommands to cluster, add functions to cluster generate (see [MV] cluster generate),
add stopping rules to cluster stop (see [MV] cluster stop), and set up an alternative command to
be executed when cluster dendrogram is called (see [MV] cluster dendrogram).

The cluster command also provides utilities for programmers; see [MV] cluster programming
utilities to learn more.

Remarks and examples

Remarks are presented under the following headings:

Adding a cluster subroutine

Adding a cluster generate function

Adding a cluster stopping rule

Applying an alternate cluster dendrogram routine

Adding a cluster subroutine

You add a cluster subroutine by creating a Stata program with the name cluster_subcmdname.
For example, to add the subcommand xyz to cluster, create cluster_xyz.ado. Users could then
execute the xyz subcommand with

cluster xyz ...
Everything entered on the command line after cluster xyz is passed to the cluster_xyz command.

You can add new clustering methods, new cluster-management tools, and new postclustering pro-
grams. The cluster command has subcommands that can be helpful to cluster-analysis programmers;
see [MV] cluster programming utilities.

> Example 1

We will add a cluster subroutine by writing a simple postcluster-analysis routine that provides a
cross-tabulation of two cluster-analysis grouping variables. The syntax of the new command will be

cluster mycrosstab clnamel clname?2 [, tabulate_options}

Here is the program:

program cluster_mycrosstab

version 18.0 // (or version 18.5 for StatalNow)
gettoken clnamel O : O , parse(" ,")
gettoken clname2 rest : O , parse(" ,")

cluster query ‘clnamel’
local groupvarl ‘r(groupvar)’

cluster query ‘clname2’
local groupvar2 ‘r(groupvar)’

tabulate ‘groupvarl’ ‘groupvar2’ ‘rest’
end
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See [P] gettoken for information on the gettoken command, and see [R] tabulate twoway
for information on the tabulate command. The cluster query command is one of the cluster
programming utilities that is documented in [MV] cluster programming utilities.

We can demonstrate cluster mycrosstab in action. This example starts with two cluster analyses,
c11 and c12. The dissimilarity measure and the variables included in the two cluster analyses differ.
We want to see how closely the two cluster analyses match.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. cluster kmeans gear head tr, L1 k(5) name(cll) start(krandom(55234))
> gen(cligvar)
. cluster kmeans tr tu mpg, L(1.5) k(5) name(cl2) start(krandom(22132))
> gen(gvar2)
. cluster list, type method dissim var
cl2 (type: partition, method: kmeans, dissimilarity: L(1.5))
vars: gvar2 (group variable)
cll (type: partition, method: kmeans, dissimilarity: L1)
vars: cligvar (group variable)

. cluster mycrosstab cll cl2, chi2

Cluster ID

Cluster ID 1 2 3 4 5 Total
1 10 7 0 0 4 21

2 10 0 0 0 0 10

3 0 0 4 5 2 11

4 0 1 6 4 8 19

5 0 11 1 0 1 13

Total 20 19 11 9 15 74

Pearson chi2(16) = 97.3723 Pr = 0.000
The chi2 option was included to demonstrate that we were able to exploit the existing options of
tabulate with little programming effort. We just pass along to tabulate any of the extra arguments
received by cluster_mycrosstab.

N

Adding a cluster generate function

Programmers can add functions to the cluster generate command (see [MV] cluster generate)
by creating a command called clusgen_name. For example, to add a function called abc() to
cluster generate, you could create clusgen_abc.ado. Users could then execute

cluster generate newvar = abc( ... ) ...

Everything entered on the command line following cluster generate is passed to clusgen_abc.

> Example 2

Here is the beginning of a clusgen_abc program that expects an integer argument and has one
option called name (clname), which gives the name of the cluster. If name () is not specified, the
name defaults to that of the most recently performed cluster analysis. We will assume, for illustration
purposes, that the cluster analysis must be hierarchical and will check for this in the clusgen_abc
program.
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program clusgen_abc

version 18.0 // (or version 18.5 for StataNow)
// we use gettoken to work our way through the parsing
gettoken newvar O : O , parse(" =")
gettoken temp O : 0 , parse(" =")
if tuftemp:u) I= n=n {
error 198
}
gettoken temp O : 0 , parse(" (")
if tu:temp;u; 1= "abc" {
error 198
}
gettoken funcarg O : 0 , parse(" (") match(temp)
if “"‘temp’"’ != "(" {
error 198
}

// funcarg holds the integer argument to abc()
confirm integer number ‘funcarg’

// we can now use syntax to parse the option
syntax [, Name(str) ]

// cluster query will give us the list of cluster names
lf ‘ll(name7ll) = nn
cluster query
local clnames ‘r(names)’
if n ‘Clnames M = nn
di as err "no cluster solutions defined"
exit 198
}
// first name in the list is the latest clustering
local name : word 1 of ‘clnames’

}

// cluster query followed by name will tell us the type
cluster query ‘name’

if "‘r(type)’" != "hierarchical" {
di as err "only allowed with hierarchical clustering"
exit 198

}

/*

you would now pull more information from the call of
cluster query ‘name’
and do your computations and generate ‘newvar’

*/

end

See [MV] cluster programming utilities for details on the cluster query command.

Adding a cluster stopping rule

Programmers can add stopping rules to the rule() option of the cluster stop command (see
[MV] cluster stop) by creating a Stata program with the name clstop_name. For example, to add a
stopping rule named mystop so that cluster stop would now have a rule(mystop) option, you
could create clstop_mystop.ado defining the clstop_mystop program. Users could then execute

cluster stop [clname] , rule(mystop) ...
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The clstop_mystop program is passed the cluster name (c/name) provided by the user (or the name
of the current cluster result if no name is specified), followed by a comma and all the options entered
by the user except for the rule (mystop) option.

> Example 3

We will add a rule(stepsize) option to cluster stop. This option implements the simple
step-size stopping rule (see Milligan and Cooper 1985), which computes the difference in fusion values
between levels in a hierarchical cluster analysis. (A fusion value is the similarity or dissimilarity
measure at which clusters are fused or split in the hierarchical cluster structure.) Large values of the
step-size stopping rule indicate groupings with more distinct cluster structure.

Examining cluster dendrograms (see [MV] cluster dendrogram) to visually determine the number
of clusters is equivalent to using a visual approximation to the step-size stopping rule.

Here is the clstop_stepsize program:

program clstop_stepsize, sortpreserve rclass
version 18.0 // (or version 18.5 for StataNow)
syntax anything(name=clname) [, Depth(integer -1) ]

cluster query ‘clname’
if "‘r(type)’" != "hierarchical" {
di as error ///
"rule(stepsize) only allowed with hierarchical clustering"

exit 198
}
if "‘r(pseudo_heightvar)’" != "" {
di as error "dendrogram reversals encountered"
exit 198
}
local hgtvar ‘r(heightvar)’
if ""r(similarity)"" 1= nn {
sort ‘hgtvar’
local negsign "-"
3
else if ‘"‘r(dissimilarity)’"’ != "" {
gsort -‘hgtvar’
3
else {
di as error "dissimilarity or similarity not set"
exit 198
3

quietly count if !missing(‘hgtvar’)
local depth = cond(‘depth’<=1, r(N), min(‘depth’,r(N)))

tempvar diff

qui gen double ‘diff’=‘negsign’(‘hgtvar’-‘hgtvar’[_n+1]) if _n<‘depth’
di

di as txt "Depth" _col(10) "Stepsize"

di as txt "{hline 17}"

forvalues i = 1/‘= ‘depth’-1’> {

local j = ‘i’ + 1
di as res ‘j’ _col(10) %8.0g ‘diff’[‘i’]
return scalar stepsize_¢j’ = ‘diff’[‘i’]

}
return local rule "stepsize"
end
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See [P] syntax for information about the syntax command, [P] forvalues for information about
the forvalues looping command, and [P] macro for information about the ‘= ... > macro function.
The cluster query command is one of the cluster programming utilities that is documented in
[MV] cluster programming utilities.

With this program, users can obtain the step-size stopping rule. We demonstrate this process
by using an average-linkage hierarchical cluster analysis on the data found in the second example
of [MV] cluster linkage. The dataset contains 30 observations on 60 binary variables. The simple
matching coefficient is used as the similarity measure in the average-linkage clustering.

. use https://www.stata-press.com/data/r18/homework, clear
. cluster a al-a60, measure(match) name(alink)

. cluster stop alink, rule(stepsize) depth(15)

Depth Stepsize

2 .065167
3 .187333
4 .00625
5 .007639
6 .002778
7 .005952
8 .002381
9 .008333
10 .005556
11 .002778
12 0
13 0
14 .006667
15 .01

In the clstop_stepsize program, we included a depth() option. cluster stop, when called
with the new rule(stepsize) option, can also have the depth() option. Here we specified that it
stop at a depth of 15.

The largest step size, .187, happens at the three-group level of the hierarchy. This number, .187,
represents the difference between the matching coefficient created when two groups are formed and
that created when three groups are formed in this hierarchical cluster analysis.

The clstop_stepsize program could be enhanced by using a better output table format. An
option could also be added that stores the results in a matrix.

N

Applying an alternate cluster dendrogram routine

Programmers can change the behavior of the cluster dendrogram command (alias cluster
tree); see [MV] cluster dendrogram. This task is accomplished by using the other () option of
the cluster set command (see [MV] cluster programming utilities) with a fag of treeprogram
and with zext giving the name of the command to be used in place of the standard Stata program for
cluster dendrogram. For example, if you had created a new hierarchical cluster-analysis method
for Stata that needed a different algorithm for producing dendrograms, you would use the command

cluster set clname, other(treeprogram progname)

to set progname as the program to be executed when cluster dendrogram is called.
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> Example 4

If we were creating a new hierarchical cluster-analysis method called myclus, we could create a
program called cluster_myclus (see Adding a cluster subroutine). If myclus needed a different
dendrogram routine from the standard one used within Stata, we could include the following line in
cluster_myclus.ado at the point where we set the cluster attributes.

cluster set ‘clname’, other(treeprogram myclustree)

We could then create a program called myclustree in a file called myclustree.ado that
implements the particular dendrogram program needed by myclus.

4

Reference

Milligan, G. W., and M. C. Cooper. 1985. An examination of procedures for determining the number of clusters in
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Also see
[MV] cluster — Introduction to cluster-analysis commands
[MV] clustermat — Introduction to clustermat commands
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cluster programming utilities — Cluster-analysis programming utilities

Description Syntax Options for cluster set
Options for cluster delete Options for cluster measures Remarks and examples
Stored results Also see

Description

The cluster query, cluster set, cluster delete, cluster parsedistance, and cluster
measures commands provide tools for programmers to add their own cluster-analysis subroutines
to Stata’s cluster command; see [MV] cluster and [MV] cluster programming subroutines. These
commands make it possible for the new command to take advantage of Stata’s cluster-management
facilities.

cluster query provides a way to obtain the various attributes of a cluster analysis in Stata.
If clname is omitted, cluster query returns in r(names) a list of the names of all currently
defined cluster analyses. If clname is provided, the various attributes of the specified cluster analysis
are returned in r(). These attributes include the type, method, (dis)similarity used, created variable
names, notes, and any other information attached to the cluster analysis.

cluster set allows you to set the various attributes that define a cluster analysis in Stata, including
naming your cluster results and adding the name to the master list of currently defined cluster results.
With cluster set, you can provide information on the type, method, and (dis)similarity measure of
your cluster-analysis results. You can associate variables and Stata characteristics (see [P] char) with
your cluster analysis. cluster set also allows you to add notes and other specified fields to your
cluster-analysis result. These items become part of the dataset and are saved with the data.

cluster delete allows you to delete attributes from a cluster analysis in Stata. This command
is the inverse of cluster set.

cluster parsedistance takes the similarity or dissimilarity measure name and checks it against
the list of those provided by Stata, taking account of allowed minimal abbreviations and aliases.
Aliases are resolved (for instance, Euclidean is changed into the equivalent L2).

cluster measures computes the similarity or dissimilarity measure between the observations
listed in the compare () option and the observations included based on the if and in conditions and
places the results in the variables specified by the generate () option. See [MV] matrix dissimilarity
for the matrix dissimilarity command that places (dis)similarities in a matrix.

Stata also provides a method for programmers to extend the cluster command by providing
subcommands; see [MV] cluster programming subroutines.
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Syntax

Obtain various attributes of a cluster analysis

cluster query [ clname ]

Set various attributes of a cluster analysis

cluster set [clname] [, set_()pzions]

Delete attributes from a cluster analysis

cluster delete clname [, delete_options]

Check similarity and dissimilarity measure name

cluster parsedistance measure

Compute similarity and dissimilarity measure

cluster measures varlist [lf] [in] , compare (numlist) generate (newvarlist)

[ measures_()pti()ns }

set_options

Description

addname

type (type)

method (method)
similarity (measure)

dissimilarity (measure)

var (tag varname)
char (tag charname)
other (tag text)
note (text)

add clname to the master list of cluster analyses

set the cluster type for clname

set the name of the clustering method for the cluster analysis

set the name of the similarity measure used for the cluster
analysis

set the name of the dissimilarity measure used for the cluster
analysis

set tag that points to varname

set tag that points to charname

set tag with fext attached to the tag marker

add a note to the clname
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delete_options

Description

zap
delname

type

method
similarity
dissimilarity
notes (numlist)
allnotes

var (tag)
allvars
varzap (tag)
allvarzap
char (tag)
allchars
charzap (fag)
allcharzap
other (tag)
allothers

delete all possible settings for clname

remove clname from the master list of current cluster analyses
delete the cluster type entry from clname

delete the cluster method entry from clname

delete the similarity entries from clname

delete the dissimilarity entries from clname

delete the specified numbered notes from clname

remove all notes from clname

remove fag from clname

remove all the entries pointing to variables for clname

same as var (), but also delete the referenced variable

same as allvars, but also delete the variables

remove fag that points to a Stata characteristic from clname
remove all entries pointing to Stata characteristics for clname
same as char (), but also delete the characteristic

same as allchars, but also delete the characteristics

delete rfag and its associated text from clname

delete all entries from clname that have been set using other ()

measures_options

Description

* compare (numlist)
* generate (newvarlist)

measure
propvars

propcompares

use numlist as the comparison observations

create newvarlist variables

(dis)similarity measure; see Options for cluster measures for available
measures; default is L2

interpret observations implied by if and in as proportions of
binary observations

interpret comparison observations as proportions of binary
observations

* compare (numlist) and generate (newvarlist) are required.

collect is allowed with cluster query; see [U] 11.1.10 Prefix commands.

Options for cluster set

addname adds clname to the master list of currently defined cluster analyses. When clname is not
specified, the addname option is mandatory, and here, cluster set automatically finds a cluster
name that is not currently in use and uses this as the cluster name. cluster set returns the name
of the cluster in r(name). If addname is not specified, the clname must have been added to the
master list previously (for instance, through a previous call to cluster set).

type (type) sets the cluster type for clname. type (hierarchical) indicates that the cluster analysis is
hierarchical-style clustering, and type (partition) indicates that it is a partition-style clustering.
You are not restricted to these types. For instance, you might program some kind of fuzzy
partition-clustering analysis, so you then use type (fuzzy).
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method (method) sets the name of the clustering method for the cluster analysis. For instance, Stata
uses method (kmeans) to indicate a kmeans cluster analysis and uses method (single) to indicate
single-linkage cluster analysis. You are not restricted to the names currently used within Stata.

similarity (measure) and dissimilarity (measure) set the name of the similarity or dissimilarity
measure used for the cluster analysis. For example, Stata uses dissimilarity(L2) to indicate
the L2 or Euclidean distance. You are not restricted to the names currently used within Stata. See
[MV] measure_option and [MV] cluster for a listing and discussion of (dis)similarity measures.

var (tag varname) sets a marker called fag in the cluster analysis that points to the variable varname. For
instance, Stata uses var (group varname) to set a grouping variable from a kmeans cluster analysis.
With single-linkage clustering, Stata uses var (id idvarname), var (order ordervarname), and
var (height hgtvarname) to set the id, order, and height variables that define the cluster-
analysis result. You are not restricted to the names currently used within Stata. Up to 10 var()
options may be specified with a cluster set command.

char (tag charname) sets a marker called fag in the cluster analysis that points to the Stata characteristic
named charname; see [P] char. This characteristic can be either an _dta[] dataset characteristic
or a variable characteristic. Up to 10 char() options may be specified with a cluster set
command.

other(fag text) sets a marker called fag in the cluster analysis with fext attached to the rag marker.
Stata uses other (k #) to indicate that k (the number of groups) was # in a kmeans cluster analysis.
You are not restricted to the names currently used within Stata. Up to 10 other () options may
be specified with a cluster set command.

note (fext) adds a note to the c/name cluster analysis. The cluster notes command (see [MV] cluster
notes) is the command to add, delete, or view cluster notes. The cluster notes command uses
the note () option of cluster set to add a note to a cluster analysis. Up to 10 note() options
may be specified with a cluster set command.

Options for cluster delete

zap deletes all possible settings for cluster analysis clname. It is the same as specifying the del-
name, type, method, similarity, dissimilarity, allnotes, allcharzap, allothers, and
allvarzap options.

delname removes clname from the master list of current cluster analyses. This option does not affect
the various settings that make up the cluster analysis. To remove them, use the other options of
cluster delete.

type deletes the cluster type entry from clname.
method deletes the cluster method entry from clname.

similarity and dissimilarity delete the similarity and dissimilarity entries, respectively, from
clname.

notes (numlist) deletes the specified numbered notes from clname. The numbering corresponds to the
returned results from the cluster query clname command. The cluster notes drop command
(see [MV] cluster notes) drops a cluster note. It, in turn, calls cluster delete, using the notes ()
option to drop the notes.

allnotes removes all notes from the clname cluster analysis.

var (tag) removes from clname the entry labeled tag that points to a variable. This option does not
delete the variable.
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allvars removes all the entries pointing to variables for clname. This option does not delete the
corresponding variables.

varzap (fag) is the same as var () and actually deletes the variable in question.
allvarzap is the same as allvars and actually deletes the variables.

char (tag) removes from clname the entry labeled tag that points to a Stata characteristic (see
[P] char). This option does not delete the characteristic.

allchars removes all the entries pointing to Stata characteristics for clname. This option does not
delete the characteristics.

charzap(fag) is the same as char () and actually deletes the characteristics.
allcharzap is the same as allchars and actually deletes the characteristics.

other(rag) deletes from clname the tag entry and its associated text, which were set by using the
other () option of the cluster set command.

allothers deletes all entries from clname that have been set using the other() option of the
cluster set command.

Options for cluster measures

compare (numlist) is required and specifies the observations to use as the comparison observations.
Each of these observations will be compared with the observations implied by the if and in
conditions, using the specified (dis)similarity measure. The results are stored in the corresponding
new variable from the generate () option. There must be the same number of elements in numlist
as there are variable names in the generate() option.

generate (newvarlist) is required and specifies the names of the variables to be created. There must
be as many elements in newvarlist as there are numbers specified in the compare () option.

measure specifies the similarity or dissimilarity measure. The default is L2 (synonym Euclidean).
This option is not case sensitive. See [MV] measure _option for detailed descriptions of the supported
measures.

propvars is for use with binary measures and specifies that the observations implied by the if and
in conditions be interpreted as proportions of binary observations. The default action with binary
measures treats all nonzero values as one (excluding missing values). With propvars, the values
are confirmed to be between zero and one, inclusive. See [MV] measure_option for a discussion
of the use of proportions with binary measures.

propcompares is for use with binary measures. It indicates that the comparison observations (those
specified in the compare() option) are to be interpreted as proportions of binary observations.
The default action with binary measures treats all nonzero values as one (excluding missing
values). With propcompares, the values are confirmed to be between zero and one, inclusive.
See [MV] measure_option for a discussion of the use of proportions with binary measures.

Remarks and examples

> Example 1

Programmers can determine which cluster solutions currently exist by using the cluster query
command without specifying a cluster name to return the names of all currently defined clusters.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. cluster k gear turn trunk mpg displ, k(6) name(grpk6L2) measure(L2) gen(g6l2)
. cluster k gear turn trunk mpg displ, k(7) name(grpk7L2) measure(L2) gen(g712)
. cluster kmed gear turn trunk mpg displ, k(6) name(grpk6L1) measure(L1) gen(g6l1)
. cluster kmed gear turn trunk mpg displ, k(7) name(grpk7L1) measure(L1) gen(g711)

. cluster dir

grpk7L1

grpk6L1

grpk7L2

grpk6L2

. cluster query

. return list

macros:

r(names) : "grpk7L1 grpk6L1 grpk7L2 grpk6L2"

Here there are four cluster solutions. A programmer can further process the r (names) returned macro.
For example, to determine which current cluster solutions used kmeans clustering, we would loop
through these four cluster solution names and, for each one, call cluster query to determine its
properties.

. local clusnames ‘r(names)’

. foreach cname of local clusnames {

2. cluster query ‘cname’

3. if "‘r(method)’" == "kmeans" {

4. local kmeancls ‘kmeancls’ ‘cname’
5. }

6. )

. di "{tab}Cluster analyses using kmeans: ‘kmeancls’"
Cluster analyses using kmeans: grpk7L2 grpk6L2

Here we examined r (method), which records the name of the cluster-analysis method. Two of the
four cluster solutions used kmeans.

N

> Example 2

We interactively demonstrate cluster set, cluster delete, and cluster query, though in
practice these would be used within a program.

First, we add the name myclus to the master list of cluster analyses and, at the same time, set
the type, method, and similarity.

. cluster set myclus, addname type(madeup) method(fake) similarity(who knows)
. cluster query
. return list

macros:
r(names) : "myclus grpk7L1 grpk6L1 grpk7L2 grpk6L2"
. cluster query myclus
. return list
macros:
r(name) : "myclus"
r(similarity) : "who knows"

r(method) : "fake"
r(type) : "madeup"
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cluster query shows that myclus was successfully added to the master list of cluster analyses and
that the attributes that were cluster set can also be obtained.

Now we add a reference to a variable. We will use the word group as the fag for a variable
mygrpvar. We also add another item called xyz and associate some text with the xyz item.

. cluster set myclus, var(group mygrpvar) other(xyz some important info)

. cluster query myclus

. return list

macros:
r(name) "myclus"
r(ol_val) "some important info"
r(ol_tag) "xyz"
r(groupvar) "mygrpvar"
r(vl_name) "mygrpvar"
r(vi_tag) "group"
r(similarity) "who knows"
r(method) : "fake"
r(type) "madeup"

The cluster query command returned the mygrpvar information in two ways. The first way
is with r(v#_tag) and r(v#_name). Here there is only one variable associated with myclus, so
we have r(vi_tag) and r(vi_name). This information allows the programmer to loop over all the
stored variable names without knowing beforehand what the fags might be or how many there are.
You could loop as follows:

local i 1
while "‘r(v‘i’_tag)’"

1= nn {
local ++i
}

The second way the variable information is returned is in an r () result with the tag name appended
by var, r(tagvar). In our example, this is r (groupvar). This second method is convenient when,
as the programmer, you know exactly which varname information you are seeking.

The same logic applies to characteristic attributes that are cluster set.
Now we continue with our interactive example:

. cluster delete myclus, method var(group)
. cluster set myclus, note(a note) note(another note) note(a third note)
. cluster query myclus

. return list

macros:
r(name) : "myclus"
r(note3) "a third note"
r(note2) "another note"
r(notel) : "a note"
r(ol_val) "some important info"
r(ol_tag) "xyz"
r(similarity) : "who knows"
r(type) "madeup"

We used cluster delete to remove the method and the group variable we had associated with
myclus. Three notes were then added simultaneously by using the note () option of cluster set.
In practice, users will use the cluster notes command (see [MV] cluster notes) to add and delete
cluster notes. The cluster notes command is implemented with the cluster set and cluster
delete programming commands.



cluster programming utilities — Cluster-analysis programming utilities 175

We finish our interactive demonstration of these commands by deleting more attributes from myclus
and then eliminating myclus. In practice, users would remove a cluster analysis with the cluster
drop command (see [MV] cluster utility), which is implemented with the zap option of the cluster
delete command.

. cluster delete myclus, allnotes similarity
. cluster query myclus

. return list

macros:
r(name) "myclus"
r(ol_val) "some important info"
r(ol_tag) "xyz"
r(type) "madeup"
. cluster delete myclus, zap

. cluster query
. return list

macros:

r(names) "grpk7L1 grpk6L1 grpk7L2 grpk6éL2"
The cluster attributes that are cluster set become a part of the dataset. They are saved with the

dataset when it is saved and are available again when the dataset is used; see [D] save.

N

Q Technical note

You may wonder how Stata’s cluster-analysis data structures are implemented. Stata data charac-
teristics (see [P] char) hold the information. The details of the implementation are not important, and
in fact, we encourage you to use the set, delete, and query subcommands to access the cluster
attributes. This way, if we ever decide to change the underlying implementation, you will be protected
through Stata’s version-control feature.

a

> Example 3

The cluster parsedistance programming command takes as an argument the name of a similarity
or dissimilarity measure. Stata then checks this name against those that are implemented within Stata
(and available to you through the cluster measures command). Uppercase or lowercase letters
are allowed, and minimal abbreviations are checked. Some of the measures have aliases, which are
resolved so that a standard measure name is returned. We demonstrate the cluster parsedistance
command interactively:

. cluster parsedistance max

. sreturn list

macros:
s(drange) "o "
s(dtype) "dissimilarity"
s (unab) "maximum"
s(dist) : "Linfinity"
. cluster parsedistance Eucl
. sreturn list
macros:
s(drange) "o "
s(dtype) "dissimilarity"
s (unab) "Euclidean"
s(dist) "L2"
. cluster parsedistance correl



176 cluster programming utilities — Cluster-analysis programming utilities

. sreturn list

macros:
s(drange) : "1 -1"
s(dtype) : "similarity"
s(unab) : "correlation"
s(dist) : "correlation"

. cluster parsedistance jacc

. sreturn list

macros:
s(drange) : "1 0"
s(binary) : "binary"
s(dtype) : "similarity"
s(unab) : "Jaccard"
s(dist) : "Jaccard"

cluster parsedistance returns s (dtype) as either similarity or dissimilarity. It returns
s(dist) as the standard Stata name for the (dis)similarity and returns s (unab) as the unabbreviated
standard Stata name. s(drange) gives the range of the measure (most similar to most dissimilar).
If the measure is designed for binary variables, s(binary) is returned with the word binary, as
seen above.

See [MV] measure_option for a listing of the similarity and dissimilarity measures and their
properties.

4

> Example 4

cluster measures computes the similarity or dissimilarity measure between each comparison
observation and the observations implied by the if and in conditions (or all the data if no if or in
conditions are specified).
We demonstrate with the auto dataset:
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. cluster measures turn trunk gear in 1/10, compare(3 11) gen(z3 z11) L1
. format zx %8.2f
. list turn trunk gear z3 zil in 1/11

turn trunk gear_r-~o z3 z11
1. 40 11 3.58 6.50 14.30
2. 40 11 2.53 6.55  13.25
3. 35 12 3.08 0.00 17.80
4. 40 16 2.93 9.15 8.65
5. 43 20 2.41 16.67 1.13
6. 43 21 2.73 17.35 2.45
7. 34 10 2.87 3.21  20.59
8. 42 16 2.93 11.15 6.65
9. 43 17 2.93 13.15 4.65
10. 42 13 3.08 8.00 9.80
11. 44 20 2.28

Using the three variables turn, trunk, and gear_ratio, we computed the L1 (or absolute value)
distance between the third observation and the first 10 observations and placed the results in the
variable z3. The distance between the 11th observation and the first 10 was placed in variable z11.
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There are many measures designed for binary data. Below we illustrate cluster measures with
the matching coefficient binary similarity measure. We have 8 observations on 10 binary variables,
and we will compute the matching similarity measure between the last 3 observations and all 8
observations.

. use https://www.stata-press.com/data/r18/clprogxmpll, clear
. cluster measures x1-x10, compare(6/8) gen(z6 z7 z8) matching

. format zx %4.2f

. list

x1 x2 x3 x4 x5 x6 X7 x8 x9 x10 z6 z7 z8
1. 1 0 0 0 1 1 0 0 1 1 0.60 0.80 0.40
2. 1 1 1 0 0 1 0 1 1 0 0.70 0.30 0.70
3. 0 0 1 0 0 0 1 0 0 1 0.60 0.40 0.20
4. 1 1 1 1 0 0 0 1 1 1 0.40 0.40 0.60
5. 0 1 0 1 1 0 1 0 0 1 0.20 0.60 0.40
6 1 0 1 0 0 1 0 0 0 0 1.00 0.40 0.60
7. 0 0 0 1 1 0 0 1 1 0.40 1.00 0.40
8. 1 1 0 1 0 1 0 1 0 0 0.60 0.40 1.00

Stata treats all nonzero observations as one (except missing values, which are treated as missing
values) when computing these binary measures.

When the similarity measure between binary observations and the means of groups of binary
observations is needed, the propvars and propcompares options of cluster measures provide
the solution. The mean of binary observations is a proportion. The value 0.2 would indicate that 20%
of the values were one and 80% were zero for the group. See [MV] measure_option for a discussion
of binary measures. The propvars option indicates that the main body of observations should be
interpreted as proportions. The propcompares option specifies that the comparison observations be
treated as proportions.

We compare 10 binary observations on five variables to 2 observations holding proportions by
using the propcompares option:

. use https://www.stata-press.com/data/r18/clprogxmpl2, clear

. cluster measures a* in 1/10, compare(11l 12) gen(cl c2) matching propcompare

. list
al a2 a3 a4 ab cl c2
1. 1 1 1 0 1 .6 .56
2. 0 0 1 1 1 .36 .8
3. 1 0 1 0 0 .76 .56
4. 1 1 0 1 1 .36 .44
5. 1 0 0 0 0 .68 4
6. 0 0 1 1 1 .36 .8
T. 1 0 1 0 1 .64 .76
8. 1 0 0 0 1 .56 .6
9. 0 1 1 1 1 .32 .6
10. 1 1 1 1 1 .44 .6
11. 8 4 7 1 2
12. 5 0 .9 1
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Stored results
cluster query with no arguments stores the following in r():

Macros
r (names) cluster solution names

cluster query with an argument stores the following in r():

Macros
r (name) cluster name
r(type) type of cluster analysis
r (method) cluster-analysis method
r(similarity) similarity measure name
r(dissimilarity)  dissimilarity measure name
r(note#) cluster note number #
r(v#_tag) variable tag number #
r (v#_name) varname associated with r(v#_tag)
r(tagvar) varname associated with rag
r(c#_tag) characteristic tag number #
r(c#_name) characteristic name associated with r(c#_tag)
r(c#_val) characteristic value associated with r(c#_tag)
r(tagchar) characteristic name associated with rag
r(o#_tag) other tag number #
r(o#_val) other value associated with r(o#_tag)

cluster set stores the following in r():

Macros
r(name) cluster name

cluster parsedistance stores the following in s():

Macros
s(dist) (dis)similarity measure name
s (unab) unabbreviated (dis)similarity measure name (before resolving alias)
s(darg) argument of (dis)similarities that take them, such as L(#)
s(dtype) similarity or dissimilarity
s(drange) range of measure (most similar to most dissimilar)
s(binary) binary if the measure is for binary observations

cluster measures stores the following in r():

Macros
r(generate) variable names from the generate() option
r(compare) observation numbers from the compare() option
r(dtype) similarity or dissimilarity
r(distance) the name of the (dis)similarity measure
r(binary) binary if the measure is for binary observations
Also see

[MV] cluster — Introduction to cluster-analysis commands
[MV] clustermat — Introduction to clustermat commands

[MV] cluster programming subroutines — Add cluster-analysis routines
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

cluster stop and clustermat stop compute the stopping-rule value for each cluster solution.
The commands currently provide two stopping rules, the Calinski and Harabasz pseudo-F' index
and the Duda—Hart Je(2)/Je(1) index. For both rules, larger values indicate more distinct clustering.
Presented with the Duda—Hart Je(2)/Je(1) values are pseudo—T2 values. Smaller pseudo—T2 values
indicate more distinct clustering.

Users can add more stop rules; see [MV] cluster programming subroutines.

Quick start

Cluster analysis of data

Califiski—Harabasz pseudo-F' index stopping rule for the most recent cluster analysis
cluster stop

Duda—Hart Je(2)/Je(1) index stopping rule
cluster stop, rule(duda)

Same as above, but use results for the 5-20-group solutions instead of the default 1—15-group solutions
cluster stop, rule(duda) groups(5/20)

Same as above, but for cluster analysis results named myclus
cluster stop myclus, rule(duda) groups(5/20)

Same as above, but use variables v1 and v2 to compute the stopping rule instead of the variables
used in myclus

cluster stop myclus, rule(duda) groups(5/20) variables(vl v2)

Cluster analysis of dissimilarity matrix

Califiski—Harabasz pseudo-F' index stopping rule computed using v1, v2, and v3 from results named
mymatclus

clustermat stop mymatclus, variables(vl v2 v3)

Menu

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Cluster analysis stopping rules

179
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Syntax
Cluster analysis of data

cluster stop [clname] [, options]

Cluster analysis of a dissimilarity matrix

clustermat stop [clname] , variables (varlist) [options]

where clname is the name of the cluster analysis. The default is the most recently performed cluster
analysis, which can be reset using the cluster use command; see [MV] cluster utility.

options Description
rule(calinski) use Califiski—Harabasz pseudo-F' index stopping rule; the default
rule(duda) use Duda—Hart Je(2)/Je(1) index stopping rule
rule (rule_name) use rule_name stopping rule; see Options for details
groups (numlist) compute stopping rule for specified groups
matrix (matname) save results in matrix matname
*variables (varlist) compute the stopping rule using varlist

* variables (varlist) is required with a clustermat solution and optional with a cluster solution.

collect is allowed; see [U] 11.1.10 Prefix commands.

rule (rule_name) is not shown in the dialog box. See [MV] cluster programming subroutines for information
on how to add stopping rules to the cluster stop command.

Options

rule(calinski | duda | rule_name) indicates the stopping rule. rule(calinski), the default, spec-
ifies the Calinski—Harabasz pseudo-F' index. rule(duda) specifies the Duda—Hart Je(2)/Je(1)
index.

rule(calinski) is allowed for both hierarchical and nonhierarchical cluster analyses.
rule(duda) is allowed only for hierarchical cluster analyses.

You can add stopping rules to the cluster stop command (see [MV] cluster programming
subroutines) by using the rule (rule_name) option. [MV] cluster programming subroutines
illustrates how to add stopping rules by showing a program that adds a rule(stepsize) option,
which implements the simple step-size stopping rule mentioned in Milligan and Cooper (1985).

groups (numlist) specifies the cluster groupings for which the stopping rule is to be computed.
groups (3/20) specifies that the measure be computed for the three-group solution, the four-group
solution, ..., and the 20-group solution.

With rule (duda), the default is groups(1/15). With rule(calinski) for a hierarchical cluster
analysis, the default is groups (2/15). groups (1) is not allowed with rule(calinski) because
the measure is not defined for the degenerate one-group cluster solution. The groups () option is
unnecessary (and not allowed) for a nonhierarchical cluster analysis.

If there are ties in the hierarchical cluster-analysis structure, some (or possibly all) of the requested
stopping-rule solutions may not be computable. cluster stop passes over, without comment, the
groups () for which ties in the hierarchy cause the stopping rule to be undefined.
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matrix (matname) saves the results in a matrix named matname.

With rule(calinski), the matrix has two columns, the first giving the number of clusters and
the second giving the corresponding Calinski—Harabasz pseudo-F' stopping-rule index.

With rule(duda), the matrix has three columns: the first column gives the number of clusters,
the second column gives the corresponding Duda—Hart Je(2)/Je(1) stopping-rule index, and the
third column provides the corresponding pseudo-7"2 values.

variables (varlist) specifies the variables to be used in the computation of the stopping rule. By
default, the variables used for the cluster analysis are used. variables() is required for cluster
solutions produced by clustermat.

Remarks and examples

Cluster-analysis stopping rules are used to determine the number of clusters. A stopping-rule value
(also called an index) is computed for each cluster solution (for example, at each level of the hierarchy
in a hierarchical cluster analysis). Larger values (or smaller, depending on the particular stopping rule)
indicate more distinct clustering. See [MV] cluster for background information on cluster analysis
and on the cluster and clustermat commands.

Everitt et al. (2011) and Gordon (1999) discuss the problem of determining the number of clusters
and describe several stopping rules, including the Califiski—Harabasz (1974) pseudo-F' index and
the Duda—Hart (2001, sec. 10.10) Je(2)/Je(1) index. There are many cluster stopping rules. Milligan
and Cooper (1985) evaluate 30 stopping rules, singling out the Caliiski—Harabasz index and the
Duda—Hart index as two of the best rules.

Large values of the Calinski—Harabasz pseudo-F' index indicate distinct clustering. The Duda—Hart
Je(2)/Je(1) index has an associated pseudo—T2 value. A large Je(2)/Je(1) index value and a small
pseudo-T"2 value indicate distinct clustering. See Methods and formulas at the end of this entry for
details.

Example 2 of [MV] clustermat shows the use of the clustermat stop command.

Some stopping rules such as the Duda—Hart index work only with a hierarchical cluster analysis.
The Califiski-Harabasz index, however, may be applied to both nonhierarchical and hierarchical
cluster analyses.

> Example 1

Previously, you ran kmeans cluster analyses on data where you measured the flexibility, speed, and
strength of the 80 students in your physical education class; see example 1 of [MV] cluster kmeans
and kmedians. Your original goal was to split the class into four groups, though you also examined
the three- and five-group kmeans cluster solutions as possible alternatives.

Now out of curiosity, you wonder what the Califiski—Harabasz stopping rule shows for the three-,
four-, and five-group solutions from a kmedian clustering of this dataset.

. use https://www.stata-press.com/data/r18/physed
. cluster kmed flex speed strength, k(3) name(kmed3) measure(abs) start(lastk)

. cluster kmed flex speed strength, k(4) name(kmed4) measure(abs)
> start (kr(93947))

. cluster kmed flex speed strength, k(5) name(kmed5) measure(abs)
> start(prand(16872))
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. cluster stop kmed3

Calinski/
Number of Harabasz
clusters pseudo-F
3 132.75
. cluster stop kmed4
Calinski/
Number of Harabasz
clusters pseudo-F
4 337.10
. cluster stop kmedb5
Calinski/
Number of Harabasz
clusters pseudo-F
5 300.45

The four-group solution with a Calinski—Harabasz pseudo-I’ value of 337.10 is largest, indicating
that the four-group solution is the most distinct compared with the three-group and five-group solutions.

The three-group solution has a much lower stopping-rule value of 132.75. The five-group solution,
with a value of 300.45, is reasonably close to the four-group solution.

Though you do not think it will change your decision on how to split your class into groups,
you are curious to see what a hierarchical cluster analysis might produce. You decide to try an
average-linkage cluster analysis using the default Euclidean distance; see [MV] cluster linkage. You
examine the resulting cluster analysis with the cluster tree command, which is an easier-to-type
alias for the cluster dendrogram command; see [MV] cluster dendrogram.

. cluster averagelink flex speed strength, name(avglnk)

. cluster tree avglnk, xlabel(, angle(90) labsize(*.5))

Dendrogram for avglnk cluster analysis
10

L2 dissimilarity measure

0-
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You are curious to see how the four- and five-group solutions from this hierarchical cluster analysis
compare with the four- and five-group solutions from the kmedian clustering.

. cluster gen avgg = groups(4/5), name(avglnk)

. table kmed4 avgg4, nototals

avggé
1 2 3 4
Cluster ID
1 10
2 35
3 15
4 20

. table kmed5 avggb, nototals

avggb
1 2 3 4
Cluster ID

1 15
2 15
3 19
4 20
5 10

The four-group solutions are identical, except for the numbers used to label the groups. The
five-group solutions are different. The kmedian clustering split the 35-member group into subgroups
having 20 and 15 members. The average-linkage clustering instead split one member off from the

20-member group.

Now you examine the Califiski—Harabasz pseudo-F' stopping-rule values associated with the
kmedian hierarchical cluster analysis.

. cluster stop avglnk, rule(calinski)

Calinski/
Number of Harabasz
clusters pseudo-F
2 131.86
3 126.62
4 337.10
5 269.07
6 258.40
7 259.37
8 290.78
9 262.86
10 258.53
11 249.93
12 247.85
13 247.53
14 236.98
15 226.51

Because rule(calinski) is the default, you could have obtained this same table by typing

. cluster stop avglnk
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or, because avglnk was the most recent cluster analysis performed, by typing

. cluster stop

You did not specify the number of groups to examine from the hierarchical cluster analysis, so it
defaulted to examining up to 15 groups. The highest Califiski—Harabasz pseudo-F' value is 337.10
for the four-group solution.

What does the Duda—Hart stopping rule produce for this hierarchical cluster analysis?

. cluster stop avglnk, rule(duda) groups(1/10)

Duda/Hart
Number of pseudo
clusters Je(2)/Je(1) T-squared
1 0.3717 131.86
2 0.1349 147.44
3 0.2283 179.19
4 0.8152 4.08
5 0.2232 27.85
6 0.5530 13.74
7 0.5287 29.42
8 0.6887 3.16
9 0.4888 8.37
10 0.7621 7.80

This time, we asked to see the results for one to 10 groups. The largest Duda—Hart Je(2)/Je(1)
stopping-rule value is 0.8152, corresponding to four groups. The smallest pseudo-7"2 value is 3.16
for the eight-group solution, but the pseudo-7"? value for the four-group solution is also low, with a
value of 4.08.

Distinct clustering is characterized by large Califiski—Harabasz pseudo-F' values, large Duda—Hart
Je(2)/Je(1) values, and small Duda—Hart pseudo-T2 values.

The conventional wisdom for deciding the number of groups based on the Duda—Hart stopping-rule
table is to find one of the largest Je(2)/Je(1) values that corresponds to a low pseudo-T" value that has
much larger 72 values next to it. This strategy, combined with the results from the Califiski—Harabasz
results, indicates that the four-group solution is the most distinct from this hierarchical cluster analysis.

4

Q Technical note

There is a good reason that the word “pseudo” appears in “pseudo-F" and “pseudo-72". Although
these index values are based on well-known statistics, any p-values computed from these statistics
would not be valid. Remember that cluster analysis searches for structure.

If you were to generate random observations, perform a cluster analysis, compute these stopping-
rule statistics, and then follow that by computing what would normally be the p-values associated
with the statistics, you would almost always end up with significant p-values.

Remember that you would expect, on average, five of every 100 groupings of your random data to
show up as significant when you use .05 as your threshold for declaring significance. Cluster-analysis
methods search for the best groupings, so there is no surprise that p-values show high significance,
even when none exists.

Examining the stopping-rule index values relative to one another is useful, however, in finding
relatively reasonable groupings that may exist in the data.
a
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Q Technical note

As mentioned in Methods and formulas, ties in the hierarchical cluster structure cause some of the
stopping-rule index values to be undefined. Discrete (as opposed to continuous) data tend to cause
ties in a hierarchical clustering. The more discrete the data, the more likely it is that ties will occur
(and the more of them you will encounter) within a hierarchy.

Even with so-called continuous data, ties in the hierarchical clustering can occur. We say “so-called”
because most continuous data are truncated or rounded. For instance, miles per gallon, length, weight,
etc., which may really be continuous, may be observed and recorded only to the tens, ones, tenths,
or hundredths of a unit.

You can have data with no ties in the observations and still have many ties in the hierarchy. Ties
in distances (or similarities) between observations and groups of observations cause the ties in the
hierarchy.

Thus, do not be surprised when some (many) of the stopping-rule values that you request are not
presented. Stata has decided not to break the ties arbitrarily, because the stopping-rule values may
differ widely, depending on which split is made.

a

Q Technical note

The stopping rules also become less informative as the number of elements in the groups becomes
small, that is, having many groups, each with few observations. We recommend that if you need to
examine the stopping-rule values deep within your hierarchical cluster analysis, you do so skeptically.

a

Stored results

cluster stop and clustermat stop with rule(calinski) stores the following in r():

Scalars

r(calinski_#) Calinski—Harabasz pseudo-F for # groups
Macros

r(rule) calinski

r(label) C-H pseudo-F

r(longlabel) Calinski & Harabasz pseudo-F

cluster stop and clustermat stop with rule(duda) stores the following in r():

Scalars

r(duda_#) Duda—Hart Je(2)/Je(1) value for # groups

r(dudat2_#) Duda—Hart pseudo-T2 value for # groups
Macros

r(rule) duda

r(label) D-H Je(2)/Je(1)

r(longlabel) Duda & Hart Je(2)/Je(1)

r(label2) D-H pseudo-T-squared

r(longlabel2) Duda & Hart pseudo-T-squared



186 cluster stop — Cluster-analysis stopping rules

Methods and formulas

The Califiski—Harabasz pseudo-F’ stopping-rule index for g groups and /N observations is

trace(B)/(g — 1)
trace(W) /(N — g)

where B is the between-cluster sum of squares and cross-products matrix, and W is the within-cluster
sum of squares and cross-products matrix.

Large values of the Califiski—-Harabasz pseudo-F' stopping-rule index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure.

The Duda—Hart Je(2)/Je(1) stopping-rule index value is literally Je(2) divided by Je(1). Je(1) is
the sum of squared errors within the group that is to be divided. Je(2) is the sum of squared errors
in the two resulting subgroups.

Large values of the Duda—Hart pseudo-T2 stopping-rule index indicate distinct cluster structure.
Small values indicate less clearly defined cluster structure.

The Duda—Hart Je(2)/Je(1) index requires hierarchical clustering information. It needs to know at
each level of the hierarchy which group is to be split and how. The Duda—Hart index is also local
because the only information used comes from the group’s being split. The information in the rest of
the groups does not enter the computation.

In comparison, the Califiski—Harabasz rule does not require hierarchical information and is global
because the information from each group is used in the computation.

A pseudo-T2 value is also presented with the Duda and Hart Je(2)/Je(1) index. The relationship is

1 T2
Je(2)/Te(1) Ni+ Ny —2

where N7 and Ny are the numbers of observations in the two subgroups.

Je(2)/Je(1) will be zero when Je(2) is zero, that is, when the two subgroups each have no variability.
An example of this is when the cluster being split has two distinct values that are being split into
singleton subgroups. Je(1) will never be zero because we do not split groups that have no variability.
When Je(2)/Je(1) is zero, the pseudo-72 value is undefined.

Ties in splitting a hierarchical cluster analysis create an ambiguity for the Je(2)/Je(1) measure. For
example, to compute the measure for the case of going from five clusters to six, you need to identify
the one cluster that will be split. With a tie in the hierarchy, you would instead go from five clusters
directly to seven (just as an example). Stata refuses to produce an answer in this situation.
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cluster utility — List, rename, use, and drop cluster analyses

Description Menu Syntax
Options for cluster list Options for cluster renamevar Remarks and examples
Also see

Description

These cluster utility commands allow you to view and manipulate the cluster objects that you
have created. See [MV] cluster for an overview of cluster analysis and for the available cluster
commands. If you want even more control over your cluster objects, or if you are programming new
cluster subprograms, more cluster programmer utilities are available; see [MV] cluster programming
utilities for details.

The cluster dir command provides a directory-style listing of all the currently defined clusters.
cluster list provides a detailed listing of the specified clusters or of all current clusters if no
cluster names are specified. The default action is to list all the information attached to the clusters.
You may limit the type of information listed by specifying particular options.

The cluster drop command removes the named clusters. The keyword _all specifies that all
current cluster analyses be dropped.

Stata cluster analyses are referred to by name. Many cluster commands default to using the
most recently defined cluster analysis if no cluster name is provided. The cluster use command
sets the specified cluster analysis as the most recently executed cluster analysis, so that, by default,
this cluster analysis will be used if the cluster name is omitted from many of the cluster commands.
You may use the * and 7 name-matching characters to shorten the typing of cluster names; see
[U] 11.2 Abbreviation rules.

cluster rename allows you to rename a cluster analysis without changing any of the variable
names attached to the cluster analysis. The cluster renamevar command, on the other hand, allows
you to rename the variables attached to a cluster analysis and to update the cluster object with the
new variable names. Do not use the rename command (see [D] rename) to rename variables attached
to a cluster analysis because this would invalidate the cluster object. Use the cluster renamevar
command instead.

Menu

cluster list

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Detailed listing of clusters

cluster drop

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Drop cluster analyses

cluster rename

Statistics > Multivariate analysis > Cluster analysis > Postclustering > Rename a cluster or cluster variables
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Syntax
Directory-style listing of currently defined clusters

cluster dir

Detailed listing of clusters

cluster list [clnamelist] [, list_options]

Drop cluster analyses

cluster drop { clnamelist | _all }

Mark a cluster analysis as the most recent one

cluster use clname

Rename a cluster

cluster rename oldclname newclname

Rename variables attached to a cluster

cluster renamevar oldvarname newvar [ , name (clname) ]

cluster renamevar oldstub newstub , prefix [game (clname)]

list_options Description
Options
notes list cluster notes
type list cluster analysis type
method list cluster analysis method
dissimilarity list cluster analysis dissimilarity measure
similarity list cluster analysis similarity measure
vars list variable names attached to the cluster analysis
chars list any characteristics attached to the cluster analysis
other list any “other” information
all list all items and information attached to the cluster; the default

all does not appear in the dialog box.

Options for cluster list
__ [Options |

notes specifies that cluster notes be listed.
type specifies that the type of cluster analysis be listed.
method specifies that the cluster analysis method be listed.
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dissimilarity specifies that the dissimilarity measure be listed.
similarity specifies that the similarity measure be listed.

vars specifies that the variables attached to the clusters be listed.

chars specifies that any Stata characteristics attached to the clusters be listed.

other specifies that information attached to the clusters under the heading “other” be listed.

The following option is available with cluster 1ist but is not shown in the dialog box:

all, the default, specifies that all items and information attached to the cluster(s) be listed. You may
instead pick among the notes, type, method, dissimilarity, similarity, vars, chars, and
other options to limit what is presented.

Options for cluster renamevar

name (clname) indicates the cluster analysis within which the variable renaming is to take place. If
name () is not specified, the most recently performed cluster analysis (or the one specified by
cluster use) will be used.

prefix specifies that all variables attached to the cluster analysis that have oldstub as the beginning
of their name be renamed, with newstub replacing oldstub.

Remarks and examples

> Example 1

We demonstrate these cluster utility commands by beginning with four already-defined cluster
analyses. The dir and list subcommands provide listings of the cluster analyses.

. cluster dir
bcx3kmed
ayzbkmeans
abc_clink
xyz_slink

. cluster list xyz_slink
xyz_slink (type: hierarchical, method: single, dissimilarity: L2)
vars: xyz_slink_id (id variable)
xyz_slink_ord (order variable)
xyz_slink_hgt (height variable)
other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: 0 .
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. cluster list
bcx3kmed (type: partition, method: kmedians, dissimilarity: L2)
vars: bcx3kmed (group variable)
other: cmd: cluster kmedians b c x, k(3) name(bcx3kmed)
varlist: b ¢ x

k: 3
start: krandom
range: O .

ayzbkmeans (type: partition, method: kmeans, dissimilarity: L2)
vars: ayzbkmeans (group variable)
other: cmd: cluster kmeans a y z, k(5) name(ayzb5kmeans)
varlist: a y z

k: b
start: krandom
range: O .

abc_clink (type: hierarchical, method: complete, dissimilarity: L2)
vars: abc_clink_id (id variable)
abc_clink_ord (order variable)
abc_clink_hgt (height variable)
other: cmd: cluster completelinkage a b c, name(abc_clink)
varlist: a b ¢
range: O .
xyz_slink (type: hierarchical, method: single, dissimilarity: L2)
vars: xyz_slink_id (id variable)
xyz_slink_ord (order variable)
xyz_slink_hgt (height variable)
other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: O .

. cluster list ax, vars
ayzbkmeans
vars: ayzbkmeans (group variable)

abc_clink
vars: abc_clink_id (id variable)
abc_clink_ord (order variable)
abc_clink_hgt (height variable)

cluster dir listed the names of the four currently defined cluster analyses. cluster 1ist followed
by the name of one of the cluster analyses listed the information attached to that cluster analysis.
The cluster list command, without an argument, listed the information for all currently defined
cluster analyses. We demonstrated the vars option of cluster list to show that we can restrict
the information that is listed. Notice also the use of a* as the cluster name. The * here indicates that
any ending is allowed. For these four cluster analyses, Stata matches the names ayz5kmeans and
abc_clink.

We now demonstrate the use of the renamevar subcommand.

. cluster renamevar ayzbkmeans gbkm
variable ayzb5kmeans not found in bcx3kmed
r(198);

. cluster renamevar ayzbkmeans gbkm, name(ayzbSkmeans)

. cluster list ayzbkmeans
ayzbkmeans (type: partition, method: kmeans, dissimilarity: L2)
vars: gbkm (group variable)
other: cmd: cluster kmeans a y z, k(5) name(ayzb5kmeans)
varlist: a y z
k: 5
start: krandom
range: 0 .
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The first use of cluster renamevar failed because we did not specify which cluster object to use
(with the name () option), and the most recent cluster object, bcx3kmed, was not the appropriate one.
After specifying the name () option with the appropriate cluster name, the renamevar subcommand
changed the name as shown in the cluster 1ist command that followed.

The cluster use command sets a particular cluster object as the default. We show this in
conjunction with the prefix option of the renamevar subcommand.

. cluster use ayzbkmeans

. cluster renamevar g grp, prefix

. cluster renamevar xyz_slink_ wrk, prefix name(xyz*)

. cluster list ayz* xyz*

ayzbkmeans (type: partition, method: kmeans, dissimilarity: L2)
vars: grp5km (group variable)
other: cmd: cluster kmeans a y z, k(5) name(ayzbkmeans)

varlist: a y z

k: 5
start: krandom
range: O .

xyz_slink (type: hierarchical, method: single, dissimilarity: L2)
vars: wrkid (id variable)
wrkord (order variable)
wrkhgt (height variable)
other: cmd: cluster singlelinkage x y z, name(xyz_slink)
varlist: x y z
range: O .
The cluster use command placed ayzbkmeans as the current cluster object. The cluster re-
namevar command that followed capitalized on this placement by leaving off the name () option.
The prefix option allowed us to change the variable names, as demonstrated in the cluster list
of the two changed cluster objects.

cluster rename changes the name of cluster objects. cluster drop allows us to drop some of
or all the cluster objects.

. cluster rename xyz_slink bob
. cluster rename ayz* sam

. cluster list, type method vars
sam (type: partition, method: kmeans)
vars: grpbkm (group variable)

bob (type: hierarchical, method: single)
vars: wrkid (id variable)
wrkord (order variable)
wrkhgt (height variable)

bcx3kmed (type: partition, method: kmedians)
vars: bcx3kmed (group variable)

abc_clink (type: hierarchical, method: complete)
vars: abc_clink_id (id variable)
abc_clink_ord (order variable)
abc_clink_hgt (height variable)

. cluster drop bcx3kmed abc_clink

. cluster dir
sam
bob

. cluster drop _all

. cluster dir
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We used options with cluster 1ist to limit what was presented. The _all keyword with cluster
drop removed all currently defined cluster objects.

N

Also see
[MV] cluster — Introduction to cluster-analysis commands
[MV] cluster notes — Cluster analysis notes
[MV] cluster programming utilities — Cluster-analysis programming utilities
[MV] clustermat — Introduction to clustermat commands
[D] notes — Place notes in data
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discrim — Discriminant analysis

Description Syntax Remarks and examples Methods and formulas
References Also see

Description

discrim performs discriminant analysis, which is also known as classification. kth-nearest-neighbor
(KNN) discriminant analysis, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
and logistic discriminant analysis are available.

Syntax
discrim subcommand ... [ , .. ]
subcommand Description
knn kth-nearest-neighbor discriminant analysis
lda linear discriminant analysis
logistic logistic discriminant analysis
qda quadratic discriminant analysis

Remarks and examples

Remarks are presented under the following headings:

Introduction
A simple example
Prior probabilities, costs, and ties

Introduction

Discriminant analysis is used to describe the differences between groups and to exploit those
differences in allocating (classifying) observations of unknown group membership to the groups.
Discriminant analysis is also called classification in many references. However, several sources use
the word classification to mean cluster analysis.

Some applications of discriminant analysis include medical diagnosis, market research, classification
of specimens in anthropology, predicting company failure or success, placement of students (workers)
based on comparing pretest results to those of past students (workers), discrimination of natural
versus man-made seismic activity, fingerprint analysis, image pattern recognition, and signal pattern
classification.
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Most multivariate statistics texts have chapters on discriminant analysis, including Rencher (1998),
Rencher and Christensen (2012), Johnson and Wichern (2007), Mardia, Kent, and Bibby (1979),
Anderson (2003), Everitt and Dunn (2001), Tabachnick and Fidell (2019), and Albert and Harris (1987).
Books dedicated to discriminant analysis include Lachenbruch (1975), Klecka (1980), Hand (1981),
Huberty (1994), McLachlan (2004), and Afifi et al. (2020). Of these, McLachlan (2004) gives the
most extensive coverage, including 60 pages of references.

If you lack observations with known group membership, use cluster analysis to discover the natural
groupings in the data; see [MV] cluster. If you have data with known group membership, possibly
with other data of unknown membership to be classified, use discriminant analysis to examine the
differences between the groups, based on data where membership is known, and to assign group
membership for cases where membership is unknown.

Some researchers are not interested in classifying unknown observations and are interested only in
the descriptive aspects of discriminant analysis. For others, the classification of unknown observations
is the primary consideration. Huberty (1994), Rencher (1998), Rencher and Christensen (2012),
and others split their discussion of discrimination into two parts. Huberty labels the two parts
descriptive discriminant analysis and predictive discriminant analysis. Rencher and Christensen reserve
discriminant analysis for descriptive discriminant analysis and uses the label classification for predictive
discriminant analysis.

There are many discrimination methods. discrim has both descriptive and predictive LDA; see
[MV] discrim lda. If your interest is in descriptive LDA, candisc computes the same thing as discrim
1da, but with output tailored for the descriptive aspects of the discrimination; see [MV] candisc.

The remaining discrim subcommands provide alternatives to LDA for predictive discrimination.
[MV] discrim qda provides quadratic discriminant analysis (QDA). [MV] discrim logistic provides
logistic discriminant analysis. [MV] discrim knn provides kth-nearest-neighbor (KNN) discrimination.

The discriminant analysis literature uses conflicting terminology for several features of discriminant
analysis. For example, in descriptive LDA, what one source calls a classification function another
source calls a discriminant function while calling something else a classification function. Check the
Methods and formulas sections for the discrim subcommands for clarification.

A simple example

We demonstrate the predictive and descriptive aspects of discriminant analysis with a simple
example.

» Example 1: Discriminant analysis for prediction

Johnson and Wichern (2007, 578) introduce the concepts of discriminant analysis with a two-group
dataset. A sample of 12 riding-lawnmower owners and 12 nonowners is sampled from a city and the
income in thousands of dollars and lot size in thousands of square feet are recorded. A riding-mower
manufacturer wants to see if these two variables adequately separate owners from nonowners, and if
so to then direct their marketing on the basis of the separation of owners from nonowners.

. use https://www.stata-press.com/data/r18/lawnmower?2
(Johnson and Wichern (2007) table 11.1)
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Riding-mower ownership
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Do these two variables adequately separate riding-mower owners from nonowners so that the
riding-mower manufacturer can base predictions of riding-mower ownership on income and lot size?
The graph shows some separation of owners from nonowners, but with overlap. With predictive LDA
we can quantify our ability to discriminate between riding-mower owners and nonowners.

. discrim lda lotsize income, group(owner)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True owner Nonowner Owner Total
Nonowner 10 2 12
83.33 16.67 100.00
Owner 1 11 12
8.33 91.67 100.00
Total 11 13 24
45.83 54.17 100.00
Priors 0.5000 0.5000

The table presented by discrim 1da (and the other discrim subcommands) is called a classification
table or confusion matrix. It is labeled as a resubstitution classification table because the same
observations used in estimating the discriminant model were classified using the model. The diagonal
elements in the main body of the table show the number and percent correctly classified into each
group. The off-diagonal elements show the misclassified number and percent. One owner and two
nonowners were misclassified.

The resubstitution classification table provides an overly optimistic assessment of how well the
linear discriminant function will predict the ownership status for observations that were not part of the
training sample. A leave-one-out classification table provides a more realistic assessment for future
prediction. The leave-one-out classification is produced by holding each observation out, one at a
time; building an LDA model from the remaining training observations; and then classifying the held
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out observation using this model. The leave-one-out classification table is available at estimation time,
at playback, or through the estat classtable postestimation command.

. estat classtable, loo nopriors

Leave-one-out classification table

Key
Number
Percent
LOO Classified
True owner Nonowner Owner Total
Nonowner 9 3 12
75.00 25.00 100.00
Owner 2 10 12
16.67 83.33 100.00
Total 11 13 24
45.83 54.17 100.00

With leave-one-out classification we see that 5, instead of only 3, of the 24 observations are
misclassified.

The predict and estat commands provide other predictive discriminant analysis tools. predict
generates variables containing the posterior probabilities of group membership or generates a group
membership classification variable. estat displays classification tables, displays error-rate tables, and
lists classifications and probabilities for the observations.

We now use estat list to show the resubstitution and leave-one-out classifications and posterior
probabilities for those observations that were misclassified by our LDA model.

. estat list, class(loo) probabilities(loo) misclassified

Classification Probabilities LOO Probabilities
Obs True Class. LOO C1. Nonowner Owner Nonowner Owner
1 Owner Nonown * Nonown * 0.7820 0.2180 0.8460 0.1540
2 Owner Owner Nonown * 0.4945 0.5055 0.6177 0.3823
13 Nonown Owner * Owner x* 0.2372 0.7628 0.1761 0.8239
14 Nonown Nonown Owner x* 0.5287 0.4713 0.4313 0.5687
17 Nonown Owner * Owner x* 0.3776 0.6224 0.2791 0.7209

* indicates misclassified observations

N

We have used discrim lda to illustrate predictive discriminant analysis. The other discrim
subcommands could also be used for predictive discrimination of these data.

Postestimation commands after discrim 1da provide descriptive discriminant analysis; see [MV] dis-
crim lda postestimation and [MV] candisc.
> Example 2: Discriminant analysis for description

The riding-mower manufacturer of the previous example wants to understand how income and
lot size affect riding-mower ownership. Descriptive discriminant analysis provides tools for exploring
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how the groups are separated. Fisher’s (1936) linear discriminant functions provide the basis for
descriptive LDA; see [MV] discrim lda and [MV] discrim lda postestimation. The postestimation
command estat loadings allows us to view the discriminant function coefficients, which are also
called loadings.

. estat loadings, standardized unstandardized

Canonical discriminant function coefficients

functionl
lotsize .3795228
income .0484468

_cons -11.96094

Standardized canonical discriminant function coefficients

functionl
lotsize .7845512
income .8058419

We requested both the unstandardized and standardized coefficients. The unstandardized coefficients
apply to unstandardized variables. The standardized coefficients apply to variables standardized using
the pooled within-group covariance. Standardized coefficients are examined to assess the relative
importance of the variables to the discriminant function.

The unstandardized coefficients determine the separating line between riding-mower owners and
NONOWNers.
0 = 0.3795228 lotsize + 0.0484468 income — 11.96094

which can be reexpressed as
lotsize = —0.1276519 income + 31.51574

We now display this line superimposed on the scatterplot of the data.
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Other descriptive statistics and summaries are available; see [MV] discrim Ida postestimation.
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Prior probabilities, costs, and ties

Classification is influenced by the selection of prior probabilities, assignment of costs to misclas-
sification, and the method of handling ties in classification criteria.

Prior probabilities are the presumptive or a priori probabilities of group membership. Before you
flip a balanced coin 10 times, you know the prior probability of getting heads is the same as getting
tails—both are 0.5. Group prior probabilities, commonly called priors, must be taken into account in
calculations of posterior probabilities; see Methods and formulas for details.

If the cost of misclassification is not equal over the groups, an optimal classification into groups
must take misclassification cost into account. When there are two groups, members of the first group
can be classified into the second, or members of the second group can be classified into the first. The
relative undesirability of these two misclassifications may not be the same. Example 3 of [MV] discrim
knn classifies poisonous and edible mushrooms. Misclassifying poisonous mushrooms as edible is a
big deal at dinnertime.

The expected misclassification cost is the sum of the products of the cost for each misclassification
multiplied by the probability of its occurrence. Let p;; be the probability that an observation from
group ¢ is classified into group j, let c;; be the cost of misclassifying an observation from group ¢
into group 7, and let g; be the prior probability that the observation is from group 7. The expected
cost of misclassification is then

g
cost = Z CijPijqi
1,571
It is this expected cost that we wish to minimize. In the two-group case

cost = C12P12q1 + €21P21G2

and we can use cost-adjusted group prior probabilities, @;, in the place of the prior probabilities to
minimize the cost of misclassification.

~ C1241
Q="

C12q1 + C21G2
~ C2142

C12q1 + C21Q2

With more than two groups, there is often not a simple rule to take costs into account. More
discussion on this topic is provided by McLachlan (2004, 7-9), Huberty (1994, 68—69), Johnson and
Wichern (2007, 606-609), and Anderson (2003, chap. 6).

See example 3 of [MV] discrim knn for an application of costs.

A tie in classification occurs when two or more group posterior probabilities are equal for an
observation. Ties are most common with kth-nearest-neighbor discriminant analysis, though they can
occur in other forms of discriminant analysis. There are several options for assigning tied observations.
The default is to mark the observation as unclassified, that is, classified to a missing value. Ties can
also be broken. For most forms of discriminant analysis ties can be broken in two ways—randomly or
assigned to the first group that is tied. For kth-nearest-neighbor discriminant analysis, dissimilarities
are calculated, and so ties may also be broken by choosing the group of the nearest of the tied
observations. If this still results in a tie, the observation is unclassified.
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Methods and formulas

See [MV] discrim lda for the methods and formulas for descriptive discriminant analysis.

For predictive discriminant analysis, let g be the number of groups, n; the number of observations
for group %, and g; the prior probability for group ¢. Let x denote an observation measured on p
discriminating variables. For consistency with the discriminant analysis literature, x will be a column
vector, though it corresponds to a row in your dataset. Let f;(x) represent the density function for
group i, and let P(x|G;) denote the probability of observing x conditional on belonging to group .
Denote the posterior probability of group ¢ given observation x as P(G;|x). With Bayes’ theorem,

we have
i fi(x)

PO = S0 1)

Substituting P(x|G;) for f;(x), we have

¢ P(x|G;)
P(Gilx) = — 12
(i) = S0 P

An observation is classified as belonging to the group with the highest posterior probability.

The difference between the discrim subcommands is in the choice of f;(x). LDA, discrim 1da,
assumes that the groups are multivariate normal with equal covariance matrices; see [MV] discrim
Ida. QDA, discrim qda, assumes that the groups are multivariate normal, allowing the groups to
have unequal covariance matrices; see [MV] discrim qda. Logistic discriminant analysis, discrim
logistic, uses the multinomial logistic model to obtain the posterior probabilities; see [MV] discrim
logistic. kth-nearest neighbor, discrim knn, uses a simple nonparametric estimate of f; (x), based
on examination of the k closest observations; see [MV] discrim knn.
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Postestimation commands

The following postestimation commands are of special interest after candisc, discrim knn,
discrim 1lda, discrim logistic, and discrim qda:

Command Description

estat classtable classification table

estat errorrate classification error-rate estimation
estat grsummarize group summaries

estat list classification listing

estat summarize estimation sample summary

There are more postestimation commands of special interest after discrim 1da and discrim qda;
see [MV] discrim lda postestimation and [MV] discrim qda postestimation.

Description for estat

estat classtable displays a cross-tabulation of the original groups with the classification
groups. Classification percentages, average posterior probabilities, group prior probabilities, totals,
and leave-one-out results are available.

estat errorrate displays error-rate estimates for the classification. Count-based estimates and
both stratified and unstratified posterior-probability-based estimates of the error rate are available.
These estimates can be resubstitution or leave-one-out estimates.

estat grsummarize presents estimation sample summary statistics for the discriminating variables
for each group defined by the grouping variable. Means, medians, minimums, maximums, standard
deviations, coefficients of variation, standard errors of the means, and group sizes may be displayed.
Overall sample statistics are also available.

estat list lists group membership, classification, and probabilities for observations.

estat summarize summarizes the variables in the discriminant analysis over the estimation
sample.
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Quick start for estat

Classification table

Classification table computed using proportional prior probabilities
estat classtable, priors(proportional)

Leave-one-out classification table showing average posterior probability of classification into each
group
estat classtable, looclass probabilities

Classification error-rate estimation

Error-rate table estimated from leave-one-out error count
estat errorrate, looclass

Error rates estimated from posterior probabilities using proportional prior probabilities
estat errorrate, pp priors(proportional)

Group summaries

Summary statistics by group
estat grsummarize

Mean, median, standard deviation, minimum, and maximum by group
estat grsummarize, mean median sd min max

Classification listing

Listing of group membership, classification, and probabilities including the leave-one-out results
estat list, classification(looclass) probabilities(loopr)

Same as above, but suppress the resubstitution classification

estat list, classification(looclass noclass) ///
probabilities(loopr nopr)

Estimation sample summary

Summary of variables from the most recent discriminant analysis and displaying variable labels
estat summarize, labels

Menu for estat

Statistics > Postestimation
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Syntax for estat

Classification table

estat classtable [lf] [in} [weight] [, claswtable_opli(ms]

Classification error-rate estimation

estat errorrate [lf] [zn] [Weight] [, errorrate_options]

Group summaries

estat grsummarize [, grsummarize_options]

Classification listing

estat list [lf] [m} [, list_()pti()m]

Estimation sample summary

estat summarize [, labels noheader noweights]

classtable_options Description
Main
class display the classification table; the default
looclass display the leave-one-out classification table
Options
priors(priors) group prior probabilities; defaults to e (grouppriors)
ﬁriors suppress display of prior probabilities
ties(ties) how ties in classification are to be handled; defaults to e(ties)
title(text) title for classification table
probabilities display the average posterior probability of being classified into each group
ﬁrcents suppress display of percentages
nototals suppress display of row and column totals
norowtotals suppress display of row totals
nocoltotals suppress display of column totals
priors Description
equal equal prior probabilities
};oportional group-size-proportional prior probabilities
matmame row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities
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ties Description

missing ties in group classification produce missing values

random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

nearest ties in group classification are assigned based on the closest observation,

or missing if this still results in a tie; after discrim knn only

errorrate_options

Description

Main
class
looclass
count

PP [ (ppopts) ]

display the classification-based error-rate estimates table; the default
display the leave-one-out classification-based error-rate estimates table
use a count-based error-rate estimate

use a posterior-probability-based error-rate estimate

Options
priors(priors) group prior probabilities; defaults to e (grouppriors)
nopriors suppress display of prior probabilities
ties (ries) how ties in classification are to be handled; defaults to e(ties)
title(text) title for error-rate estimate table
nototal suppress display of total column
ppopts Description
stratified present stratified results
unstratified present unstratified results

grsummarize_options

Description

Main
n[ (fin) |
@ean[ (% fimt) ]
@ian[ (% fimt) ]
sd[ (% fimt) }
cv| Chfmt) |
semean| (% fmt) |
min[ (% fimt) ]
max[ (% fimt) ]
Options

nototal
transpose

group sizes

means

medians

standard deviations
coefficients of variation
standard errors of the means
minimums

maximums

suppress overall statistics
display groups by row instead of column
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list_options Description
Main
misclassified list only misclassified and unclassified observations
classification(clopts) control display of classification
probabilities (propts) control display of probabilities

varlist [ (varopts) } display discriminating variables

[@ } obs display or suppress the observation number
id (varname [fgmat (% fimt) ])display identification variable

Options

Eeight[ (weightopts) ] display frequency weights

priors(priors)
ties(ties)

group prior probabilities; defaults to e (grouppriors)
how ties in classification are to be handled; defaults to e(ties)

separator (#) display a horizontal separator every # lines

clopts Description

noclass do not display the standard classification

looclass display the leave-one-out classification

notrue do not show the group variable

nostar do not display stars indicating misclassified observations

nolabel suppress display of value labels for the group and classification
variables

format (% fimt) format for group and classification variables; default is %5.0f for
unlabeled numeric variables

propts Description

nopr suppress display of standard posterior probabilities

loopr display leave-one-out posterior probabilities

format (% fint) format for probabilities; default is format (%7 .4f)

varopts Description

none do not display discriminating variables; the default

first display input variables before classifications and probabilities

last display input variables after classifications and probabilities

format (% fint) format for input variables; default is the input variable format

weightopts Description

none do not display the weights

format (% fimt) format for the weight; default is %3.0f for weights < 1,000,

%5.0f for 1,000 < weights < 100,000, and %8.0g otherwise
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collect is allowed with estat classtable, estat errorrate, estat grsummarize, and estat summarize; see
[U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

Options for estat

Options are presented under the following headings:

Options for estat classtable
Options for estat errorrate
Options for estat grsummarize
Options for estat list

Options for estat summarize

Options for estat classtable
Main

class, the default, displays the classification table. With in-sample observations, this is called the
resubstitution classification table.

looclass displays a leave-one-out classification table, instead of the default classification table.
Leave-one-out classification applies only to the estimation sample, and so, in addition to restricting
the observations to those chosen with if and in qualifiers, the observations are further restricted
to those included in e (sample).

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. If nopriors is specified with priors(), prior probabilities are used
for calculation of the classification variable but not displayed. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

nopriors suppresses display of the prior probabilities. This option does not change the computations
that rely on the prior probabilities specified in priors () or as found by default in e (grouppriors).

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.
ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

title(fext) customizes the title for the classification table.

probabilities specifies that the classification table show the average posterior probability of being
classified into each group. probabilities implies norowtotals and nopercents.
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nopercents specifies that percentages are to be omitted from the classification table.
nototals specifies that row and column totals are to be omitted from the classification table.
norowtotals specifies that row totals are to be omitted from the classification table.

nocoltotals specifies that column totals are to be omitted from the classification table.

Options for estat errorrate

Main

class, the default, specifies that the classification-based error-rate estimates table be presented. The
alternative to class is looclass.

looclass specifies that the leave-one-out classification error-rate estimates table be presented.

count, the default, specifies that the error-rate estimates be based on misclassification counts. The
alternative to count is pp().

PP [ (ppopts) ] specifies that the error-rate estimates be based on posterior probabilities. pp is equivalent
to pp(stratified unstratified). stratified indicates that stratified estimates be presented.
unstratified indicates that unstratified estimates be presented. One or both may be specified.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. If nopriors is specified with priors(), prior probabilities are used
for calculation of the error-rate estimates but not displayed. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

nopriors suppresses display of the prior probabilities. This option does not change the computations
that rely on the prior probabilities specified in priors () or as found by default in e (grouppriors).

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.
ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

title(fext) customizes the title for the error-rate estimates table.

nototal suppresses the total column containing overall sample error-rate estimates.
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Options for estat grsummarize
Main

n[ hfmt) } specifies that group sizes be presented. The optional argument provides a display format.
The default options are n and mean.

mean[ (% fmt) ] specifies that means be presented. The optional argument provides a display format.
The default options are n and mean.

median[ (%fmt)] specifies that medians be presented. The optional argument provides a display
format.

sd[ % fimt) } specifies that standard deviations be presented. The optional argument provides a display
format.

cv[ (¢ fmz)} specifies that coefficients of variation be presented. The optional argument provides a
display format.

semean[ % fmt)] specifies that standard errors of the means be presented. The optional argument
provides a display format.

min[ (% fmt) ] specifies that minimums be presented. The optional argument provides a display format.

max [ (% fmt) ] specifies that maximums be presented. The optional argument provides a display format.

nototal suppresses display of the total column containing overall sample statistics.

transpose specifies that the groups are to be displayed by row. By default, groups are displayed
by column. If you have more variables than groups, you might prefer the output produced by
transpose.

Options for estat list
Main

misclassified lists only misclassified and unclassified observations.

classification(clopts) controls display of the group variable and classification. By default, the
standard classification is calculated and displayed along with the group variable in e (groupvar),
using labels from the group variable if they exist. clopts may be one or more of the following:

noclass suppresses display of the standard classification. If the observations are those used in
the estimation, classification is called resubstitution classification.

looclass specifies that the leave-one-out classification be calculated and displayed. The default is
that the leave-one-out classification is not calculated. looclass is not allowed after discrim
logistic.

notrue suppresses the display of the group variable. By default, e(groupvar) is displayed.
notrue implies nostar.

nostar suppresses the display of stars indicating misclassified observations. A star is displayed
by default when the classification is not in agreement with the group variable. nostar is the
default when notrue is specified.

nolabel specifies that value labels for the group variable, if they exist, not be displayed for the
group or classification or used as labels for the probability column names.

format (% fint) specifies the format for the group and classification variables. If value labels are
used, string formats are permitted.
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probabilities (propts) controls the display of group posterior probabilities. propts may be one or
more of the following:

nopr suppresses display of the standard posterior probabilities. By default, the posterior probabilities
are shown.

loopr specifies that leave-one-out posterior probabilities be displayed. loopr is not allowed after
discrim logistic.

format (% fint) specifies the format for displaying probabilities. The default is format (%7.4f).

varlist [ (varopts) } specifies that the discriminating variables found in e(varlist) be displayed
and specifies the display options for the variables.

none specifies that discriminating variables are not to be displayed. This is the default.
first specifies variables be displayed before classifications and probabilities.
last specifies variables be displayed after classifications and probabilities.

format (% fimt) specifies the format for the input variables. By default, the variable’s format is
used.

[ no } obs indicates that observation numbers be or not be displayed. Observation numbers are displayed
by default unless id () is specified.

id (varname [format (% fmt) }) specifies the identification variable to display and, optionally, the
format for that variable. By default, the format of varname is used.

weight[ (weightopts)] specifies options for displaying weights. By default, if e(wexp) exists,
weights are displayed.

none specifies weights not be displayed. This is the default if weights were not used with discrim.

format (% fint) specifies a display format for the weights. If the weights are < 1,000, %3.0f is
the default, %5.0f is the default if 1,000 < weights < 100,000, else %8.0g is used.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.
priors(proportional) specifies group-size-proportional prior probabilities.
priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) determines how ties are handled. The following fies are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.
ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie. ties(nearest) is available after discrim
knn only.

separator (#) specifies a horizontal separator line be drawn every # observations. The default is
separator(5).
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Options for estat summarize

labels, noheader, and noweights are the same as for the generic estat summarize; see [R] estat
summarize.

Remarks and examples

Remarks are presented under the following headings:
Discriminating-variable summaries
Discrimination listings
Classification tables and error rates

There are several estat commands that apply after all the discrim subcommands. estat
summarize and estat grsummarize summarize the discriminating variables over the estimation
sample and by-group. estat list displays classifications, posterior probabilities, and more for
selected observations. estat classtable and estat errorrate display the classification table,
also known as a confusion matrix, and error-rate estimates based on the classification table.

Discriminating-variable summaries

estat summarize and estat grsummarize provide summaries of the variables involved in the
preceding discriminant analysis model.

> Example 1

Example 3 of [MV] discrim lda introduces the famous iris data originally from Anderson (1935) and
used by Fisher (1936) in the development of linear discriminant analysis. We continue our exploration
of the linear discriminant analysis of the iris data and demonstrate the summary estat tools available
after all discrim subcommands.

. use https://www.stata-press.com/data/r18/iris
(Iris data)

. discrim lda seplen sepwid petlen petwid, group(iris) notable

The notable option of discrim suppressed display of the classification table. We explore the
use of estat classtable later.

What can we learn about the underlying discriminating variables? estat summarize gives a
summary of the variables involved in the discriminant analysis, restricted to the estimation sample.

. estat summarize

Estimation sample discrim Number of obs = 150
Variable Mean Std. dev. Min Max
groupvar
iris 2 .8192319 1 3
variables
seplen 5.843333 .8280661 4.3 7.9
sepwid 3.057333 .4358663 2 4.4
petlen 3.758 1.765298 1 6.9
petwid 1.199333 . 7622377 .1 2.5
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estat summarize displays the mean, standard deviation, minimum, and maximum for the group
variable, iris, and the four discriminating variables, seplen, sepwid, petlen, and petwid. Also
shown is the number of observations. If we had fit our discriminant model on a subset of the data,
estat summarize would have restricted its summary to those observations.

More interesting than an overall summary of the discriminating variables is a summary by our
group variable, iris.
. estat grsummarize

Estimation sample discrim lda
Summarized by iris

iris
Mean Setosa Versicolor Virginica Total
seplen 5.006 5.936 6.588 5.843333
sepwid 3.428 2.77 2.974 3.057333
petlen 1.462 4.26 5.552 3.758
petwid .246 1.326 2.026 1.199333
N 50 50 50 150

By default, estat grsummarize displays means of the discriminating variables for each group
and overall (the total column), along with group sizes. The summary is restricted to the estimation
sample.

The petal length and width of Iris sefosa appear to be much smaller than those of the other two
species. Iris versicolor has petal length and width between that of the other two species.

Other statistics may be requested. A look at the minimums and maximums might provide more
insight into the separation of the three iris species.

. estat grsummarize, min max

Estimation sample discrim lda
Summarized by iris

iris

Setosa Versicolor Virginica Total

seplen
Min 4.3 4.9 4.9 4.3
Max 5.8 7 7.9 7.9

sepwid
Min 2.3 2 2.2 2
Max 4.4 3.4 3.8 4.4

petlen
Min 1 3 4.5 1
Max 1.9 5.1 6.9 6.9

petwid
Min .1 1 1.4 .1
Max .6 1.8 2.5 2.5

Although this table is helpful, an altered view of it might make comparisons easier. estat
grsummarize allows a format to be specified with each requested statistic. We can request a shorter
format for the minimum and maximum and specify a fixed format so that the decimal point lines up.
estat grsummarize also has a transpose option that places the variables and requested statistics
as columns and the groups as rows. If you have fewer discriminating variables than groups, this
might be the most natural way to view the statistics. Here we have more variables, but with a narrow
display format, the transposed view still works well.
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. estat grsummarize, min(%4.1f) max(%4.1f) transpose

Estimation sample discrim lda

Summarized by iris

seplen sepwid petlen petwid
iris Min Max Min Max Min Max Min Max
Setosa 4.3 5.8 2.3 4.4 1.0 1.9 0.1 0.6
Versicolor 4.9 7.0 2.0 3.4 3.0 5.1 1.0 1.8
Virginica 4.9 7.9 2.2 3.8 4.5 6.9 1.4 2.5
Total 4.3 7.9 2.0 4.4 1.0 6.9 0.1 2.5

The maximum petal length and width for Iris sefosa are much smaller than the minimum petal
length and width for the other two species. The petal length and width clearly separate Iris setosa
from the other two species.

You are not limited to one or two statistics with estat grsummarize, and each statistic may have
different requested display formats. The total column, or row if the table is transposed, can also be

suppressed.

Using Stata’s graph box command is another way of seeing the differences among the three iris
species for the four discriminating variables.

. graph box seplen, over(iris) name(sl)

. graph box sepwid, over(iris) name(sw)

. graph box petlen, over(iris) name(pl)

. graph box petwid, over(iris) name (pw)

. graph combine sl sw pl pw, title(Characteristics of three iris species)
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The box plots confirm the lack of overlap in the petal lengths and widths for Iris setosa compared
with the other two iris species. Other differences between the species are also seen.

N

More summary estat commands are available after discrim 1da; see [MV] discrim lda postes-

timation.
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Discrimination listings

Listing the true group, classified group, group posterior probabilities, and discriminating variables
for observations of interest after discrim is easy with the estat 1list command.

> Example 2

Example 1 of [MV] discrim introduced the riding-mower data of Johnson and Wichern (2007) and
presented a linear discriminant analysis that concluded with the use of estat list displaying the
misclassified observations.

. use https://www.stata-press.com/data/r18/lawnmower2
(Johnson and Wichern (2007) table 11.1)
. discrim lda income lotsize, group(owner) notable

. estat list, class(loo) pr(loo) misclassified

Classification Probabilities LOO Probabilities
Obs True Class. LOO C1. Nonowner Owner Nonowner Owner
1 Owner Nonown * Nonown * 0.7820 0.2180 0.8460 0.1540
2 Owner Owner Nonown * 0.4945 0.5055 0.6177 0.3823
13 Nonown  Owner x* Owner * 0.2372 0.7628 0.1761 0.8239
14 Nonown Nonown Owner x* 0.5287 0.4713 0.4313 0.5687
17 Nonown Owner * Owner x* 0.3776 0.6224 0.2791 0.7209

* indicates misclassified observations

The misclassified option limited the listing to those observations that were misclassified by
the linear discriminant model. class(loo) and pr(loo) added leave-one-out (LOO) classifications
and probabilities to the resubstitution classifications and probabilities.

We demonstrate a few other options available with estat 1ist. We can limit which observations
are displayed with if and in qualifiers and can add the display of the discriminating variables with
the varlist option. Here we limit the display to those observations that have income greater than
$110,000.

. estat list if income > 110, varlist

Data Classification Probabilities
Obs income lotsize True Class. Nonowner Owner
2 115.5 16.8 Owner Owner 0.4945 0.5055
5 117.0 23.6 Owner Owner 0.0040 0.9960
6 140.1 19.2 Owner Owner 0.0125 0.9875
7 138.0 17.6 Owner Owner 0.0519 0.9481
8 112.8 22.4 Owner Owner 0.0155 0.9845
10 123.0 20.8 Owner Owner 0.0196 0.9804
12 111.0 20.0 Owner Owner 0.1107 0.8893
17 114.0 17.6 Nonowner Owner * 0.3776 0.6224

* indicates misclassified observations

Starting with the command above, we specify sep(0) to suppress the separator line that, by
default, displays after every 5 observations. We eliminate the observation numbers with the noobs
option. With the class () option: the looclass suboption adds the LOO classification; the noclass
suboption suppress the resubstitution classification; and the nostar suboption eliminates the marking
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of misclassified observations with asterisks. With pr(loopr nopr) we specify that LOO probabilities
are to be displayed and resubstitution probabilities are to be suppressed.

. estat list if income > 110, sep(0) class(looclass noclass nostar)
> pr(loopr nopr) varlist noobs

Data Classification LO0 Probabilities
income 1lotsize True L0O0O C1 Nonowner Owner
115.5 16.8 Owner Nonowner 0.6177 0.3823
117.0 23.6 Owner Owner 0.0029 0.9971
140.1 19.2 Owner Owner 0.0124 0.9876
138.0 17.6 Owner Owner 0.0737 0.9263
112.8 22.4 Owner Owner 0.0168 0.9832
123.0 20.8 Owner Owner 0.0217 0.9783
111.0 20.0 Owner Owner 0.1206 0.8794
114.0 17.6 Nonowner Owner 0.2791 0.7209

4

Use the if e(sample) qualifier to restrict the listing from estat list to the estimation sample.
Out-of-sample listings are obtained if your selected observations are not part of the estimation sample.

As an alternative to estat list, you can use predict after discrim to obtain the classifications,
posterior probabilities, or whatever else is available for prediction from the discrim subcommand
that you ran, and then use list to display your predictions; see [D] list and see example 2 of
[MV] discrim knn postestimation for an example.

Classification tables and error rates

Classification tables (also known as confusion matrices) and error-rate estimate tables are available
with the estat classtable and estat errorrate commands after discrim.

> Example 3

Example 2 of [MV] discrim knn introduces a head measurement dataset from Rencher and
Christensen (2012, 291) with six discriminating variables and three groups. We perform a quadratic
discriminant analysis (QDA) on the dataset to illustrate classification tables and error-rate estimation.
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. use https://www.stata-press.com/data/r18/head
(Table 8.3. Head measurements, Rencher and Christensen (2012))

. discrim gqda wdim circum fbeye eyehd earhd jaw, group(group)

Quadratic discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True group High school College Nonplayer Total
High school 27 1 2 30
90.00 3.33 6.67 100.00
College 2 21 7 30
6.67 70.00 23.33 100.00
Nonplayer 1 4 25 30
3.33 13.33 83.33 100.00
Total 30 26 34 90
33.33 28.89 37.78 100.00
Priors 0.3333 0.3333 0.3333

By default, discrim displayed the resubstitution classification table. A resubstitution classification
table is obtained by classifying the observations used in building the discriminant model. The
resubstitution classification table is overly optimistic as an indicator of how well you might classify
other observations.

This resubstitution classification table shows that from the high school group 27 observations
were correctly classified, 1 observation was classified as belonging to the college group, and 2
observations were classified as belonging to the nonplayer group. The corresponding percentages
were also presented: 90%, 3.33%, and 6.67%. The college and nonplayer rows are read in a similar
manner. For instance, there were 7 observations from the college group that were misclassified as
nonplayers. Row and column totals are presented along with the group prior probabilities. See table 9.4
of Rencher and Christensen (2012, 321) for this same classification table.

There are various ways of estimating the error rate for a classification. estat errorrate presents
the overall (total) error rate and the error rate for each group. By default, it uses a count-based
estimate of the error rate.
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. estat errorrate

Error rate estimated by error count

group
High school College Nonplayer Total
Error rate .1 .3 .166666667 .188888889
Priors .333333333 .333333333 .333333333

This is a resubstitution count-based error-rate estimate corresponding to the classification table
previously presented. Three of the 30 high school observations were misclassified—a proportion of
0.1; 9 of the 30 college observations were misclassified—a proportion of 0.3; and 5 of the 30
nonplayers were misclassified—a proportion of 0.1667. The total error rate is computed as the sum
of the group error rates times their prior probabilities—here 0.1889.

An error-rate estimate based on the posterior probabilities is also available with estat errorrate.

. estat errorrate, pp
Error rate estimated from posterior probabilities
group
Error rate High school College Nonplayer Total
Stratified .08308968 .337824355 .2030882 .208000745
Unstratified .08308968 .337824355 .2030882 .208000745
Priors .333333333 .333333333 .333333333

Because we did not specify otherwise, we obtained resubstitution error-rate estimates. By default
both the stratified and unstratified estimates are shown. The stratified estimates give less weight to
probabilities where the group sample size is large compared with the group prior probabilities; see
Methods and formulas for details. Here the stratified and unstratified estimates are the same. This
happens when the prior probabilities are proportional to the sample sizes—here we have equal prior
probabilities and equal group sizes.

For this example, the count-based and posterior-probability-based estimates are similar to one
another.

Leave-one-out (LOO) estimation provides a more realistic assessment of your potential classification
success with observations that were not used in building the discriminant analysis model. The loo
option of estat classtable and estat errorrate specify a LOO estimation.

. estat classtable, loo nopercents nopriors nototals

Leave-one-out classification table

Key
Number
LO0 Classified
True group High school College Nonplayer
High school 26 2 2
College 3 16 11
Nonplayer 4 9 17
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To demonstrate some of the available options, we specified the nopercents option to suppress
the display of percentages; the nopriors option to suppress the display of the prior probabilities;
and the nototals option to suppress row and column totals.

If you compare this LOO classification table with the resubstitution classification table, you will
see that fewer observations appear on the diagonal (were correctly classified) in the LOO table. The
LOO estimates are less biased than the resubstitution estimates.

We now examine the LOO error-rate estimates by using the loo option with the estat error
command. We first produce the count-based estimates and then request the posterior-probability-based
estimates. In the first case, we use the nopriors option to demonstrate that you can suppress
the display of the prior probabilities. Suppressing the display does not remove their effect on the
computations. In the second estat errorrate call, we specify that only the unstratified estimates be
presented. (Because the prior probabilities and samples sizes match [are equal], the stratified results
will be the same.)

. estat err, loo nopriors

Error rate estimated by leave-one-out error count

group
High school College Nonplayer | Total
Error rate .133333333 .466666667 .433333333 | .344444444

. estat err, loo pp(unstratified)

Error rate estimated from leave-one-out posterior probabilities

group

Error rate High school College Nonplayer Total

Unstratified .049034154 .354290969 .294376541 232567222
Priors .333333333 .333333333 .333333333

Instead of displaying percentages below the counts in the classification table, we can display
average posterior probabilities. The probabilities option requests the display of average posterior
probabilities. We add the nopriors option to demonstrate that the prior probabilities can be suppressed
from the table. The classifications are still based on the prior probabilities; they are just not displayed.

. estat classtable, probabilities nopriors

Resubstitution average-posterior-probabilities classification table

Key

Number
Average posterior probability

Classified
True group High school College Nonplayer
High school 27 1 2
0.9517 0.6180 0.5921
College 2 21 7
0.6564 0.8108 0.5835
Nonplayer 1 4 25
0.4973 0.5549 0.7456
Total 30 26 34
0.9169 0.7640 0.7032
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Both estat classtable and estat errorrate allow if and in qualifiers so that you can select
the observations to be included in the computations and displayed. If you want to limit the table to
the estimation sample, use if e(sample). You can also do out-of-sample classification tables and
error-rate estimation by selecting observations that were not part of the estimation sample.

d

Q Technical note
As noted by Huberty (1994, 92), the posterior-probability-based error-rate estimates for the
individual groups may be negative. This may happen when there is a discrepancy between group
prior probabilities and relative sample size.

Continuing with our last example, if we use prior probabilities of 0.2, 0.1, and 0.7 for the high
school, college, and nonplayer groups, the nonplayer stratified error-rate estimate and the high school
group unstratified error-rate estimate are negative.

. estat error, pp priors(.2, .1, .7)

Error rate estimated from posterior probabilities

group
Error rate High school College Nonplayer Total
Stratified .19121145 .737812235 -.001699715 .110833713
Unstratified -.36619243 .126040785 .29616143 .146678593
Priors .2 .1 7

a

More examples of the use of estat list, estat classtable, and estat errorrate can be
found in the other discrim-related manual entries.

Stored results

estat classtable stores the following in r():

Matrices
r(counts) group counts
r(percents) percentages for each group (unless nopercents specified)
r (avgpostprob) average posterior probabilities classified into each group (probabilities only)

estat errorrate stores the following in r():

Matrices
r(grouppriors) row vector of group prior probabilities used in the calculations
r(erate_count) matrix of error rates estimated from error counts (count only)
r(erate_strat) matrix of stratified error rates estimated from posterior probabilities (pp only)

r(erate_unstrat)  matrix of unstratified error rates estimated from posterior probabilities (pp only)
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estat grsummarize stores the following in r():

Matrices
r(count) group counts
r (mean) means (mean only)
r(median) medians (median only)
r(sd) standard deviations (sd only)
r(cv) coefficients of variation (cv only)
r (semean) standard errors of the means (semean only)
r(min) minimums (min only)
r (max) maximums (max only)

Methods and formulas

Let C denote the classification table (also known as the confusion matrix), with rows corresponding
to the true groups and columns corresponding to the assigned groups. Let C;; denote the element
from row 4 and column j of C. Cj; represents the number of observations from group ¢ assigned to
group j. n; is the number of observations from group ¢ and N = Zf:l n; is the total sample size.
N; = Z?:l C}; is the number of observations from group ¢ that were classified into one of the g
groups. If some observations from group 7 are unclassified (because of ties), N; # n; and N # N
(where A = 3" N;). Let g; be the prior probability of group i.

estat classtable displays C, with options controlling the display of cell percentages by row,
average posterior probabilities, prior probabilities, row totals, and column totals.

McLachlan (2004, chap. 10) devotes a chapter to classification error-rate estimation. The estat
errorrate command provides several popular error-rate estimates. Smith (1947) introduced the
count-based apparent error-rate estimate. The count-based error-rate estimate for group ¢ is

B =1-Cu/N;

The overall (total) count-based error-rate estimate is

g
B — Z GE©

%
i=1

In general, E(C) #*1— le Cn'//\/, though some sources, Rencher and Christensen (2012, 319),
appear to report this latter quantity.

If C is based on the same data used in the estimation of the discriminant analysis model, the error
rates are called apparent error rates. Leave-one-out (LOO) error rates are obtained if C is based on a
leave-one-out analysis where each observation to be classified is classified based on the discriminant
model built excluding that observation; see Lachenbruch and Mickey (1968) and McLachlan (2004,
342).

Error rates can also be estimated from the posterior probabilities. Huberty (1994, 90-91) discusses
hit rates (one minus the error rates) based on posterior probabilities and shows two versions of the
posterior-probability based estimate—stratified and unstratified.

Let Pj; be the sum of the posterior probabilities for all observations from group j assigned to
group 7. The posterior-probability-based unstratified error-rate estimate for group 7 is

g
S(Pu) _ 1 )
Ei = 1 — ./\qu ZPJ»L
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The overall (total) posterior-probability-based unstratified error-rate estimate is
i=1

The posterior-probability-based stratified error-rate estimate for group ¢ is

The overall (total) posterior-probability-based stratified error-rate estimate is

g
E(Ps) _ Z qiEi(PS)
=1
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Description

discrim knn performs kth-nearest-neighbor discriminant analysis. A wide selection of similarity
and dissimilarity measures is available.

kth-nearest neighbor must retain the training data and search through the data for the k nearest
observations each time a classification or prediction is performed. Consequently for large datasets,
kth-nearest neighbor is slow and uses a lot of memory.

See [MV] discrim for other discrimination commands.

Quick start

kth-nearest-neighbor discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar and
k=5

discrim knn vl v2 v3 v4, k(5) group(catvar)

Same as above, but use prior probabilities proportional to group size
discrim knn vl v2 v3 v4, k(5) group(catvar) priors(proportional)

Display only the leave-one-out classification table
discrim knn vl v2 v3 v4, k(5) group(catvar) lootable notable

Use absolute-value distance
discrim knn vl v2 v3 v4, k(5) group(catvar) measure(absolute)

Assume v1 and v2 are factor variables, and use the Dice similarity coefficient
discrim knn ibn.vl ibn.v2, k(5) group(catvar) measure(dice)

Menu

Statistics > Multivariate analysis > Discriminant analysis > Kth-nearest neighbor (KNN)

222
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Syntax
discrim knn varlist [zf] [m] [weight] » group (groupvar) k(#) [()ptions}

options Description

Model

* group (groupvar) variable specifying the groups

*k(#) number of nearest neighbors
priors(priors) group prior probabilities
ties (ties) how ties in classification are to be handled

Measure

measure (measure) similarity or dissimilarity measure; default is measure (L2)

s2d (standard) convert similarity to dissimilarity: d(ij) = \/s(ii) + s(jj) — 2s(ij).
the default
s2d (oneminus) convert similarity to dissimilarity: d(ij) = 1 — s(ij)
mahalanobis Mahalanobis transform continuous data before computing dissimilarities
Reporting
notable suppress resubstitution classification table
lootable display leave-one-out classification table
priors Description
equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group
prior probabilities
ties Description
missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest

observation, or missing if this still results in a tie

*group() and k() are required.

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

Model

group (groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

k(#) is required and specifies the number of nearest neighbors on which to base computations. In
the event of ties, the next largest value of k() is selected. Suppose that k(3) is selected. For a
given observation, one must go out a distance d to find three nearest neighbors, but if, say, there
are five data points all within distance d, then the computation will be based on all five nearest
points.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.
ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie.

Measure

measure (measure) specifies the similarity or dissimilarity measure. The default is measure(L2);
all measures in [MV] measure_option are supported except for measure (Gower).

s2d (standard | oneminus) specifies how similarities are converted into dissimilarities.

The available s2d () options, standard and oneminus, are defined as

standard d(ij) = /s(ii) + s(jj) — 2s(ij) = /2{1 — s(ij)}
oneminus d(ij) =1 — s(ij)

s2d (standard) is the default.

mahalanobis specifies performing a Mahalanobis transformation on continuous data before computing
dissimilarities. The data are transformed via the Cholesky decomposition of the within-group
covariance matrix, and then the selected dissimilarity measure is performed on the transformed
data. If the L2 (Euclidean) dissimilarity is chosen, this is the Mahalanobis distance. If the within-
group covariance matrix does not have sufficient rank, an error is returned.
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Reporting

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples

Remarks are presented under the following headings:
Introduction
A first example
Mahalanobis transformation
Binary data

Introduction

kth-nearest-neighbor (KNN) discriminant analysis dates at least as far back as Fix and Hodges (1951).
An introductory treatment is available in Rencher and Christensen (2012). More advanced treatments
are in Hastie, Tibshirani, and Friedman (2009) and McLachlan (2004).

KNN is a nonparametric discrimination method based on the k nearest neighbors of each observation.
KNN can deal with binary data via one of the binary measures; see [MV] measure_option.

A first example

What distinguishes kth-nearest-neighbor analysis from other methods of discriminant analysis is
its ability to distinguish irregular-shaped groups, including groups with multiple modes. We create a
dataset with unusual boundaries that lends itself to KNN analysis and graphical interpretation.

> Example 1

We create a two-dimensional dataset on the plane with 2 and y values in [—4, 4]. In each quadrant
we consider points within a circle with a square root of two radii, centered around the points (2,2),
(=2,2), (—2,—2), and (2, —2). We set the group value to 1 to start and then replace it in the circles.
In the first and third circles we set the group value to 2, and in the second and fourth circles we set
the group value to 3. Outside the circles, the group value remains 1.

. set seed 98712321

. set obs 500
Number of observations (_N) was O, now 500.

. generate x = 8*runiform() - 4

. generate y = 8*runiform() - 4

. generate group = 1

. replace group = 2 if (y+2)72 + (x+2)72 <= 2
(45 real changes made)

. replace group = 2 if (y-2)72 + (x-2)72 <= 2
(50 real changes made)

. replace group = 3 if (y+2)72 + (x-2)72 <= 2
(45 real changes made)

. replace group = 3 if (y-2)72 + (x+2)72 <= 2
(51 real changes made)

Next we define some local macros for function plots of the circles. This makes it easier to graph
the boundary circles on top of the data. We set the graph option aspectratio(1) to force the aspect
ratio to be 1; otherwise, the circles might appear to be ovals.
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. local rp :

. local rm :

(function
(function
(function
(function
(function
(function
(function
(function

VVVVVVYVYV.

dHuHY<H<Y< <

di %12.10f 2+sqrt(2)
di %12.10f 2-sqrt(2)

local functionplot

sqrt (2- (x+2)"2)
-sqrt (2-(x+2)"2)
sqrt(2-(x-2)"2)
-sqrt (2-(x-2)"2)
sqrt (2-(x+2)"2)
-sqrt (2-(x+2)"2)
sqrt (2-(x-2)"2)
-sqrt (2-(x-2)"2)

I+ o+ o+ o+

lpat (solid)
lpat(solid)
lpat(solid)
lpat (solid)
lpat(solid)
lpat(solid)
lpat(solid)
lpat(solid)

range (-‘rp’
range(-‘rp’
range (- ‘rm’
range (- ‘rm’
range(-‘rp’
range (- ‘rp’
range( ‘rm’
range( ‘rm’

-‘rm’))
-‘rm’))
‘rp’))
‘rp’))
—‘rm’))
-‘rm’))
‘rp’))
‘I'p’))

local graphopts
aspectratio(1) legend(order(l "Group 1" 2 "Group 2" 3 "Group 3"))

(VA

twoway (scatter y x if group==1)
(scatter y x if group==2)
(scatter y x if group==3)
‘functionplot’ ‘graphopts’ name(original, replace)
title("Training data")

vV V. V.V

Training data

* Group 1
® Group 2
e Group 3

We perform three discriminant analyses on these data for comparison. We use linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA) and KNN. The results from logistic discriminant
analysis are similar to those of LDA and are not included. With all three models, we use proportional
probabilities, priors (proportional). The probability of landing in a given group is proportional to
the geometric area of that group; they are certainly not equal. Rather than doing geometric calculations
for the prior probabilities, we use priors(proportional) to approximate this. We suppress the
standard classification table with notable. Instead we look at the lootable, that is, leave-one-out
(LOO) table, where the observation in question is omitted and its result is predicted from the rest
of the data. Likewise, we predict the LOO classification (looclass). With KNN we get to choose a
measure (); here we want the straight line distance between the points. This is the default, Euclidean
distance, so we do not have to specify measure().

We choose k = 7 for this run with 500 observations. See Methods and formulas for more
information on choosing k.
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. discrim lda x y, group(group) notable lootable priors(proportional)

Linear discriminant analysis
Leave-one-out classification summary

Key
Number
Percent
Classified
True group 1 2 3 Total
1 309 0 0 309
100.00 0.00 0.00 100.00
2 95 0 0 95
100.00 0.00 0.00 100.00
3 96 0 0 96
100.00 0.00 0.00 100.00
Total 500 0 0 500
100.00 0.00 0.00 100.00
Priors 0.6180 0.1900 0.1920

LDA classifies all observations into group one, the group with the highest prior probability.

. discrim gda x y, group(group) notable lootable priors(proportional)

Quadratic discriminant analysis
Leave-one-out classification summary

Key
Number
Percent
Classified
True group 1 2 3 Total
1 258 31 20 309
83.50 10.03 6.47 100.00
2 57 38 0 95
60.00 40.00 0.00 100.00
3 77 0 19 96
80.21 0.00 19.79 100.00
Total 392 69 39 500
78.40 13.80 7.80 100.00
Priors 0.6180 0.1900 0.1920

QDA has 185 (31 + 20 + 57 + 77) misclassified observations of 500, but it correctly classifies 38
of the 95 observations from group 2 and 19 of the 96 observations from group 3.
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. discrim knn x y, group(group) k(7) notable lootable priors(proportional)

Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key
Number
Percent
Classified
True group 1 2 3 Total
1 299 4 6 309

96.76 1.29 1.94 | 100.00

2 13 82 0 95
13.68 86.32 0.00 | 100.00

3 10 0 86 96
10.42 0.00 89.58 | 100.00

Total 322 86 92 500
64.40 17.20 18.40 100.00

Priors | 0.6180 0.1900 0.1920

In contrast to the other two models, KNN has only 33 (4 4+ 6+ 13 + 10) misclassified observations.
We can see how points are classified by KNN by looking at the following graph.

. predict cknn, looclass

twoway (scatter y x if cknn==1 )
(scatter y x if cknn ==2)
(scatter y x if cknn ==3)
‘functionplot’, ‘graphopts’ name(knn, replace)
title("KNN LOO classification")

vV V.V V.

KNN LOO classification

* Group 1
* Group 2
* Group 3

KNN has some resolution of the circles and correctly classifies most of the points. Its misclassified
observations are near the boundaries of the circles, where nearest points fall on both sides of the
boundary line.

4
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Mahalanobis transformation

The Mahalanobis transformation eliminates the correlation between the variables and standardizes the
variance of each variable, as demonstrated in example 2 of [MV] discrim lda. When the Mahalanobis
transformation is used in conjunction with Euclidean distance, it is called Mahalanobis distance.
The Mahalanobis transformation may be applied when any continuous measure is chosen, not just
measure (Euclidean). See [MV] measure_option for a description of the available measures.

> Example 2

We will reproduce an example from Rencher and Christensen (2012, 290-292) that uses the
Mabhalanobis distance. Rencher and Christensen present data collected by G. R. Bryce and R. M.
Barker of Brigham Young University as part of a preliminary study of a possible link between football
helmet design and neck injuries. Six head dimensions were measured for each subject. Thirty subjects
were sampled in each of three groups: high school football players (group 1), college football players
(group 2), and nonfootball players (group 3). The six variables are wdim, head width at its widest
dimension; circum, head circumference; fbeye, front-to-back measurement at eye level; eyehd, eye
to top of head measurement; earhd, ear to top of head measurement; and jaw, jaw width.

These measurements will not have the same ranges. For example, the head circumference should
be much larger than eye to top of head measurement. Mahalanobis distance is used to standardize
the measurements.
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. use https://www.stata-press.com/data/r18/head, clear
(Table 8.3. Head measurements, Rencher and Christensen (2012))

. discrim knn wdim-jaw, k(5) group(group) mahalanobis

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True group High school College Nonplayer Unclassified
High school 26 0 1 3
86.67 0.00 3.33 10.00
College 1 19 9 1
3.33 63.33 30.00 3.33
Nonplayer 1 4 22 3
3.33 13.33 73.33 10.00
Total 28 23 32 7
31.11 25.56 35.56 7.78
Priors 0.3333 0.3333 0.3333
Classified
True group Total
High school 30
100.00
College 30
100.00
Nonplayer 30
100.00
Total 90
100.00
Priors

A subset of this result is in Rencher and Christensen (2012, 331-332). Of the 90 original
observations, 16 were misclassified and 7 observations were unclassified. Rencher and Christensen
also state the error rate for this example is 0.193. We use estat errorrate to get the error rate.

. estat errorrate

Error rate estimated by error count

group

High school College Nonplayer Total

Error rate .037037037 .344827586 .185185185 .189016603
Priors .333333333 .333333333 .333333333

Note: 7 observations were not classified and are not included in the table.

Our error rate of 0.189 does not match that of Rencher and Christensen. Why is this? Rencher
and Christensen calculates the error rate as the number of misclassified observations over the total
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number of observations classified. This is 16/83 a2 0.193. We use the standard error-rate definition
that takes into account the prior probabilities. From the high school group, there is one misclassified
observation of 27 total observations classified from this group, so its error rate is (1/27) ~ 0.037, and
its contribution to the total is (1/27)(1/3). Likewise, the error rates for the college and nonplayer
group are (10/29) = 0.345 and (5/27) ~ 0.185 respectively, with contributions of (10/29)(1/3) and
(5/27)(1/3). Adding all contributions, we get the displayed error rate of 0.189. See

Methods and formulas of [MV] discrim estat for details.

The unclassified observations are those that resulted in ties. We can force ties to be classified by
changing the ties () option. The default is ties(missing), which says that ties are to be classified
as missing values. Here we choose ties(nearest), which breaks the tie by classifying to the group
of the nearest tied observation.

. discrim knn wdim-jaw, k(5) group(group) mahalanobis ties(nearest)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True group High school College Nonplayer Total
High school 28 0 2 30
93.33 0.00 6.67 100.00
College 1 20 9 30
3.33 66.67 30.00 100.00
Nonplayer 1 4 25 30
3.33 13.33 83.33 100.00
Total 30 24 36 90
33.33 26.67 40.00 100.00
Priors 0.3333 0.3333 0.3333

Compare this with example 1 in [MV] candisc, example 3 in [MV] discrim estat, and example 2
of [MV] discrim logistic.
N

Binary data

In addition to the measures for continuous data, a variety of binary measures are available for
KNN. Binary data can be created from any categorical dataset by using xi; see [R] xi.

> Example 3

You have invited some scientist friends over for dinner, including Mr. Mushroom (see vignette
below), a real “fun guy”. Mr. Mushroom is not only a researcher in mycology who enjoys studying
mushrooms but also an enthusiastic mushroom gourmand who likes nothing better than to combine his
interests in classification and cookery. His current research is identification of poisonous mushrooms
from photographs. From the photographs, he can identify the shape of a mushroom’s cap, the cap’s
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surface, the cap’s color, the population of mushrooms, and, with some careful attention to detail in
the surrounding area, the habitat.

William Alphonso Murrill (1867—-1957) was a famous mycologist, taxonomist, and writer from
the New York Botanical Gardens and was nicknamed “Mr. Mushroom”. Although we borrowed
his nickname, Mr. Mushroom and the events portrayed in this example are entirely fictitious.
William Murrill’s many scientific accomplishments include the 1916 book Edible and Poisonous
Mushrooms.

Knowing your friend, you imagine that he will insist on bringing a mushroom dish to be unveiled
and served at dinnertime—perhaps his experimental subjects. Although you know that he is a careful
scientist and a gifted cook, you are stalked with worries about poisoning your other guests.

Late at night you cannot sleep for worrying about poisonous mushrooms, and you decide to do
a little research into mushroom classification. You do a Google search online and find mushroom
data at http://archive.ics.uci.edu/ml/datasets/Mushroom. For reference, these records are drawn from
Lincoff (1981).

This is a large dataset of 8,124 observations on the Agaricus and Lepiota. Each species is identified
as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This last
class was combined with the poisonous one. Lincoff (1981) clearly states that there is no simple rule
for determining the edibility of a mushroom; no rule like “leaflets three, let it be” for Poison Oak
and Ivy, a fact that does not seem comforting. Twenty-two attributes are collected, including those
that Mr. Mushroom can identify from his photographs.

The mushroom data is a set of 23 variables that describe the cap of the mushroom, whether or
not it has bruises, the gills, the veil, the stalk, the ring, the spores, the population, and the habitat.
The variables that describe the cap, for example, are capshape, capsurface, and capcolor. The
capshape variable, for example, has categories bell, conical, convex, flat, knobbed, and sunken.
Other variables and categories are similar.

You read in this dataset by using infile and make some modifications, attaching notes to this
dataset to describe what you did to the original mushroom data. Modifications include dropping
categories of the variables of interest that completely determine whether a mushroom is poisonous.
The full mushroom data are also available; webuse mushroom_full to obtain it.

. use https://www.stata-press.com/data/r18/mushroom
(Lincoff (1981) Audubon Guide; http://archive.ics.uci.edu/ml/datasets/Mushroom)

. tabulate habitat poison

poison
habitat edible poisonous Total
grasses 752 680 1,432
leaves 240 585 825
meadows 128 24 152
paths 136 1,008 1,144
urban 64 224 288
woods 1,848 1,268 3,116
Total 3,168 3,789 6,957

You can see by tabulating two of the variables, habitat and poison, that in each habitat you have
some mushrooms that are poisonous as well as some that are edible. The other descriptive variables
of interest produce similar results.


http://archive.ics.uci.edu/ml/datasets/Mushroom
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Each variable is a set of unordered categories. Thus, you can treat them as factor variables. Because
your goal is to account for all categories, you will apply the factor-variable base operator ibn. to
the categorical variables. For details, see [U] 11.4.3 Factor variables.

With KNN you can choose a measure that is suited to these data. You expect data with many
zeroes and few ones. A match of two ones is far more significant than two matching zeroes. Looking
through the binary similarity measures in [MV] measure_option, you see that the Jaccard binary
similarity coefficient reports the proportion of matches of ones when at least one of the observations
contains a one, and the Dice binary similarity measure weighs matches of ones twice as heavily as
the Jaccard measure. Either suits the situation, and you choose the Dice measure. The conversion
from a similarity to a dissimilarity measure will be s2d (standard) by default.

The poisonous and edible mushrooms are split about half and half in the original dataset, and in
the current subset of these data the ratio is still approximately half and half, so you do not specify
priors, obtaining priors(equal), the default.

Because of the size of the dataset and the number of indicator variables created by the factor-variable
base operator ibn., KNN analysis is slow. You decide to discriminate based on 2,000 points selected
at random, approximately a third of the data.

. set seed 12345678
. generate u = runiform()
. sort u

. discrim knn ibn.population ibn.habitat ibn.bruises ibn.capshape
> ibn.capsurface ibn.capcolor in 1/2000, k(15) group(poison) measure(dice)

Kth-nearest-neighbor discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True poison edible poisonous Total
edible 848 65 913
92.88 7.12 100.00
poisonous 29 1,058 1,087
2.67 97.33 100.00
Total 877 1,123 2,000
43.85 56.15 100.00
Priors 0.5000 0.5000

In some settings, these results would be considered good. Of the original 2,000 mushrooms, you
see that only 29 poisonous mushrooms have been misclassified as edible. However, even sporadic
classification of a poisonous mushroom as edible is a much bigger problem than classifying an edible
mushroom as poisonous. This does not take the cost of misclassification into account. You decide
that calling a poisonous mushroom edible is at least 10 times worse than calling an edible mushroom
poisonous. In the two-group case, you can easily use the priors() option to factor in this cost;
see [MV] discrim or McLachlan (2004, 9). We set the prior probability of poisonous mushrooms 10
times higher than that of the edible mushrooms.
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. estat classtable in 1/2000, priors(.09, .91)

Resubstitution classification table

Key
Number
Percent
Classified
True poison edible poisonous Total
edible 728 185 913
79.74 20.26 100.00
poisonous 0 1,087 1,087
0.00 100.00 100.00
Total 728 1,272 2,000
36.40 63.60 100.00
Priors 0.0900 0.9100

These results are reassuring. There are no misclassified poisonous mushrooms, although 185 edible
mushrooms of the total 2,000 mushrooms in our model are misclassified.

You now check to see how this subsample of the data performs in predicting the poison status of
the rest of the data. This takes a few minutes of computer time, but unlike using estat classtable
above, the variable predicted will stay with your dataset until you drop it. tabulate can be used
instead of estat classtable.

. predict cpoison, classification priors(.09, .91)
. label values cpoison poison

. tabulate poison cpoison

classification
poison edible poisonous Total
edible 2,450 718 3,168
poisonous 0 3,789 3,789
Total 2,450 4,507 6,957

This is altogether reassuring. Again, no poisonous mushrooms were misclassified. Perhaps there
is no need to worry about dinnertime disasters, even with a fungus among us. You are so relieved
that you plan on serving a Jello dessert to cap off the evening—your guests will enjoy a mold to
behold. Under the circumstances, you think doing so might just be a “morel” imperative.

4
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Stored results

discrim knn stores the following in e():

Scalars

e(N) number of observations

e(N_groups) number of groups

e(k_nn) number of nearest neighbors

e(k) number of discriminating variables
Macros

e(cmd) discrim

e(subcmd) knn

e(cmdline) command as typed

e(groupvar) name of group variable

e(grouplabels) labels for the groups

e(measure) similarity or dissimilarity measure

e (measure_type) dissimilarity or similarity

e(measure_binary) binary, if binary measure specified

e(s2d) standard or oneminus, if s2d() specified

e(varlist) discriminating variables

e(wtype) weight type

e (wexp) weight expression

e(title) title in estimation output

e(ties) how ties are to be handled

e(mahalanobis) mahalanobis, if Mahalanobis transform is performed

e(properties) nob noV

e(estat_cmd) program used to implement estat

e(predict) program used to implement predict

e(marginsnotok) predictions disallowed by margins
Matrices

e(groupcounts) number of observations for each group

e(grouppriors) prior probabilities for each group

e(groupvalues) numeric value for each group

e (SSCP_W) pooled within-group SSCP matrix

e(W_eigvals) eigenvalues of e (SSCP_W)

e(W_eigvecs) eigenvectors of e (SSCP_W)

e(8) pooled within-group covariance matrix

e(Sinv) inverse of e(S)

e(sqrtSinv) Cholesky (square root) of e(Sinv)

e(community) community of neighbors for prediction
Functions

e(sample) marks estimation sample

Methods and formulas

Let g be the number of groups, n; the number of observations for group %, and ¢g; the prior
probability for group ¢. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let f;(x) represent the density function for group 4, and let P(x|G;) denote
the probability of observing x conditional on belonging to group %. Denote the posterior probability

of group 7 given observation x as P(G;|x). With Bayes’s theorem, we have

qi fi(x)

P(G|x) = 1T\
(G =0 7w
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Substituting P(x|G;) for f;(x), we have

¢ P(x|G})
P(Gy|x) = — 2 XIZ)
Gk = S~ P(xIG)

For KNN discrimination, we let k; be the number of the k nearest neighbors from group ¢, and
the posterior-probability formula becomes

qik;

P(Gilx) =

g
Y
=1 "

In the event that there are ties among the nearest neighbors, k is increased to accommodate the
ties. If five points are all nearest and equidistant from a given X, then an attempt to calculate the
three nearest neighbors of x will actually obtain five nearest neighbors.

Determining the nearest neighbors depends on a dissimilarity or distance calculation. The available
dissimilarity measures are described in [MV] measure_option. Continuous and binary measures are
available. If a similarity measure is selected, it will be converted to a dissimilarity by either

standard d(ij) = /s(ii) + s(jj) — 2s(ij) = /2{1 — s(ij)}

oneminus d(ij) =1 — s(ij)

With any of the continuous measures, a Mahalanobis transformation may be performed before
computing the dissimilarities. For details on the Mahalanobis transformation, see Methods and formulas
of [MV] discrim lda. The Mahalanobis transformation with Euclidean distance is called Mahalanobis
distance.

Optimal choice of k for KNN is not an exact science. With two groups, k£ should be chosen as
an odd integer to avoid ties. Rencher and Christensen (2012, 331) cites the research of Loftsgaarden
and Quesenberry (1965), which suggests that an optimal & is \/n;, where n; is a typical group size.
Rencher and Christensen also suggest running with several different values of & and choosing the
one that gives the best error rate. McLachlan (2004) cites Enas and Choi (1986), which suggests that
when there are two groups of comparable size that k£ should be chosen approximately between [N 3/8
or N2/8 where N is the number of observations.
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discrim knn postestimation — Postestimation tools for discrim knn

Postestimation commands predict Remarks and examples Methods and formulas
Also see

Postestimation commands

The following postestimation commands are of special interest after discrim knn:

Command Description

estat classtable classification table

estat errorrate classification error-rate estimation
estat grsummarize group summaries

estat list classification listing

estat summarize estimation sample summary

The following standard postestimation commands are also available:

Command Description
*estimates cataloging estimation results
predict group membership, probabilities of group membership, etc.

*All estimates subcommands except table and stats are available; see [R] estimates.
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predict

Description for predict

predict creates a new variable containing predictions such as group classifications, probabilities,
leave-one-out group classifications, and leave-one-out probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [zf] [m] [, statistic options]

predict [type] {szub*\newvarlist} [if'] [ln} [, statistic options]

statistic Description
Main
classification group membership classification; the default when one variable is
specified and group() is not specified
pr probability of group membership; the default when group() is
specified or when multiple variables are specified
*looclass leave-one-out group membership classification; may be used only
when one new variable is specified
*loopr leave-one-out probability of group membership
options Description
Main
group (group) the group for which the statistic is to be calculated
Options
priors(priors) group prior probabilities; defaults to e (grouppriors)
ties (ties) how ties in classification are to be handled; defaults to e(ties)
noupdate do not update the within-group covariance matrix with leave-one-out
predictions
priors Description
equal equal prior probabilities
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities
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ties Description

missing ties in group classification produce missing values

random ties in group classification are broken randomly

first ties in group classification are set to the first tied group
nearest ties in group classification are assigned based on the closest

observation, or missing if this still results in a tie

You specify one new variable with classification or looclass and specify either one or e(N_groups) new
variables with pr or loopr.

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

group() is not allowed with classification or looclass.

noupdate is an advanced option and does not appear in the dialog box.

Options for predict
Main

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N_groups) new variables.

looclass calculates the leave-one-out group classifications. Only one new variable may be specified.
Leave-one-out calculations are restricted to e (sample) observations.

loopr calculates the leave-one-out group membership posterior probabilities. If you specify the
group() option, specify one new variable. Otherwise, you must specify e(N_groups) new
variables. Leave-one-out calculations are restricted to e (sample) observations.

group (group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, ..., where #1 means the first category of the e (groupvar) variable, #2 the second
category, etc.;

the values of the e (groupvar) variable; or
the value labels of the e (groupvar) variable if they exist.

group() is not allowed with classification or looclass.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix—exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.
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ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.
ties(first) specifies that ties in group classification are set to the first tied group.

ties(nearest) specifies that ties in group classification are assigned based on the closest
observation, or missing if this still results in a tie.

The following option is available with predict after discrim knn but is not shown in the dialog
box:

noupdate causes the within-group covariance matrix not to be updated with leave-one-out predictions.
noupdate is an advanced, rarely used option that is valid only if a Mahalanobis transformation
is specified.

Remarks and examples

kth-nearest-neighbor (KNN) discriminant analysis and postestimation can be time consuming for
large datasets. The training data must be retained and then searched to find the nearest neighbors
each time a classification or prediction is performed.

You can find more examples of postestimation with KNN in [MV] discrim knn, and more examples
of the common estat subcommands in [MV] discrim estat.

> Example 1: Leave-one-out classification after KNN

Recall example 1 of [MV] discrim knn. We use a similar idea here, creating a two-dimensional
dataset on the plane with x and y variables in [—4,4]. Instead of random data, we choose data on
a regular grid to make things easy to visualize, and once again, we assign groups on the basis of
geometric calculations. To start, we assign all points a group value of one, then within four circles of
radius 3, one in each quadrant, we change the group value to two in the circles in the first and third
quadrants, and we change the group value to three in the circles in the second and fourth quadrants.

Instructions for creating this dataset and definitions for local macros associated with it are contained
in its notes.
. use https://www.stata-press.com/data/r18/circlegrid
(Gridded circle data)
. local rp: di %12.10f 2+sqrt(3)
. local rm: di %12.10f 2-sqrt(3)

local functionplot

> (function y = sqrt(3-(x+2)°2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(3-(x+2)°2) - 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(3-(x-2)"2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = -sqrt(3-(x-2)"2) + 2, lpat(solid) range(-‘rm’ ‘rp’))
> (function y = sqrt(3-(x+2)"2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = -sqrt(3-(x+2)"2) + 2, lpat(solid) range(-‘rp’ -‘rm’))
> (function y = sqrt(3-(x-2)"2) - 2, lpat(solid) range( ‘rm’ ‘rp’))
> (function y = -sqrt(3-(x-2)"2) - 2, lpat(solid) range( ‘rm’ ‘rp’))

. local graphopts
> aspectratio(l) legend(order(l "Group 1" 2 "Group 2" 3 "Group 3"))
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twoway (scatter y x if group==1)
(scatter y x if group==2)
(scatter y x if group==3)
‘functionplot’ , ‘graphopts’ name(original, replace)
title("Training data")

V V.V V.

Training data
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We do a KNN discriminant analysis, choosing k(3). We elect to omit the standard classification
table and instead take a look at the leave-one-out (LOO) classification table.

. discrim knn x y, group(group) k(3) priors(proportional) notable lootable

Kth-nearest-neighbor discriminant analysis
Leave-one-out classification summary

Key
Number
Percent
Classified
True group 1 2 3 Total
1 173 12 12 197

87.82 6.09 6.09 100.00

2 8 114 0 122
6.56 93.44 0.00 100.00

3 8 0 114 122
6.56 0.00 93.44 | 100.00

Total 189 126 126 441
42.86  28.57  28.57 100.00

Priors | 0.4467 0.2766 0.2766
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We will predict the LOO classification, changing to priors(equal), and look at the plot.

. predict cknn, looclass priors(equal)
warning: 8 ties encountered;

ties are assigned to missing values.
(8 missing values generated)

twoway (scatter y x if cknn==1)
(scatter y x if cknn==2)
(scatter y x if cknn==3)
‘functionplot’ , ‘graphopts’ name(KNN, replace)
title("KNN classification")

V V.V V.

KNN classification
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We see several empty spots on the grid. In our output, changing to priors(equal) created several
ties that were assigned to missing values. Missing values are the blank places in our graph.

4

> Example 2: Listing misclassified observations

Continuing where we left off, we use estat list to display LOO probabilities for the misclassified
observations, but this produces a lot of output.

. estat list, misclass class(noclass looclass) pr(nopr loopr) priors(equal)

Classification LOO Probabilities

Obs True LOO C1. 1 2 3
24 1 2 * 0.3836 0.6164 0.0000
28 1 2 % 0.2374 0.7626 0.0000
34 1 3 * 0.2374 0.0000 0.7626
38 1 3 * 0.3836 0.0000 0.6164
50 2 1 % 0.5513 0.4487 0.0000
54 3 1 % 0.5513 0.0000 0.4487

(output omitted )

L 1

* indicates misclassified observations
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Instead, we predict the LOO probabilities and list only those where the LOO classification is missing.

. predict pr*, loopr priors(equal)

. list group cknn pr* if missing(cknn)

group cknn pril pr2 pr3
94. 1 .2373541 .381323 .381323
115. 1 .2373541 .381323 .381323
214. 1 .2373541 .381323 .381323
215. 1 .2373541 .381323 .381323
225. 1 .2373541 .381323 .381323
226. 1 .2373541 .381323 .381323
325. 1 . .2373541 .381323 .381323
346. 1 . .2373541 .381323 .381323

The missing LOO classifications represent ties for the largest probability.

> Example 3: Out-of-sample KNN classification

LOO classification and LOO probabilities are available only in sample, but standard probabilities
can be obtained out of sample. To demonstrate this, we continue where we left off, with the KNN
model of example 2 still active. We drop our current data and generate some new data. We predict
the standard classification with the new data and graph our results.

. clear

. set obs 500
Number of observations (_N) was 0, now 500.

. set seed 314159265
. generate x = 8xruniform() - 4
. generate y = 8*runiform() - 4

. predict cknn, class
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twoway (scatter y x if cknn==1)
(scatter y x if cknn==2)
(scatter y x if cknn==3)
‘functionplot’, ‘graphopts’ name(KNN2, replace)
title("Out-of-sample KNN classification", span)

V V.V V.

Out-of-sample KNN classification

e Group 1
® Group 2
* Group 3

Methods and formulas

See [MV] discrim knn for methods and formulas.

Also see

[MV] discrim knn — kth-nearest-neighbor discriminant analysis
[MV] discrim estat — Postestimation tools for discrim
[MV] discrim — Discriminant analysis

[U] 20 Estimation and postestimation commands



Title

discrim Ida — Linear discriminant analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

discrim lda performs linear discriminant analysis. See [MV] discrim for other discrimination
commands.

If you want canonical linear discriminant results displayed, see [MV] candisc.

Quick start

Linear discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar
discrim lda vl v2 v3 v4, group(catvar)

Same as above, but use prior probabilities proportional to group size
discrim lda vl v2 v3 v4, group(catvar) priors(proportional)

Display the leave-one-out and the resubstitution classification tables
discrim lda vl v2 v3 v4, group(catvar) lootable

Same as above, but suppress the resubstitution classification table
discrim lda vl v2 v3 v4, group(catvar) lootable notable

Menu

Statistics > Multivariate analysis > Discriminant analysis > Linear (LDA)
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Syntax

discrim 1da varlist [lf] [in] [weight], group (groupvar) [()pti()ns]

options Description
Model
* group (groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled
Reporting
notable suppress resubstitution classification table
lootable display leave-one-out classification table
priors Description
equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group
prior probabilities
ties Description
missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly
first ties in group classification are set to the first tied group

*group() is required.

collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

group (groupvar) is required and specifies the name of the grouping variable. groupvar must be a

numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are

allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix—exp) specifies a matrix expression providing a row or column vector of the group

prior probabilities.
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ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Reporting

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples

discrim lda computes the same things as candisc, but candisc displays more information.
The same information can be displayed after discrim 1da by using the estat suite of commands;
see [MV] discrim lda postestimation.

Remarks are presented under the following headings:

Introduction
Descriptive LDA
Predictive LDA

A classic example

Introduction

Linear discriminant analysis (LDA) was developed by different researchers, Fisher (1936) and
Mahalanobis (1936), starting with different approaches to the problem of discriminating between groups.
Kshirsagar and Arseven (1975), Green (1979), and Williams (1982) demonstrate the mathematical
relationship between Fisher’s linear discriminant functions and the classification functions from the
Mabhalanobis approach to LDA; see Rencher (1998, 239).

Fisher’s approach to LDA forms the basis of descriptive LDA but can be used for predictive LDA. The
Mahalanobis approach to LDA more naturally handles predictive LDA, allowing for prior probabilities
and producing estimates of the posterior probabilities. The Mahalanobis approach to LDA also extends
to quadratic discriminant analysis (QDA); see [MV] discrim gda.

Descriptive LDA

Fisher (1936) approached linear discriminant analysis by seeking the linear combination of the
discriminating variables that provides maximal separation between the groups (originally two groups,
but later extended to multiple groups). Maximal separation of groups is determined from an eigen
analysis of W ~!'B, where B is the between-group sum-of-squares and cross-products (SSCP) matrix,
and W is the within-group SSCP matrix. The eigenvalues and eigenvectors of W—'B provide what
are called Fisher’s linear discriminant functions.

The first linear discriminant function is the eigenvector associated with the largest eigenvalue. This
first discriminant function provides a linear transformation of the original discriminating variables into
one dimension that has maximal separation between group means. The eigenvector associated with
the second-largest eigenvalue is the second linear discriminant function and provides a dimension
uncorrelated with (but usually not orthogonal to) the first discriminant function. The second discriminant
function provides the maximal separation of groups in a second dimension. The third discriminant
function provides the maximum separation of groups in a third dimension.
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> Example 1

Two groups measured on two variables illustrate Fisher’s approach to linear discriminant analysis.

. use https://www.stata-press.com/data/r18/twogroup
(Two groups)
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Splitting the two groups on the basis of y or x alone would leave a great deal of overlap between
the groups. By eye it appears that a line with a slope of about —1 could be positioned between the
two groups with only a few of the observations falling on the wrong side of the line.

Fisher’s approach to LDA helps us find the best separating line.

. discrim lda y x, group(group) notable

discrim 1lda computes the information needed for both a predictive and descriptive linear
discriminant analysis. We requested notable, which suppressed the display of the resubstitution
classification table. We will examine this feature of discrim 1da when we discuss predictive LDA.
The descriptive features of LDA are available through postestimation commands.

. estat loadings, unstandardized

Canonical discriminant function coefficients

functionl

y .0862145

b4 .0994392
_cons -6.35128

Fisher’s linear discriminant functions provide the basis for what are called the canonical discriminant
functions; see Methods and formulas. The canonical discriminant function coefficients are also called
unstandardized loadings because they apply to the unstandardized discriminating variables (x and y).
Because we have only two groups, there is only one discriminant function. From the coefficients or
loadings of this discriminant function, we obtain a one-dimensional projection of the data that gives
maximal separation between the two groups relative to the spread within the groups. The estat
loadings postestimation command displayed these loadings; see [MV] discrim lda postestimation.
After estat loadings, the unstandardized loadings are available in matrix r (L_unstd). We take
these values and determine the equation of the separating line between the groups and a line
perpendicular to the separating line.

The unstandardized canonical discriminant function coefficients indicate that

0 = 0.0862145y + 0.0994392x — 6.35128
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which in standard y = mx + b form is
y = —1.1534x + 73.6684

which is the dividing line for classifying observations into the two groups for this LDA. A line
perpendicular to this dividing line has slope —1/ — 1.153 = 0.867. The following graph shows the
data with this dividing line and a perpendicular projection line.

60+

40+

e Groupl —— Dividing line
e Group2 —— Projection line

20

Another way of thinking about the discriminant function is that it projects the data from the original
two dimensions down to one dimension—the line perpendicular to the dividing line. Classifications
are based on which side of the separating line the observations fall.

Researchers often wish to know which of the discriminating variables is most important or helpful

in discriminating between the groups. They want to examine the standardized loadings—the loadings
that apply to standardized variables.

. estat loadings, standardized
Standardized canonical discriminant function coefficients

| functionl

y . 7798206
X 1.057076

These coefficients or loadings apply to x and y that have been standardized using the pooled
within-group covariance matrix. The loading for x is larger than that for y, indicating that it contributes
more to the discrimination between the groups. Look back at the scatterplot to see that there is more
separation between the groups in the x dimension than the y dimension. See [MV] discrim lda
postestimation for more details of the estat loadings command.
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Some researchers prefer to examine what are called structure coefficients.

. estat structure

Canonical structure

| functionl
y | .3146309
b4 .7138982

The estat structure command provides structure coefficients, which measure the correlation
between each discriminating variable and the discriminant function; see [MV] discrim lda postesti-
mation. Here the canonical structure coefficient for x is larger than that for y, leading to the same
conclusion as with standardized loadings. There is disagreement in the literature concerning the use
of canonical structure coefficients versus standardized loadings; see Rencher and Christensen (2012,
300-301) and Huberty (1994, 262-264).

d

In addition to loading and structure coefficients, there are other descriptive LDA features available
after discrim 1lda. These include canonical correlations and tests of the canonical correlations,
classification functions, scree plots, loading plots, score plots, and various group summaries; see
[MV] discrim lda postestimation.

If your main interest is in descriptive LDA, you may find the candisc command of interest;
see [MV] candisc. discrim 1da and candisc differ only in their default output. discrim lda
shows classification tables. candisc shows canonical correlations, standardized coefficients (loadings),
structure coefficients, and more. All the features found in [MV] discrim lda postestimation are available
for both commands.

Predictive LDA

Another approach to linear discriminant analysis starts with the assumption that the observations
from each group are multivariate normal with the groups having equal covariance matrices but different
means. Mahalanobis (1936) distance plays an important role in this approach. An observation with
unknown group membership is classified as belonging to the group with smallest Mahalanobis distance
between the observation and group mean. Classification functions for classifying observations of
unknown group membership can also be derived from this approach to LDA and formulas for the
posterior probability of group membership are available.

As shown in Methods and formulas, Mahalanobis distance can be viewed as a transformation
followed by Euclidean distance. Group membership is assigned based on the Euclidean distance in
this transformed space.
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> Example 2

We illustrate the Mahalanobis transformation and show some of the features of predictive discriminant
analysis with a simple three-group example dataset named threegroup.dta.

Untransformed data
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These three groups appear to have similar covariance structure—showing a positive correlation
between x and y. There is some overlap of the three groups, but general identification of the groups
does not appear difficult by human eye.

If we were to apply Euclidean distance for classifying this untransformed data, we would misclassify
some observations that clearly should not be misclassified when judged by eye. For example, in the
graph above, the observations from group 3 that have y values below 40 (found in the lower left of
the group 3 cloud of points) are closer in Euclidean distance to the center of group 1.

The following graph shows the Mahalanobis-transformed data.

Mahalanobis transformed data
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With the transformed data, using Euclidean distance between observations and group means works
well.
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Now let’s see how well discrim 1da can distinguish between the groups. By default, a resubstitution
classification table is presented. The rows correspond to the known group and the columns to the
grouping as assigned by the discrim model. The word resubstitution is used because the same
observations that built the model are being classified by the model.

. discrim lda y x, group(group)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True group 1 2 3 Total
1 93 4 3 100

93.00 4.00 3.00 100.00

2 3 97 0 100
3.00 97.00 0.00 100.00

3 3 0 97 100
3.00 0.00 97.00 100.00

Total 99 101 100 300
33.00 33.67 33.33 100.00

Priors | 0.3333 0.3333 0.3333

For these 300 observations, group 1 had 93 observations correctly classified, 4 observations
misclassified into group 2, and 3 observations misclassified into group 3. Group 2 had 3 observations
misclassified into group 1 and 97 observations correctly classified. Group 3 had 3 observations
misclassified into group 1 and 97 observations correctly classified.

Generally, resubstitution classification tables give an overly optimistic view of how well you would
classify an unknown observation. Leave-one-out (LOO) classification tables provide a more realistic
assessment for classification success. With this 300-observation dataset, the LOO classification table
gives the same results. We could see the LOO classification table by requesting it at estimation, by
requesting it at replay, or by using the estat classtable command.
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We now list the misclassified observations.

. estat list, varlist misclassified

Data Classification Probabilities
Obs y X True Class. 1 2 3
19 49 37 1 3 % 0.2559 0.0000 0.7441
29 49 57 1 2 * 0.4245 0.5750 0.0005
47 49 37 1 3 * 0.2559 0.0000 0.7441
55 24 45 1 2 % 0.4428 0.5572 0.0000
70 48 61 1 2 * 0.0661 0.9339 0.0000
74 49 58 1 2 % 0.3041 0.6957 0.0003
92 37 22 1 3 * 0.3969 0.0000 0.6031
143 27 45 2 1 % 0.6262 0.3738 0.0000
161 39 49 2 1 * 0.8026 0.1973 0.0001
185 49 54 2 1 * 0.7782 0.2187 0.0030
238 48 44 3 1 * 0.8982 0.0017 0.1001
268 50 44 3 1 * 0.7523 0.0009 0.2469
278 36 31 3 1 * 0.9739 0.0000 0.0261

* indicates misclassified observations

The posterior probabilities for each displayed observation for each of the three groups is presented
along with the true group and the classified group. The observation number is also shown. We added
the discriminating variables x and y to the list with the varlist option. By default, estat list
would list all the observations. The misclassified option restricts the list to those observations

that were misclassified.

With predict we could generate classification variables, posterior probabilities, Mahalanobis
squared distances from observations to group means, classification function scores (see Methods and
formulas), and more. Fifteen estat commands provide more predictive and descriptive tools after

discrim lda; see [MV] discrim lda postestimation.

A classic example

We use the iris data from Fisher’s (1936) pioneering LDA article to demonstrate the discrim lda

command.

> Example 3

Fisher obtained the iris data from Anderson (1935). The data consist of four features measured
on 50 samples from each of three iris species. The four features are the length and width of the
sepal and petal. The three species are [Iris setosa, Iris versicolor, and Iris virginica. Morrison (2005,

app. B.2) is a modern source of the data.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
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Running discrim 1da produces the resubstitution classification table.

. discrim lda seplen sepwid petlen petwid, group(iris)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True iris Setosa Versicolor Virginica Total
Setosa 50 0 0 50
100.00 0.00 0.00 100.00
Versicolor 0 48 2 50
0.00 96.00 4.00 100.00
Virginica 0 1 49 50
0.00 2.00 98.00 100.00
Total 50 49 51 150
33.33 32.67 34.00 100.00
Priors 0.3333 0.3333 0.3333

One Iris virginica observation was misclassified as a versicolor, two Iris versicolor observations
were misclassified as virginica, and no Iris setosa observations were misclassified in our resubstitution
classification.

Which observations were misclassified?

. estat list, misclassified

Classification Probabilities
Obs True Class. Setosa Versicolor Virginica
71 | Versicol Virginic * | 0.0000 0.2532 0.7468
84 | Versicol Virginic * | 0.0000 0.1434 0.8566
134 | Virginic Versicol * | 0.0000 0.7294 0.2706

* indicates misclassified observations

Postestimation command estat 1ist shows that observations 71, 84, and 134 were misclassified
and shows the estimated posterior probabilities for the three species for the misclassified observations.

We now examine the canonical discriminant functions for this LDA. The number of discriminant
functions will be one fewer than the number of groups or will be the number of discriminating
variables, whichever is less. With four discriminating variables and three species, we will have two
discriminant functions. estat loadings displays the discriminant coefficients or loadings.
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. estat loadings, unstandardized standardized
Canonical discriminant function coefficients

functionl function2

seplen | -.8293776 -.0241021
sepwid | -1.534473 -2.164521
petlen 2.201212 .9319212
petwid 2.81046 -2.839188

_cons | -2.105106 6.661473

Standardized canonical discriminant function coefficients

functionl function2

seplen | -.4269548 -.0124075
sepwid | -.5212417 -.7352613
petlen .9472572 .4010378
petwid .5751608 -.5810399

We requested the display of both unstandardized and standardized loadings. The two unstandardized
discriminant functions provide linear combinations of the seplen, sepwid, petlen, and petwid
discriminating variables—producing two new dimensions. The standardized canonical discriminant
function coefficients indicate the relative importance and relationship between the discriminating
variables and the discriminant functions. The first discriminant function compares seplen and sepwid,
which have negative standardized coefficients, to petlen and petwid, which have positive standardized
coefficients. The second discriminant function appears to be contrasting the two width variables from
the two length variables, though this is not as distinct of a difference as found in the first discriminant
function because the seplen variable in the second standardized discriminant function is close to
Zero.

Understanding the composition of the discriminant functions is aided by plotting the coeffi-
cients. loadingplot graphs the discriminant function coefficients (loadings); see [MV] discrim lda
postestimation and [MV] scoreplot.

. loadingplot

Standardized discriminant function loadings

.
petlen

04 eseplen

°
petwid
.sepwwd

Standardized discriminant function 2

-5 0 5 1
Standardized discriminant function 1

We now show a scatterplot of our three species projected onto the two dimensions of our discriminant
solution. The scoreplot command takes care of most of the graphing details for us; see [MV] discrim
Ida postestimation and [MV] scoreplot. However, by default, scoreplot uses the full value labels
for the three iris species and the resulting graph is busy. The iris dataset has two label languages
predefined. The default label language has the full value labels. The other predefined label language
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is called oneletter, and it uses a one-letter code as value labels for the three iris species. The 1abel
language command will switch between these two label languages; see [D] label language. We also
use the msymbol (i) graph option so that the points will not be displayed—only the one-letter value
labels will be displayed for each observation.

. label language oneletter

. scoreplot, msymbol(i)
> note("S = Iris setosa, C = Iris versicolor, V = Iris virginica")

Discriminant function scores

4A
c
Vv
~ 27 s ~C C
° Ece g °
o _ c . c
2 8 ¢ Cc c Vuw N v
= S8 (ﬂ%ccg v v
g 0 a5 c & o v WV
£ So5s Ss S & v W
€ c Vouw Y
§ S S Sb SS ¢ ‘ v \\?\/ V\}\/
2 v
O 5] 7s s Vv v
Vovy
s v
-4
T T T T T
-10 -5 0 5 10

Discriminant score 1
S = Iris setosa, C = Iris versicolor, V = Iris virginica
The Iris setosa are well separated from the other two species. Iris versicolor and Iris virginica
show some overlap.

See example 1 of [MV] discrim estat and examples 6, 7, and 8, of [MV] discrim lda postestimation
for more examples of what can be produced after discrim 1da for this iris dataset.

d
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Stored results

discrim 1da stores the following in e():

Scalars
e(N) number of observations
e(N_groups) number of groups
e(k) number of discriminating variables
e(f) number of nonzero eigenvalues
Macros
e(cmd) discrim
e(subcmd) lda

e(cmdline)
e(groupvar)
e(grouplabels)
e(varlist)
e(wtype)

e (wexp)
e(title)
e(ties)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

Matrices

e(groupcounts)
e(grouppriors)
e(groupvalues)
e(means)

e (SSCP_W)

e (SSCP_B)

e (SSCP_T)

e (SSCP_w#)
e(W_eigvals)
e(W_eigvecs)
e(8)

command as typed

name of group variable

labels for the groups
discriminating variables

weight type

weight expression

title in estimation output

how ties are to be handled

nob noV eigen

program used to implement estat
program used to implement predict
predictions disallowed by margins

number of observations for each group
prior probabilities for each group
numeric value for each group

group means on discriminating variables
pooled within-group SSCP matrix
between-groups SSCP matrix

total SSCP matrix

within-group SSCP matrix for group #
eigenvalues of e (SSCP_W)
eigenvectors of e (SSCP_W)

pooled within-group covariance matrix

e(Sinv) inverse of e(S)

e(sqrtSinv) Cholesky (square root) of e(Sinv)

e(Ev) eigenvalues of W~ 'B

e(L_raw) eigenvectors of W~ !B

e(L_unstd) unstandardized canonical discriminant function coefficients

e(L_std) within-group standardized canonical discriminant function coefficients

e(L_totalstd) total-sample standardized canonical discriminant function coefficients
e(C) classification coefficients

e(cmeans) unstandardized canonical discriminant functions evaluated at group means
e(canstruct) canonical structure matrix

e(candisc_stat) canonical discriminant analysis statistics

Functions

e(sample) marks estimation sample

Methods and formulas

Methods and formulas are presented under the following headings:

Predictive LDA
Descriptive LDA
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Predictive LDA

Let g be the number of groups, n; the number of observations for group ¢, and ¢; the prior
probability for group ¢. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let f;(x) represent the density function for group 4, and let P(x|G;) denote
the probability of observing x conditional on belonging to group %. Denote the posterior probability
of group 7 given observation x as P(G;|x). With Bayes’s theorem, we have

f(x
P(Gifx) = T
721413 (%)
Substituting P(x|G;) for f;(x), we have
__ aPE[G)
2o 4 P(x|Gj)

LDA assumes that the groups are multivariate normal with equal covariance matrices. Let S denote
the pooled within-group sample covariance matrix and X; denote the sample mean of group ¢. The

X; are returned as the columns of the e (means) matrix. The squared Mahalanobis distance between
observation x and X; is

P(Gilx)

Dz2 = (X — ii)'S_l(X — il)
Plugging these sample estimates into the multivariate normal density gives
P(x|G;) = (2m)7P/?|8| /e~ Pi/2
Substituting this into the formula for P(G;|x) and simplifying gives
—D?/2
gie '
P(G) =
j=149¢ °
as the LDA posterior probability of observation x belonging to group ¢.

Computation of Mahalanobis distance can be broken down into two steps. Step one: transform
the data by using the Mahalanobis transformation. Step two: compute the Euclidean distance of the
transformed data.

Let L be the Cholesky factorization of S™! such that S™! = L’L and L is lower triangular. L
is returned in matrix e(sqrtSinv). Squared Mahalanobis distance can be expressed in terms of L.

Di2 =(x— ii)’S_l(X -X;)
= (x - X%;)'L'L(x — X;)
= (Lx - Lx;)'(Lx — LX;)
=(z—-%)(z—%)
which is the squared Euclidean distance between z and Z;. We call z = Lx the Mahalanobis
transformation.

The squared Mahalanobis distance between group means is produced by estat grdistances;
see [MV] discrim lda postestimation.

Classification functions can be derived from the Mahalanobis formulation for LDA; see Rencher
and Christensen (2012, 315-316) and Huberty (1994, 59). Let L;(x) denote the linear classification
function for the ith group applied to observation X. L;(x) = ¢;x + ¢;o, where ¢; = iQS*I and
cio = —(1/2)X;S7X; + In(g;). The g linear classification functions are returned as the columns of
matrix e(C) and through the estat classfunction command; see [MV] discrim lda postestimation.
An observation can be classified based on largest posterior probability or based on largest classification
function score.
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Descriptive LDA

As with predictive LDA, let g be the number groups, n; the number of training (sample) observations
for group i, p the number of discriminating variables, and N = Zle n; the total number of
observations. Also, let W be the within-group sums-of-squares and cross-products (SSCP) matrix and
let B be the between-groups SSCP matrix. Fisher’s (1936) linear discriminant functions are based on
the eigenvalues and eigenvectors of W 1B.

There are s = min(g — 1,p) nonzero eigenvalues of W™IB. Let A1, Mg, ..., \s denote the
s eigenvalues in decreasing order. The eigenvalues are returned in e(Ev). Let vy, vag, ..., Vg
denote the corresponding eigenvectors. Rencher and Christensen (2012, 289) outlines the approach
for obtaining the eigenvalues and eigenvectors of the nonsymmetric W ~'B matrix. Because W~ 'B
is nonsymmetric, the resulting eigenvectors are not orthogonal but merely uncorrelated; see Rencher
and Christensen (2012, 289). A matrix with the v; as columns is returned in e (L_raw). The phrase
raw coefficients is used by Klecka (1980, 22) to describe the v vectors.

Any constant multiple of the eigenvector v; is still an eigenvector of W !B associated with
eigenvalue \;. Typically, vu; = v;4/IN — g are used as the eigenvectors (discriminant functions) and
are called unstandardized canonical discriminant functions because they correspond to the unstan-
dardized discriminating variables. An extra element is added to the bottom of the vu vectors for the
constant, so that if the vu vectors are applied as linear combinations of the discriminating variables,
the resulting variables have mean zero; see Klecka (1980, 21-23). A matrix with the vu; as columns
is returned in e (L_unstd).

The means of the discriminating variables for each group are returned as the columns of the matrix
e(means). These group means multiplied by the unstandardized discriminant-function coefficients,
vu;, produce what are called group means on canonical variables and are returned in the matrix
e(cmeans) and displayed with the command estat grmeans, canonical.

Standardized discriminant functions are obtained as vs; = v;+/Wj;. The ith raw eigenvector is
standardized by the square root of the ith diagonal element of the W matrix. These within-group
standardized discriminant functions are used in assessing the importance and relationship of the
original discriminating variables to the discriminant functions. A matrix with the vs; as columns is
returned in e(L_std).

Let T denote the total sample SSCP matrix. Total-sample standardized discriminant functions are
computed as vt; = v;/T;;(N — g)/(N — 1). A matrix with the vt; as columns is returned in
e(L_totalstd). There is debate as to which of vs and vt should be used for interpretation; see
Mueller and Cozad (1988), Nordlund and Nagel (1991), and Mueller and Cozad (1993).

The estat loadings command displays e(L_unstd), e(L_std), and e(L_totalstd); see
[MV] discrim lda postestimation.

The canonical structure matrix measures the correlation between the discriminating variables and
the discriminant function and is returned in matrix e (canstruct). The canonical structure matrix is
equal to WV with the ith row divided by \/W,;, where V contains the v; eigenvectors as columns.
Rencher and Christensen (2012, 300) warns against the use of structure coefficients for interpretation,
but Huberty (1994, 262-264) contends otherwise.

The returned matrix e(candisc_stat) contains columns for the information shown by estat
canontest, including the eigenvalues, canonical correlations, proportion of variance, cumulative
proportion of variance, likelihood-ratio test statistics, and the corresponding F' tests, degrees of
freedom, and p-values. See [MV] canon.

As noted in the Introduction section of Remarks and examples, Kshirsagar and Arseven (1975),
Green (1979), and Williams (1982) demonstrate the mathematical relationship between Fisher’s
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linear discriminant functions (the basis for descriptive LDA) and the classification functions from the
Mahalanobis approach to LDA (the basis for predictive LDA); see Rencher (1998, 239).
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Postestimation commands

The following postestimation commands are of special interest after discrim 1da:

Command Description
estat anova ANOVA summaries table
estat canontest tests of the canonical discriminant functions

estat classfunctions classification functions

estat classtable classification table

estat correlations correlation matrices and p-values

estat covariance covariance matrices

estat errorrate classification error-rate estimation

estat grdistances Mahalanobis and generalized squared distances between the group means
estat grmeans group means and variously standardized or transformed means
estat grsummarize group summaries

estat list classification listing

estat loadings canonical discriminant-function coefficients (loadings)

estat manova MANOVA table

estat structure canonical structure matrix

estat summarize estimation sample summary

loadingplot plot standardized discriminant-function loadings

scoreplot plot discriminant-function scores

screeplot plot eigenvalues

The following standard postestimation commands are also available:

Command Description
*estimates cataloging estimation results
predict group membership, probabilities of group membership, etc.

*All estimates subcommands except table and stats are available; see [R] estimates.

262
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predict

Description for predict

predict creates a new variable containing predictions such as group classifications, probabilities,
Mabhalanobis squared distances, discriminant function scores, leave-one-out probabilities, leave-one-out
group classifications, and leave-one-out Mahalanobis squared distances.

Menu for predict

Statistics > Postestimation

Syntax for predict
predict [type] newvar [lf] [zn] [, statistic opzions]

predict [type] {stub*\newvarlist} [zf] [tn} [, statistic options]

statistic Description
Main
classification group membership classification; the default when one variable is
specified and group() is not specified
pr probability of group membership; the default when group() is
specified or when multiple variables are specified
mahalanobis Mahalanobis squared distance between observations and groups
dscore discriminant function score
clscore group classification function score
*looclass leave-one-out group membership classification; may be used only
when one new variable is specified
*loopr leave-one-out probability of group membership
*loomahal leave-one-out Mahalanobis squared distance between observations and
groups
options Description
Main
group (group) the group for which the statistic is to be calculated
Options
priors(priors) group prior probabilities; defaults to e (grouppriors)

ties (ties) how ties in classification are to be handled; defaults to e(ties)
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priors Description

equal equal prior probabilities

proportional group-size-proportional prior probabilities

matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values
random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

You specify one new variable with classification or looclass; either one or e(N_groups) new variables with
pr, loopr, mahalanobis, loomahal, or clscore; and one to e(f) new variables with dscore.

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

group() is not allowed with classification, dscore, or looclass.

Options for predict
Main

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e (N_groups) new variables.

mahalanobis calculates the squared Mahalanobis distance between the observations and group
means. If you specify the group () option, specify one new variable. Otherwise, you must specify
e(N_groups) new variables.

dscore produces the discriminant function score. Specify as many variables as leading discriminant
functions that you wish to score. No more than e(f) variables may be specified.

clscore produces the group classification function score. If you specify the group () option, specify
one new variable. Otherwise, you must specify e (N_groups) new variables.

looclass calculates the leave-one-out group classifications. Only one new variable may be specified.
Leave-one-out calculations are restricted to e (sample) observations.

loopr calculates the leave-one-out group membership posterior probabilities. If you specify the
group() option, specify one new variable. Otherwise, you must specify e(N_groups) new
variables. Leave-one-out calculations are restricted to e (sample) observations.

loomahal calculates the leave-one-out squared Mahalanobis distance between the observations and
group means. If you specify the group() option, specify one new variable. Otherwise, you must
specify e(N_groups) new variables. Leave-one-out calculations are restricted to e(sample)
observations.
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group (group) specifies the group for which the statistic is to be calculated and can be specified
using

#1, #2, ..., where #1 means the first category of the e (groupvar) variable, #2 the second
category, etc.;

the values of the e (groupvar) variable; or
the value labels of the e (groupvar) variable if they exist.

group() is not allowed with classification, dscore, or looclass.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.
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estat

Description for estat
estat anova presents a table summarizing the one-way ANOVAs for each variable in the discriminant
analysis.

estat canontest presents tests of the canonical discriminant functions. Presented are the canonical
correlations, eigenvalues, proportion and cumulative proportion of variance, and likelihood-ratio tests
for the number of nonzero eigenvalues.

estat classfunctions displays the classification functions.

estat correlations displays the pooled within-group correlation matrix, between-groups cor-
relation matrix, total-sample correlation matrix, and/or the individual group correlation matrices.
Two-tailed p-values for the correlations may also be requested.

estat covariance displays the pooled within-group covariance matrix, between-groups covariance
matrix, total-sample covariance matrix, and/or the individual group covariance matrices.

estat grdistances provides Mahalanobis squared distances between the group means along with
the associated F' statistics and significance levels. Also available are generalized squared distances.

estat grmeans provides group means, total-sample standardized group means, pooled within-group
standardized means, and canonical functions evaluated at the group means.

estat loadings present the canonical discriminant-function coefficients (loadings). Unstandard-
ized, pooled within-class standardized, and total-sample standardized coefficients are available.

estat manova presents the MANOVA table associated with the discriminant analysis.

estat structure presents the canonical structure matrix.

Menu for estat

Statistics > Postestimation
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Syntax for estat
ANOVA summaries table
estat anova
Tests of the canonical discriminant functions

estat canontest

Classification functions

estat classfunctions [, classfunctions_oplions}

Correlation matrices and p-values

estat correlations [, correlations_()ptions]

Covariance matrices

estat covariance [, covariance_options}

Mahalanobis and generalized squared distances between the group means

estat grdistances [, grdistances_options]

Group means and variously standardized or transformed means

estat grmeans [, grmeans_options]

Canonical discriminant-function coefficients (loadings)

estat loadings [, loadings_options]

MANOVA table

estat manova

Canonical structure matrix

estat structure [ , format (% fint) ]

classfunctions_options Description
Main
adjustequal adjust the constant even when priors are equal
format (% fimt) numeric display format; default is %9.0g
Options
priors(priors) group prior probabilities; defaults to e (grouppriors)

nopriors suppress display of prior probabilities
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correlations_options

Description

Main

within
between
total

groups

all

1Y
format (% fimt)
nohalf

display pooled within-group correlation matrix; the default
display between-groups correlation matrix

display total-sample correlation matrix

display the correlation matrix for each group

display all the above

display two-sided p-values for requested correlations
numeric display format; default is %9.0g

display full matrix even if symmetric

covariance_options

Description

Main
within
between
total
groups
all
format (% fint)
nohalf

display pooled within-group covariance matrix; the default
display between-groups covariance matrix

display total-sample covariance matrix

display the covariance matrix for each group

display all the above

numeric display format; default is %9.0g

display full matrix even if symmetric

grdistances_options

Description

Main

@alanobis[ (f p) ]

generalized
all
format (% fint)

Options
priors(priors)

display Mahalanobis squared distances between group means; the default
display generalized Mahalanobis squared distances between group means
equivalent to mahalanobis(f p) generalized

numeric display format; default is %9.0g

group prior probabilities; defaults to e (grouppriors)

grmeans_options

Description

Main
raw
totalstd
withinstd
canonical
all

display untransformed and unstandardized group means
display total-sample standardized group means

display pooled within-group standardized group means
display canonical functions evaluated at group means
display all the mean tables
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loadings_options Description
Main

standardized display pooled within-group standardized canonical discriminant function
coefficients; the default

totalstandardized display the total-sample standardized canonical discriminant function
coefficients

unstandardized display unstandardized canonical discriminant function coefficients

all display all the above

format (% fint) numeric display format; default is %9.0g

collect is allowed with all estat commands; see [U] 11.1.10 Prefix commands.

Options for estat

Options for estat are presented under the following headings:

Options for estat classfunctions
Options for estat correlations
Options for estat covariance
Options for estat grdistances
Options for estat grmeans
Options for estat loadings
Option for estat structure

Options for estat classfunctions

Main

adjustequal specifies that the constant term in the classification function be adjusted for prior
probabilities even though the priors are equal. By default, equal prior probabilities are not used in
adjusting the constant term. adjustequal has no effect with unequal prior probabilities.

format (% fint) specifies the matrix display format. The default is format (%9.0g).

priors(priors) specifies the group prior probabilities. The prior probabilities affect the constant
term in the classification function. By default, priors is determined from e (grouppriors). See
Options for predict for the priors specification. By common convention, when there are equal prior
probabilities the adjustment of the constant term is not performed. See adjustequal to override
this convention.

nopriors specifies that the prior probabilities not be displayed. By default, the prior probabilities
used in determining the constant in the classification functions are displayed as the last row in the
classification functions table.

Options for estat correlations

Main

Is

within specifies that the pooled within-group correlation matrix be displayed. This is the default.

between specifies that the between-groups correlation matrix be displayed.
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total specifies that the total-sample correlation matrix be displayed.

groups specifies that the correlation matrix for each group be displayed.

all is the same as specifying within, between, total, and groups.

p specifies that two-sided p-values be computed and displayed for the requested correlations.
format (% fint) specifies the matrix display format. The default is format (%8.5f).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.

Options for estat covariance

Main

within specifies that the pooled within-group covariance matrix be displayed. This is the default.
between specifies that the between-groups covariance matrix be displayed.

total specifies that the total-sample covariance matrix be displayed.

groups specifies that the covariance matrix for each group be displayed.

all is the same as specifying within, between, total, and groups.

format (% fimt) specifies the matrix display format. The default is format (%9.0g).

nohalf specifies that, even though the matrix is symmetric, the full matrix be printed. The default
is to print only the lower triangle.

Options for estat grdistances

Main

Is

mahalanobis[ (f p) ] specifies that a table of Mahalanobis squared distances between group means
be presented. mahalanobis(f) adds F' tests for each displayed distance and mahalanobis(p)
adds the associated p-values. mahalanobis(f p) adds both. The default is mahalanobis.

generalized specifies that a table of generalized Mahalanobis squared distances between group
means be presented. generalized starts with what is produced by the mahalanobis option and
adds a term accounting for prior probabilities. Prior probabilities are provided with the priors()
option, or if priors () is not specified, by the values in e (grouppriors). By common convention,
if prior probabilities are equal across the groups, the prior probability term is omitted and the
results from generalized will equal those from mahalanobis.

all is equivalent to specifying mahalanobis(f p) and generalized.

format (% fimt) specifies the matrix display format. The default is format (%9.0g).

priors(priors) specifies the group prior probabilities and affects only the output of the generalized
option. By default, priors is determined from e (grouppriors). See Options for predict for the
priors specification.
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Options for estat grmeans

Main

raw, the default, displays a table of group means.
totalstd specifies that a table of total-sample standardized group means be presented.
withinstd specifies that a table of pooled within-group standardized group means be presented.

canonical specifies that a table of the unstandardized canonical discriminant functions evaluated at
the group means be presented.

all is equivalent to specifying raw, totalstd, withinstd, and canonical.

Options for estat loadings

Main

standardized specifies that the pooled within-group standardized canonical discriminant function
coefficients be presented. This is the default.

totalstandardized specifies that the total-sample standardized canonical discriminant function
coefficients be presented.

unstandardized specifies that the unstandardized canonical discriminant function coefficients be
presented.

all is equivalent to specifying standardized, totalstandardized, and unstandardized.

format (% fimt) specifies the matrix display format. The default is format (%9.0g).

Option for estat structure

Main

format (% fint) specifies the matrix display format. The default is format (%9.0g).

Remarks and examples

Remarks are presented under the following headings:

Classification tables, error rates, and listings
ANOVA, MANOVA, and canonical correlations
Discriminant and classification functions

Scree, loading, and score plots

Means and distances

Covariance and correlation matrices

Predictions

Classification tables, error rates, and listings

After discrim, including discrim 1da, you can obtain classification tables, error-rate estimates,
and listings; see [MV] discrim estat.
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> Example 1: Predictive linear discriminant analysis

Example 1 of [MV] manova introduces the apple tree rootstock data from Andrews and
Herzberg (1985, 357-360) and used in Rencher and Christensen (2012, 184). Descriptive linear
discriminant analysis is often used after a multivariate analysis of variance (MANOVA) to explore the
differences between groups found to be significantly different in the MANOVA.

We first examine the predictive aspects of the linear discriminant model on these data by examining
classification tables, error-rate estimate tables, and classification listings.

To illustrate the ability of discrim 1lda and the postestimation commands of handling unequal
prior probabilities, we perform our LDA using prior probabilities of 0.2 for the first four rootstock
groups and 0.1 for the last two rootstock groups.

. use https://www.stata-press.com/data/r18/rootstock
(Table 6.2. Rootstock data, Rencher and Christensen (2012))
. discrim lda y1 y2 y3 y4, group(rootstock) priors(.2, .2, .2, .2, .1, .1)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
True Classified
rootstock 1 2 3 4 5 6 Total

87.50 0.00 0.00 12.50 0.00 0.00 100.00

0.00 50.00 25.00 12.50 12.50 0.00 100.00

0.00 12.50 75.00 12.50 0.00 0.00 100.00

37.50 0.00 12.50 50.00 0.00 0.00 100.00

0.00 37.50 25.00 0.00 25.00 12.50 100.00

37.50 0.00 0.00 0.00 25.00 37.50 100.00

Total 13 8 11 7 5 4 48
27.08 16.67 22.92 14.58  10.42 8.33 100.00

Priors | 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000

The prior probabilities are reported at the bottom of the table. The classification results are based,
in part, on the selection of prior probabilities.

With only 8 observations per rootstock and six rootstock groups, we have small cell counts in our
table, with many zero cell counts. Because resubstitution classification tables give an overly optimistic
view of classification ability, we use the estat classtable command to request a leave-one-out
(LOO) classification table and request the reporting of average posterior probabilities in place of
percentages.
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. estat classtable, probabilities loo

Leave-one-out average-posterior-probabilities classification table

Key

Number
Average posterior probability

True LOO Classified
rootstock 1 2 3 4 5 6
1 5 0 0 2 0 1
0.6055 . . 0.6251 . 0.3857
2 0 4 2 1 1 0

0.6095 0.7638 0.3509 0.6607

3 0 1 6 1 0 0
0.5520 0.7695 0.4241

4 4 0 1 3 0 0
0.5032 . 0.7821 0.5461

5 0 3 2 0 2 1

0.7723 0.5606 . 0.4897 0.6799

6 3 0 0 0 2 3

0.6725 . . . 0.4296 0.5763

Total 12 8 11 7 5 5

0.5881 0.6634 0.7316 0.5234 0.4999 0.5589

Priors | 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000

Zero cell counts report a missing value for the average posterior probability. We did not specify
the priors() option with estat classtable, so the prior probabilities used in our LDA model
were used.

estat errorrate estimates the error rates for each group. We use the pp option to obtain
estimates based on the posterior probabilities instead of the counts.

. estat errorrate, pp

Error rate estimated from posterior probabilities

rootstock
Error rate 1 2 3 4 5
Stratified .2022195 .431596 .0868444 .4899799 .627472
Unstratified .2404022 .41446 .1889412 .5749832 .4953118
Priors .2 .2 .2 .2 .1
rootstock
Error rate 6 Total
Stratified .6416429 .3690394
Unstratified .4027382 .3735623
Priors .1
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We did not specify the priors() option, and estat errorrate defaulted to using the prior
probabilities from the LDA model. Both stratified and unstratified estimates are shown for each
rootstock group and for the overall total. See [MV] discrim estat for an explanation of the error-rate
estimation.

We can list the classification results and posterior probabilities from our discriminant analysis
model by using the estat 1list command. estat list allows us to specify which observations we
wish to examine and what classification and probability results to report.

We request the LOO classification and LOO probabilities for all misclassified observations from the
fourth rootstock group. We also suppress the resubstitution classification and probabilities from being
displayed.

. estat list if rootstock==4, misclassified class(loo noclass) pr(loo nopr)

Classification LO0 Probabilities
Obs True LOO C1. 1 2 3 4 5 6
25 4 1 * 0.5433 0.1279 0.0997 0.0258 0.0636 0.1397
26 4 3 * 0.0216 0.0199 0.7821 0.1458 0.0259 0.0048
27 4 1 % 0.3506 0.1860 0.0583 0.2342 0.0702 0.1008
29 4 1 % 0.6134 0.0001 0.0005 0.2655 0.0002 0.1202
32 4 1 * 0.5054 0.0011 0.0017 0.4856 0.0002 0.0059

* indicates misclassified observations

Four of the five misclassifications for rootstock group 4 were incorrectly classified as belonging
to rootstock group 1.

4

ANOVA, MANOVA, and canonical correlations

There is a mathematical relationship between Fisher’s LDA and one-way MANOVA. They are both
based on the eigenvalues and eigenvectors of the same matrix, W~ !B (though in MANOVA the
matrices are labeled E and H for error and hypothesis instead of W and B for within and between).
See [MV] manova and [R] anova for more information on MANOVA and ANOVA. Researchers often
wish to examine the MANOVA and univariate ANOVA results corresponding to their LDA model.

Canonical correlations are also mathematically related to Fisher’s LDA. The canonical correlations
between the discriminating variables and indicator variables constructed from the group variable are
based on the same eigenvalues and eigenvectors as MANOVA and Fisher’s LDA. The information from
a canonical correlation analysis gives insight into the importance of each discriminant function in the
discrimination. See [MV] canon for more information on canonical correlations.

The estat manova, estat anova, and estat canontest commands display MANOVA, ANOVA,
and canonical correlation information after discrim 1da.

> Example 2: MANOVA, ANOVA, and canonical correlation corresponding to LDA

Continuing with the apple tree rootstock example, we examine the MANOVA, ANOVA, and canonical
correlation results corresponding to our LDA.
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. estat manova

Number of obs = 48
W = Wilks’ lambda L = Lawley-Hotelling trace
P = Pillai’s trace R = Roy’s largest root
Source Statistic df F(df1, df2) = F Prob>F
rootstock |W 0.1540 5 20.0 130.3 4.94 0.0000 a
P 1.3055 20.0 168.0 4.07 0.0000 a
L 2.9214 20.0 150.0 5.48 0.0000 a
R 1.8757 5.0 42.0 15.76 0.0000 u
Residual 42
Total 47
e = exact, a = approximate, u = upper bound on F
. estat anova
Univariate ANOVA summaries
Adj.
Variable Model MS Resid MS Total MS R-sq R-sq F Pr > F

yi .07356042 .31998754 .29377189 0.1869 0.0901 1.931 0.1094
y2 | 4.1996621 12.14279 11.297777 0.2570 0.1685 2.9052 0.0243
y3 | 6.1139358 4.2908128  4.484762 0.5876 0.5385 11.969 0.0000
y4 | 2.4930912 1.7225248 1.8044999 0.5914 0.5428 12.158 0.0000

Number of obs = 48 Model df = 5 Residual df = 42

All four of the MANOVA tests reject the null hypothesis that the six rootstock groups have equal
means. See example 1 of [MV] manova for an explanation of the MANOVA table.

estat anova presents a concise summary of univariate ANOVAs run on each of our four discrim-
inating variables. Variables y3, trunk girth at 15 years, and y4, weight of tree above ground at 15
years, show the highest level of significance of the four variables.

estat canontest displays the canonical correlations and associated tests that correspond to our
LDA model.

. estat canontest

Canonical linear discriminant analysis

Like-
Canon. Eigen- Variance lihood
Fcn | Corr. value  Prop. Cumul. Ratio F df1 df2 Prob>F
1| 0.8076 1.87567 0.6421 0.6421 | 0.1540 4.9369 20 130.3 0.0000 a
2 | 0.6645 .790694 0.2707 0.9127 | 0.4429 3.1879 12 106.1 0.0006 a
3 | 0.4317 .229049 0.0784 0.9911 | 0.7931 1.6799 6 82 0.1363 e
4 | 0.1591 .025954 0.0089 1.0000 | 0.9747 .54503 2 42 0.5839 e

HO: This and smaller canon. corr. are zero; e = exact F, a = approximate F

The number of nonzero eigenvalues in Fisher’s LDA is min(g — 1,p) With g = 6 groups, and
p = 4 discriminating variables, there are four nonzero eigenvalues. The four eigenvalues and the
corresponding canonical correlations of W !B, ordered from largest to smallest, are reported along
with the proportion and cumulative proportion of variance accounted for by each of the discriminant
functions. Using one discriminant dimension is insufficient for capturing the variability of our four-
dimensional data. With two dimensions we account for 91% of the variance. Using three of the four
dimensions accounts for 99% of the variance. Little is gained from the fourth discriminant dimension.
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Also presented are the likelihood-ratio tests of the null hypothesis that each canonical correlation
and all smaller canonical correlations from this model are zero. The letter a is placed beside the
p-values of the approximate F' tests, and the letter e is placed beside the p-values of the exact F'
tests. The first two tests are highly significant, indicating that the first two canonical correlations are
likely not zero. The third test has a p-value of 0.1363, so that we fail to reject that the third and
fourth canonical correlation are zero.

4

Discriminant and classification functions

See [MV] discrim lda for a discussion of linear discriminant functions and linear classification
functions for LDA.

Discriminant functions are produced from Fisher’s LDA. The discriminant functions provide a set
of transformations from the original p-dimensional (the number of discriminating variables) space to
the minimum of p and g — 1 (the number of groups minus 1) dimensional space. The discriminant
functions are ordered in importance.

Classification functions are by-products of the Mahalanobis approach to LDA. There are always g
classification functions—one for each group. They are not ordered by importance, and you cannot
use a subset of them for classification.

A table showing the discriminant function coefficients is available with estat loadings (see
example 3), and a table showing the classification function coefficients is available with estat
classfunctions (see example 4).

> Example 3: Canonical discriminant functions and canonical structures

We continue with the apple tree rootstock example. The canonical discriminant function coefficients
(loadings) are available through the estat loadings command. Unstandardized, pooled within-group
standardized, and total-sample standardized coefficients are available. The all option requests all
three, and the format () option provides control over the numeric display format used in the tables.

. estat loadings, all format(%6.2f)
Canonical discriminant function coefficients

func~1 func~2 func~3 func~4

yi -3.05 1.14 -1.00 23.42
y2 1.70 1.22 1.67 -3.08
y3 -4.23 =7.17 3.05 -2.01
y4 0.48 11.52 -5.51 3.10

cons 15.45 12.20 -9.99 -12.47
Standardized canonical discriminant function coefficients

func~1 func~2 func~3 func~4

y1 -0.27 0.10 -0.09 2.04
y2 0.92 0.65 0.90 -1.65
y3 -1.35 -2.29 0.97 -0.64
y4 0.10 2.33 -1.12 0.63

Total-sample standardized canonical discriminant function coefficients
func~1 func~2 func~3 func~4

y1 -0.28 0.10 -0.09 2.14
y2 1.00 0.72 0.99 -1.81
y3 -1.99 -3.37 1.43 -0.95

y4 0.14 3.45 -1.65 0.93
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The unstandardized canonical discriminant function coefficients shown in the first table are the
function coefficients that apply to the unstandardized discriminating variables—y1 through y4 and
a constant term. See example 5 for a graph, known as a score plot, that plots the observations
transformed by these unstandardized canonical discriminant function coefficients.

The standardized canonical discriminant function coefficients are the coefficients that apply to the
discriminating variables after they have been standardized by the pooled within-group covariance.
These coefficients are appropriate for interpreting the importance and relationship of the discriminating
variables within the discriminant functions. See example 5 for a graph, known as a loading plot, that
plots these standardized coefficients.

The total-sample standardized canonical discriminant function coefficients are the coefficients that
apply to the discriminating variables after they have been standardized by the total-sample covariance.
See Methods and formulas of [MV] discrim lda for references discussing which of within-group and
total-sample standardization is most appropriate.

For both styles of standardization, variable y1 has small (in absolute value) coefficients for the
first three discriminant functions. This indicates that y1 does not play an important part in these
discriminant functions. Because the fourth discriminant function accounts for such a small percentage
of the variance, we ignore the coefficients from the fourth function when assessing the importance of
the variables.

Some sources, see Huberty (1994), advocate the interpretation of structure coefficients, which
measure the correlation between the discriminating variables and the discriminant functions, instead
of standardized discriminant function coefficients; see the discussion in example 1 of [MV] discrim
Ida for references to this dispute. The estat structure command displays structure coefficients.

. estat structure, format(%9.6f)
Canonical structure

functionl function2 function3 functiond

y1 -0.089595 0.261416 0.820783  0.499949
y2 | -0.086765 0.431180 0.898063 0.006158
y3 | -0.836986 0.281362 0.457902 -0.103031
y4 | -0.793621  0.572890 0.162901 -0.124206

Using structure coefficients for interpretation, we conclude that y1 is important for the second and
third discriminant functions.

N

> Example 4: LDA classification functions

Switching from Fisher’s approach to LDA to Mahalanobis’s approach to LDA, we examine what are
called classification functions with the estat classfunctions command. Classification functions
are applied to the unstandardized discriminating variables. The classification function that results in
the largest value for an observation indicates the group to assign the observation.

Continuing with the rootstock LDA, we specify the format () option to control the display format
of the classification coefficients.
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. estat classfunctions, format(%8.3f)
Classification functions

rootstock
1 2 3 4 5 6

yi 314.640 317.120 324.589 307.260 316.767 311.301
y2 -59.417 -63.981 -65.152 -59.373 -65.826 -63.060
y3 149.610 168.161 154.910 147.652 168.221 160.622
y4 | -161.178 -172.644 -150.356 -153.387 -172.851 -175.477
cons -301.590 -354.769 -330.103 -293.427 -349.847 -318.099

Priors 0.200 0.200 0.200 0.200 0.100 0.100

The prior probabilities, used in constructing the coefficient for the constant term, are displayed as
the last row in the table. We did not specify the priors () option, so the prior probabilities defaulted
to those in our LDA model, which has rootstock group 5 and 6 with prior probabilities of 0.1, whereas
the other groups have prior probabilities of 0.2.

See example 10 for applying the classification function to data by using the predict command.

d

Scree, loading, and score plots
Examples of discriminant function loading plots and score plots (see [MV] scoreplot) can be found
in example 3 of [MV] discrim Ida and example 1 of [MV] candisc. Also available after discrim
lda are scree plots; see [MV] screeplot.

> Example 5: Scree, loading, and score plots

Continuing with our rootstock example, the scree plot of the four nonzero eigenvalues we previously
saw in the output of estat canontest in example 2 are graphed using the screeplot command.

. screeplot

Scree plot of eigenvalues after discrim

159

Eigenvalues
=
1

Number

The Remarks and examples in [MV] screeplot concerning the use of scree plots for selecting the
number of components in the context of pca apply also for selecting the number of discriminant
functions after discrim 1da. With these four eigenvalues, it is not obvious whether to choose the top
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two or three eigenvalues. From the estat canontest output of example 2, the first two discriminant
functions account for 91% of the variance, and three discriminant functions account for 99% of the
variance.

The loadingplot command (see [MV] scoreplot) allows us to graph the pooled within-group
standardized discriminant coefficients (loadings) that we saw in tabular form from the estat loadings
command of example 3. By default only the loadings from the first two functions are graphed. We
override this setting with the components(3) option, obtaining graphs of the first versus second,
first versus third, and second versus third function loadings. The combined option switches from a
matrix graph to a combined graph. The msymbol (i) option removes the plotting points, leaving the
discriminating variable names in the graph, and the option mlabpos(0) places the discriminating
variable names in the positions of the plotted points.

. loadingplot, components(3) combined msymbol(i) mlabpos(0)

Standardized discriminant function loadings

v4 g 1
5
0

-5

-1.5 -1 -5 0 5 1
Standardized discriminant function 1 Standardized discriminant function 1

Standardized discriminant functiot

-2 -1 0 1 2
Standardized discriminant function 2

Standardized discriminant function 3 Standardized discriminant function 2

Variable y1, trunk girth at 4 years, is near the origin in all three graphs, indicating that it does
not play a strong role in discriminating among our six rootstock groups. y4, weight of tree above
ground at 15 years, does not play much of a role in the first discriminant function but does in the
second and third discriminant functions.

The corresponding three score plots are easily produced with the scoreplot command; see
[MV] scoreplot. Score plots graph the discriminant function—transformed observations (called scores).
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. scoreplot, components(3) combined msymbol (i)

Discriminant function scores

Discriminant score 2
o
I
.
Discriminant score 3

b N B o kN

Discriminant score 1 Discriminant score 1

Discriminant score 3

Discriminant score 2

There is a lot of overlap, but some separation of the rootstock groups is apparent. One of the
observations from group 6 seems to be sitting by itself in the bottom of the two graphs that have
discriminant function 3 as the y axis. In example 11, we identify this point by using the predict
command.

N

Means and distances

The estat grsummarize command is available after all discrim commands and will display
means, medians, minimums, maximums, standard deviations, group sizes, and more for the groups;
see [MV] discrim estat. After discrim lda, the estat grmeans command will also display group
means. It, however, has options for displaying the within-group standardized group means, the total-
sample standardized group means, and the canonical discriminant functions evaluated at the group
means.

> Example 6: Standardized group means and canonical discriminant functions at the
means

We introduce the estat grmeans command with the iris data originally from Anderson (1935),
introduced in example 3 of [MV] discrim lda.
. use https://www.stata-press.com/data/r18/iris
(Iris data)

. discrim lda seplen sepwid petlen petwid, group(iris) notable

The notable option of discrim suppressed the classification table.

By default, estat grmeans displays a table of the means of the discriminating variables for each
group. You could obtain the same information along with other statistics with the estat grsummarize
command; see [MV] discrim estat.
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. estat grmeans
Group means
iris
Setosa Versico~r Virginica

seplen 5.006 5.936 6.588
sepwid 3.428 2.77 2.974
petlen 1.462 4.26 5.552
petwid .246 1.326 2.026

Differences in the iris species can be seen within these means. For instance, the petal lengths
and widths of the [Iris setosa are smaller than those of the other two species. See example 1 of
[MV] discrim estat for further exploration of these differences.

The main purpose of estat grmeans is to present standardized or transformed means. The
totalstd and withinstd options request the two available standardizations.

. estat grmeans, totalstd withinstd
Total-sample standardized group means
iris
Setosa Versico~r Virginica

seplen | -1.011191 .1119073 .8992841
sepwid .8504137 -.6592236 -.1911901
petlen -1.30063 .2843712 1.016259
petwid | -1.250704 .1661774 1.084526

Pooled within-group standardized group means
iris
Setosa Versico~r Virginica

seplen | -1.626555 .1800089  1.446546
sepwid 1.091198 -.8458749 -.2453234
petlen | -5.335385 1.166534 4.16885
petwid | -4.658359  .6189428 4.039416

The first table presents the total-sample standardized group means on the discriminating variables.
These are the means for each group on the total-sample standardized discriminating variables.

The second table presents the pooled within-group standardized means on the discriminating
variables. Instead of using the total-sample variance, the pooled within-group variance is used to
standardize the variables. Of most interest in the context of an LDA is the within-group standardization.

The canonical option of estat grmeans displays the discriminant functions evaluated at the
group means and gives insight into what the functions do to the groups.
. estat grmeans, canonical

Group means on canonical variables

iris functionl function2

Setosa -7.6076 -.215133
Versicolor 1.825049 . 7278996
Virginica 5.7825656 -.5127666

The first function places Iris setosa strongly negative and Iris virginica strongly positive with Iris
versicolor in between. The second function places Iris virginica and Iris setosa negative and Iris
versicolor positive.

N

The Mahalanobis distance between the groups in an LDA helps in assessing which groups are
similar and which are different.
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> Example 7: Mahalanobis distance between groups
Continuing with the iris example, we use the estat grdistances command to view the squared
Mahalanobis distances between the three iris species.

. estat grdistances

Mahalanobis squared distances between groups

iris
iris Setosa Versicolor Virginica
Setosa 0
Versicolor 89.864186 0
Virginica 179.38471 17.201066 0

Iris setosa is farthest from Iris virginica with a squared Mahalanobis distance of 179. Iris versicolor
and Iris virginica are closest with a squared Mahalanobis distance of 17.

Are these distances significant? Requesting F’ statistics and p-values associated with these Maha-
lanobis squared distances between means will help answer that question. The mahalanobis() option
requests F' tests, p-values, or both.

. estat grdistances, mahalanobis(f p)

Mahalanobis squared distances between groups

Key

Mahalanobis squared distance
F with 4 and 144 df

p-value
iris
iris Setosa Versicolor Virginica
Setosa 0
0
1
Versicolor 89.864186 0
550.18889 0
3.902e-86 1
Virginica 179.38471 17.201066 0
1098.2738  105.31265 0
9.20e-107  9.515e-42 1

All three of the means are statistically significantly different from one another.

The generalized squared distance between groups starts with the Mahalanobis squared distance
between groups and adjusts for prior probabilities when they are not equal. With equal prior probabilities
there will be no difference between the generalized squared distance and Mahalanobis squared distance.
The priors () option specifies the prior probabilities for calculating the generalized squared distances.

To illustrate, we select prior probabilities of 0.2 for 1. setosa, 0.3 for I versicolor, and 0.5 for
L. virginica.
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. estat grdistances, generalized priors(.2, .3, .5)
Generalized squared distances between groups
iris
iris Setosa Versicolor Virginica

Setosa 3.2188758  92.272131 180.77101
Versicolor 93.083061 2.4079456 18.587361
Virginica 182.60359 19.609012 1.3862944

This matrix is not symmetric and does not have zeros on the diagonal.

Covariance and correlation matrices

Equal group covariance matrices is an important assumption underlying LDA. The estat
covariance command displays the group covariance matrices, the pooled within-group covari-
ance matrix, the between-groups covariance matrix, and the total-sample covariance matrix. The
estat correlation command provides the corresponding correlation matrices, with an option to
present p-values with the correlations.

> Example 8: Group covariances and correlations
Continuing our examination of LDA on the iris data, we request to see the pooled within-group
covariance matrix and the covariance matrices for the three iris species.

. estat covariance, within groups

Pooled within-group covariance matrix

seplen sepwid petlen petwid
seplen .2650082
sepwid .0927211 .1153878
petlen .1675143 .0552435 .1851878
petwid .0384014 .0327102 .0426653 .0418816

Group covariance matrices

iris: Setosa

seplen sepwid petlen petwid
seplen .124249
sepwid .0992163 .1436898
petlen .0163551 .011698 .0301592
petwid .0103306 .009298 .0060694 .0111061
iris: Versicolor
seplen sepwid petlen petwid
seplen .2664327
sepwid .0851837 .0984694
petlen .182898 .0826531 .2208163
petwid .0557796 .0412041 .073102 .0391061
iris: Virginica
seplen sepwid petlen petwid
seplen .4043429
sepwid .0937633 .1040041
petlen .3032898 .0713796 .3045878
petwid .0490939 .0476286 .0488245 .0754327
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All variables have positive covariance—not surprising for physical measurements (length and
width).

We could have requested the between-groups covariance matrix and the total-sample covariance
matrix. Options of estat covariance control how the covariance matrices are displayed.

Correlation matrices are also easily displayed. With estat correlations we show the pooled
within-group correlation matrix, and add the p option to request display of p-values with the correlations.
The p-values help us evaluate whether the correlations are statistically significant.

. estat corr, p

Pooled within-group correlation matrix

Key

Correlation
Two-sided p-value

seplen sepwid petlen petwid

seplen 1.00000

sepwid 0.53024  1.00000
0.00000
petlen 0.75616  0.37792  1.00000
0.00000  0.00000
petwid 0.36451  0.47053  0.48446  1.00000

o

.00001  0.00000  0.00000

All correlations are statistically significant. The largest correlation is between the petal length and

the sepal length.
d

Predictions

The predict command after discrim 1da has options for obtaining classifications, probabilities,
Mahalanobis squared distances from observations to group means, and the leave-one-out (LOO)
estimates of all of these. You can also obtain the discriminant scores and classification scores for
observations. The predictions can be obtained in or out of sample.

> Example 9: Out-of-sample LDA classification and probabilities

We use the riding-mower data from Johnson and Wichern (2007) introduced in example 1 of
[MV] discrim to illustrate out-of-sample prediction of classification and probabilities after an LDA.
. use https://www.stata-press.com/data/r18/lawnmower?2
(Johnson and Wichern (2007) table 11.1)

. discrim lda lotsize income, group(owner) notable

Now we see how the LDA model classifies observations with income of $90,000, $110,000, and
$130,000, each with a lot size of 20,000 square feet. We add 3 observations to the bottom of our
dataset containing these values and then use predict to obtain the classifications and probabilities.
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. input
owner income lots~e
25. . 90 20
26. . 110 20
27. . 130 20
28. end

. predict grp in 25/L, class
(24 missing values generated)
. predict pr* in 25/L, pr

(24 missing values generated)

. list in 25/L

owner income lotsize  grp pril pr2
25. . 90.0 20.0 0 .5053121 .4946879
26. . 110.0 20.0 1 .1209615 .8790385
27. . 130.0 20.0 1 .0182001 .9818

The observation with income of $90,000 was classified as a nonowner, but it was a close decision
with probabilities of 0.505 for nonowner and 0.495 for owner. The two other observations, with
$110,000 and $130,000 income, were classified as owners, with higher probability of ownership for
the higher income.

4

The estat list, estat classtable, and estat errorrate commands (see [MV] discrim
estat) obtain their information by calling predict. The LOO listings and tables from these commands
are obtained by calling predict with the looclass and loopr options.

In addition to predictions and probabilities, we can obtain the classification scores for observations.

> Example 10: Classification scores

In example 4, we used the estat classfunctions command to view the classification functions
for the LDA of the apple tree rootstock data. We can use predict to obtain the corresponding
classification scores—the classification function applied to observations.

. use https://www.stata-press.com/data/r18/rootstock, clear

(Table 6.2. Rootstock data, Rencher and Christensen (2012))

. discrim lda y1 y2 y3 y4, group(rootstock) priors(.2,.2,.2,.2,.1,.1) notable
. predict clscr*, clscore

. format clscrx %6.1f

. list rootstock clscr* in 1/3, noobs

rootst~k clscril clscr2 clscr3 clscr4d clscrb clscr6

1 308.1 303.7 303.1 307.1 303.5 307.1
1 327.6 324.1 322.9 326.1 323.3 326.0
1 309.5 308.2 306.3 309.3 307.5 309.0

We did not specify the priors() option, so predict used the prior probabilities that were
specified with our LDA model in determining the constant term in the classification function; see
example 4 for a table of the classification functions. Observations may be classified to the group with
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largest score. The first 3 observations belong to rootstock group 1 and are successfully classified as
belonging to group 1 because the classification score in clscrl is larger than the classification scores
for the other groups.

4

Scoring the discriminating variables by using Fisher’s canonical discriminant functions is accom-
plished with the dscore option of predict.

> Example 11: Scoring the discriminant variables

Using the rootstock data in example 5, we noticed 1 observation, from group 6, near the bottom
of the score plot where the third discriminant function was the y axis. The observation has a score
for the third discriminant function that appears to be below —3. We will use the dscore option of
predict to find the observation.

. predict ds*, dscore
. format ds* %5.0g
. list rootstock y* ds* if ds3 < -3

rootst~k yi y2 y3 y4 dsi ds2 ds3 ds4

42. 6 0.75 0.840 3.14 0.606 1.59 -1.44 -3.11 -1.93

Observation 42 is the one producing that third discriminant score.

Stored results

estat anova stores the following in r():

Scalars
r(N) number of observations
r(df_m) model degrees of freedom
r(df_r) residual degrees of freedom
Matrices

r(anova_stats)

ANOVA statistics for the model

estat canontest stores the following in r():

Scalars

r(N) number of observations

r(N_groups) number of groups

r(k) number of variables

r(f) number of canonical discriminant functions
Matrices

r(stat) canonical discriminant statistics

estat classfunction stores the following in r():

Matrices
r(C) classification function matrix
r(priors) group prior probabilities
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estat correlations stores the following in r():

Matrices
r (Rho) pooled within-group correlation matrix (within only)
r(P) two-sided p-values for pooled within-group correlations (within and p only)
r (Rho_between) between-groups correlation matrix (between only)
r(P_between) two-sided p-values for between-groups correlations (between and p only)
r(Rho_total) total-sample correlation matrix (total only)
r(P_total) two-sided p-values for total-sample correlations (total and p only)
r (Rho_#) group # correlation matrix (groups only)
r(P_#) two-sided p-values for group # correlations (groups and p only)

estat covariance stores the following in r():

Matrices
r(S) pooled within-group covariance matrix (within only)
r(S_between) between-groups covariance matrix (between only)
r(S_total) total-sample covariance matrix (total only)
r(S_#) group # covariance matrix (groups only)

estat grdistances stores the following in r():

Scalars
r(df1) numerator degrees of freedom (mahalanobis only)
r(df2) denominator degrees of freedom (mahalanobis only)
Matrices
r(sqdist) Mahalanobis squared distances between group means (mahalanobis only)
r(F_sqdist) F statistics for tests that the Mahalanobis squared distances between group means
are zero (mahalanobis only)
r(P_sqdist) p-value for tests that the Mahalanobis squared distances between group means are
zero (mahalanobis only)
r(gsqdist) generalized squared distances between group means (generalized only)

estat grmeans stores the following in r():

Matrices
r (means) group means (raw only)
r(stdmeans) total-sample standardized group means (totalstd only)
r(wstdmeans) pooled within-group standardized group means (withinstd only)
r(cmeans) group means on canonical variables (canonical only)

estat loadings stores the following in r():

Matrices
r(L_std) within-group standardized canonical discriminant function coefficients
(standardized only)
r(L_totalstd) total-sample standardized canonical discriminant function coefficients
(totalstandardized only)
r(L_unstd) unstandardized canonical discriminant function coefficients

(unstandardized only)

estat manova stores the following in r():

Scalars
r(N) number of observations
r(df_m) model degrees of freedom
r(df_r) residual degrees of freedom
Matrices

r(stat_m) multivariate statistics for the model
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estat structure stores the following in r():

Matrices
r(canstruct) canonical structure matrix

Methods and formulas

See Methods and formulas of [MV] discrim lda for background on what is produced by predict,
estat classfunctions, estat grdistances, estat grmeans, estat loadings, and estat
structure. See [MV] discrim estat for more information on estat classtable, estat errorrate,
estat grsummarize, and estat list. See [R] anova for background information on the ANOVAs
summarized by estat anova; see [MV] manova for information on the MANOVA shown by estat
manova; and see [MV] canon for background information on canonical correlations and related tests
shown by estat canontest.
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Title

discrim logistic — Logistic discriminant analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

discrim logistic performs logistic discriminant analysis. See [MV] discrim for other discrim-
ination commands.

Quick start

Logistic discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar
discrim logistic vl v2 v3 v4, group(catvar)

Same as above, but use prior probabilities that are proportional to group size

discrim logistic vl v2 v3 v4, group(catvar) ///
priors(proportional)

Same as above, but suppress iteration log

discrim logistic vl v2 v3 v4, group(catvar) ///
priors(proportional) nolog

Assume v1 and v2 are factor variables, and use the Dice similarity coefficient

discrim knn i.v1l i.v2, group(catvar) measure(dice)

Menu

Statistics > Multivariate analysis > Discriminant analysis > Logistic

289
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Syntax

discrim logistic varlist [lf] [zn] [weight], group (groupvar) [options]

options Description
Model
* group (groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled
Reporting
notable suppress resubstitution classification table
[no] log display or suppress the mlogit log-likelihood iteration log;

default is to display

priors Description

equal equal prior probabilities; the default

proportional group-size-proportional prior probabilities

matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

*group() is required.

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

group (groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.



discrim logistic — Logistic discriminant analysis 291

priors(matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Reporting

notable suppresses the computation and display of the resubstitution classification table.

log and nolog specify whether to display the mlogit log-likelihood iteration log. The iteration log
is displayed by default unless you used set iterlog off to suppress it; see set iterlog in
[R] set iter.

Remarks and examples

Albert and Lesaffre (1986) explain that logistic discriminant analysis is a partially parametric
method falling between parametric discrimination methods such as LDA and QDA (see [MV] discrim
Ida and [MV] discrim gda) and nonparametric discrimination methods such as kth-nearest-neighbor
(KNN) discrimination (see [MV] discrim knn). Albert and Harris (1987) provide a good explanation of
logistic discriminant analysis. Instead of making assumptions about the distribution of the data within
each group, logistic discriminant analysis is based on the assumption that the likelihood ratios of the
groups have an exponential form; see Methods and formulas. Multinomial logistic regression provides
the basis for logistic discriminant analysis; see [R] mlogit. Multinomial logistic regression can handle
binary and continuous regressors, and hence logistic discriminant analysis is also appropriate for
binary and continuous discriminating variables.

> Example 1: A two-group logistic discriminant analysis

Morrison (2005, 443-445) provides data on 12 subjects with a senile-factor diagnosis and 37
subjects with a no-senile-factor diagnosis. The data consist of the Wechsler Adult Intelligence Scale
(WAIS) subtest scores for information, similarities, arithmetic, and picture completion. Morrison (2005,
231) performs a logistic discriminant analysis on the two groups, using the similarities and picture
completion scores as the discriminating variables.
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. use https://www.stata-press.com/data/r18/senile
(Senility WAIS subtest scores)

. discrim logistic sim pc, group(sf) priors(proportional)

Iteration 0: Log likelihood = -27.276352
Iteration 1: Log likelihood = -19.531198
Iteration 2: Log likelihood = -19.036702
Iteration 3: Log likelihood = -19.018973

Iteration 4: Log likelihood = -19.018928

Logistic discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True sf No-SF SF Total
No-SF 37 0 37

100.00 0.00 100.00

SF 6 6 12
50.00 50.00 100.00

Total 43 6 49
87.76 12.24 | 100.00

Priors | 0.7551 0.2449

We specified the priors(proportional) option to obtain proportional prior probabilities for our
logistic classification. These results match those of Morrison (2005, 231), though he does not state
that his results are based on proportional prior probabilities. If you change to equal prior probabilities
you obtain different classification results.

Which observations were misclassified? estat list with the misclassified option shows the
six misclassified observations and the estimated probabilities.

. estat list, misclassified varlist

Data Classification Probabilities
Obs sim pc True Class. No-SF SF
38 5 8 SF No-SF =* 0.7353 0.2647
41 7 9 SF No-SF =* 0.8677 0.1323
44 9 8 SF No-SF * 0.8763 0.1237
46 7 6 SF No-SF =* 0.6697 0.3303
48 10 3 SF No-SF =* 0.5584 0.4416
49 12 10 SF No-SF =* 0.9690 0.0310

* indicates misclassified observations

See example 1 of [MV] discrim logistic postestimation for more postestimation analysis with this
logistic discriminant analysis.

4
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> Example 2: A three-group logistic discriminant analysis

Example 2 of [MV] discrim knn introduces a head measurement dataset with six discriminating
variables and three groups; see Rencher and Christensen (2012, 290-292). We now apply discrim
logistic to see how well the logistic model can discriminate between the groups.

. use https://www.stata-press.com/data/r18/head
(Table 8.3. Head measurements, Rencher and Christensen (2012))

. discrim logistic wdim circum fbeye eyehd earhd jaw, group(group)

Iteration 0: Log likelihood = -98.875106
Iteration 1: Log likelihood = -60.790737
Iteration 2: Log likelihood = -53.746934
Iteration 3: Log likelihood = -51.114631
Iteration 4: Log likelihood = -50.249426
Iteration 5: Log likelihood = -50.081199
Iteration 6: Log likelihood = -50.072248
Iteration 7: Log likelihood = -50.072216

Logistic discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified
True group High school College Nonplayer Total
High school 27 2 1 30
90.00 6.67 3.33 100.00
College 1 20 9 30
3.33 66.67 30.00 100.00
Nonplayer 2 8 20 30
6.67 26.67 66.67 100.00
Total 30 30 30 90
33.33 33.33 33.33 100.00
Priors 0.3333 0.3333 0.3333

The counts on the diagonal of the resubstitution classification table are similar to those obtained
by discrim knn (see example 2 of [MV] discrim knn) and discrim lda (see example 1 of
[MV] candisc), whereas discrim gda seems to have classified the nonplayer group more accurately
(see example 3 of [MV] discrim estat).

d
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Stored results

discrim logistic stores the following in e():

Scalars
e(N) number of observations
e(N_groups) number of groups
e(k) number of discriminating variables
e(ibaseout) base outcome number

Macros
e(cmd) discrim
e(subcmd) logistic

e(cmdline)
e(groupvar)
e(grouplabels)
e(varlist)
e(dropped)
e(wtype)

e (wexp)
e(title)
e(ties)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

Matrices

e(b)

e(groupcounts)
e(grouppriors)
e(groupvalues)

Functions

e(sample)

command as typed

name of group variable

labels for the groups

discriminating variables

variables dropped because of collinearity
weight type

weight expression

title in estimation output

how ties are to be handled

b noV

program used to implement estat
program used to implement predict
predictions disallowed by margins

coefficient vector

number of observations for each group
prior probabilities for each group
numeric value for each group

marks estimation sample

Methods and formulas

Let g be the number of groups, n; the number of observations for group %, and ¢; the prior
probability for group ¢. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let f;(x) represent the density function for group 4, and let P(x|G;) denote
the probability of observing x conditional on belonging to group 7. Denote the posterior probability
of group ¢ given observation x as P(G;|x). With Bayes’s theorem, we have

i fi(x)

PO = S0 10

Substituting P(x|G;) for f;(x), we have

7 P(x|G;)

P(Gilx) = — 12
(i) = S0 Pa)
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Dividing both the numerator and denominator by P(x|G), we can express this as

qiLig (X)

P(Gilx) = 21 4iLje(x)

where L;,(x) = P(x|G;)/P(x|Gy) is the likelihood ratio of x for groups ¢ and g.

This formulation of the posterior probability allows easy insertion of the Multinomial logistic
model into the discriminant analysis framework. The multinomial logistic model expresses L;q(x) in
a simple exponential form

Liy(x) = exp(ap; + a;x)

see Albert and Harris (1987, 117). Logistic discriminant analysis uses mlogit to compute the likelihood
ratios, L;4(x), and hence the posterior probabilities P(G;|x); see [R] mlogit. However, mlogit and
predict after mlogit assume proportional prior probabilities. discrim logistic assumes equal
prior probabilities unless you specify the priors(proportional) option.

References
Albert, A., and E. K. Harris. 1987. Multivariate Interpretation of Clinical Laboratory Data. New York: Dekker.

Albert, A., and E. Lesaffre. 1986. Multiple group logistic discrimination. Computers and Mathematics with Applications
12A(2): 209-224. https://doi.org/10.1016/B978-0-08-034000-5.50009-5.

Morrison, D. F. 2005. Multivariate Statistical Methods. 4th ed. Belmont, CA: Duxbury.
Rencher, A. C., and W. F. Christensen. 2012. Methods of Multivariate Analysis. 3rd ed. Hoboken, NJ: Wiley.

Also see

[MV] discrim logistic postestimation — Postestimation tools for discrim logistic
[MV] discrim — Discriminant analysis

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[U] 20 Estimation and postestimation commands


https://doi.org/10.1016/B978-0-08-034000-5.50009-5

Title

discrim logistic postestimation — Postestimation tools for discrim logistic

Postestimation commands predict Remarks and examples Reference
Also see

Postestimation commands

The following postestimation commands are of special interest after discrim logistic:

Command Description

estat classtable classification table

estat errorrate classification error-rate estimation
estat grsummarize group summaries

estat list classification listing

estat summarize estimation sample summary

The following standard postestimation commands are also available:

Command Description
*estimates cataloging estimation results
predict group membership, probabilities of group membership, etc.

*All estimates subcommands except table and stats are available; see [R] estimates.
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predict

Description for predict

predict creates a new variable containing predictions such as group classifications and probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [rype] newvar [lf] [zn] [, statistic options]

predict [type] {stub*\newvarlist} [zf] [m} [, statistic options]

statistic Description
Main
classification group membership classification; the default when one variable is
specified and group() is not specified
pr probability of group membership; the default when group() is
specified or when multiple variables are specified
options Description
Main
group (group) the group for which the statistic is to be calculated
Options

priors(priors)
ties (ties)

group prior probabilities; defaults to e (grouppriors)
how ties in classification are to be handled; defaults to e(ties)

priors Description

equal equal prior probabilities

proportional group-size-proportional prior probabilities

matname row or column vector containing the group prior probabilities

matrix_exp matrix expression providing a row or column vector of the group
prior probabilities

ties Description

missing ties in group classification produce missing values

random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

You specify one new variable with classification and specify either one or e (N_groups) new variables with pr.

group() is not allowed with classification.
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Options for predict
Main

Is

classification, the default, calculates the group classification. Only one new variable may be
specified.

pr calculates group membership posterior probabilities. If you specify the group() option, specify
one new variable. Otherwise, you must specify e(N_groups) new variables.

group (group) specifies the group for which the statistic is to be calculated and can be specified
using
#1, #2, ..., where #1 means the first category of the e (groupvar) variable, #2 the second
category, etc.;

the values of the e (groupvar) variable; or
the value labels of the e (groupvar) variable if they exist.

group() is not allowed with classification.

priors(priors) specifies the prior probabilities for group membership. If priors() is not specified,
e(grouppriors) is used. The following priors are allowed:

priors(equal) specifies equal prior probabilities.

priors(proportional) specifies group-size-proportional prior probabilities.

priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix_exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.

ties(ties) specifies how ties in group classification will be handled. If ties() is not specified,
e(ties) is used. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values.
ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Remarks and examples

Classifications and probabilities after discrim logistic are obtained with the predict command.
The common estat subcommands after discrim are also available for producing classification tables,
error-rate tables, classification listings, and group summaries; see [MV] discrim estat.

»> Example 1: Error rates and predictions for logistic discriminant analysis

Continuing with our logistic discriminant analysis of the senility dataset of Morrison (2005),
introduced in example 1 of [MV] discrim logistic, we illustrate the use of the estat errorrate
postestimation command.
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. use https://www.stata-press.com/data/r18/senile
(Senility WAIS subtest scores)

. discrim logistic sim pc, group(sf) priors(proportional) notable nolog
. estat errorrate, pp

Error rate estimated from posterior probabilities

Error rate = No-SF SF Total

Stratified .0305051 .5940575 .168518

Unstratified .0305051 .5940575 .168518
Priors .755102 .244898

We specified the pp option to obtain the posterior probability—based error-rate estimates. The
stratified and unstratified estimates are identical because proportional priors were used. The estimates
were based on proportional priors because the logistic discriminant analysis model used proportional
priors and we did not specify the priors() option in our call to estat errorrate.

The error-rate estimate for the senile-factor group is much higher than for the no-senile-factor
group.

What error-rate estimates would we obtain with equal group priors?

. estat errorrate, pp priors(equal)

Error rate estimated from posterior probabilities

Error rate = No-SF SF Total

Stratified .2508207 .2069481 .2288844

Unstratified .06308 .4289397 .2460098
Priors .5 .5

Stratified and unstratified estimates are now different. This happens when group sizes have a
different proportion from that of the prior probabilities.

Morrison (2005, 231) shows a classification of the subjects where, if the estimated probability of
belonging to the senile-factor group is less than 0.35, he classifies the subject to the no-senile-factor
group; if the probability is more than 0.66, he classifies the subject to the senile-factor group; and if
the probability is between those extremes, he classifies the subject to an uncertain group.

We can use predict to implement this same strategy. The pr option requests probabilities. Because
the model was estimated with proportional prior probabilities, the prediction, by default, will also be
based on proportional prior probabilities.
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. predict probO probl, pr
. generate newgrp = 1

. replace newgrp = 0 if probl <= 0.35
(38 real changes made)

. replace newgrp = 2 if probl >= 0.66
(5 real changes made)

. label define newgrp O "No-SF" 1 "Uncertain" 2 "SF"
. label values newgrp newgrp

. tabulate sf newgrp

Senile-fac
tor newgrp
diagnosis No-SF Uncertain SF Total
No-SF 33 4 0 37
SF 5 2 5 12
Total 38 6 5 49

Six observations are placed in the uncertain group.

Reference
Morrison, D. F. 2005. Multivariate Statistical Methods. 4th ed. Belmont, CA: Duxbury.

Also see
[MV] discrim logistic — Logistic discriminant analysis
[MV] discrim — Discriminant analysis
[MV] discrim estat — Postestimation tools for discrim

[U] 20 Estimation and postestimation commands



Title

discrim qda — Quadratic discriminant analysis

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

discrim qda performs quadratic discriminant analysis. See [MV] discrim for other discrimination
commands.

Quick start

Quadratic discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar
discrim qda vl v2 v3 v4, group(catvar)

Same as above, but use prior probabilities proportional to group size
discrim qda vl v2 v3 v4, group(catvar) priors(proportional)

Display the leave-one-out and the resubstitution classification tables
discrim qda vl v2 v3 v4, group(catvar) lootable

Same as above, but suppress the resubstitution classification table
discrim qda vl v2 v3 v4, group(catvar) lootable notable

Menu

Statistics > Multivariate analysis > Discriminant analysis > Quadratic (QDA)
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Syntax
discrim qda varlist [if] [m] [weight] » group (groupvar) [opzions]

options Description

Model

* group (groupvar) variable specifying the groups
priors(priors) group prior probabilities
ties(ties) how ties in classification are to be handled

Reporting
notable suppress resubstitution classification table
lootable display leave-one-out classification table
priors Description
equal equal prior probabilities; the default
proportional group-size-proportional prior probabilities
matname row or column vector containing the group prior probabilities
matrix_exp matrix expression providing a row or column vector of the group

prior probabilities

ties Description

missing ties in group classification produce missing values; the default
random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

*group() is required.

collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

group (groupvar) is required and specifies the name of the grouping variable. groupvar must be a
numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are
allowed:

priors(equal) specifies equal prior probabilities. This is the default.
priors(proportional) specifies group-size-proportional prior probabilities.
priors (matname) specifies a row or column vector containing the group prior probabilities.

priors (matrix—exp) specifies a matrix expression providing a row or column vector of the group
prior probabilities.
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ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the
default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

Reporting

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples

Quadratic discriminant analysis (QDA) was introduced by Smith (1947). It is a generalization of
linear discriminant analysis (LDA). Both LDA and QDA assume that the observations come from a
multivariate normal distribution. LDA assumes that the groups have equal covariance matrices. QDA
removes this assumption, allowing the groups to have different covariance matrices.

One of the penalties associated with QDA’s added flexibility is that if any groups have fewer
observations, 1;, than discriminating variables, p, the covariance matrix for that group is singular and
QDA cannot be performed. Even if there are enough observations to invert the covariance matrix, if
the sample size is relatively small for a group, the estimation of the covariance matrix for that group
may not do a good job of representing the group’s population covariance, leading to inaccuracies in
classification.
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> Example 1: QDA classification tables and error rates

We illustrate QDA with a small dataset introduced in example 1 of [MV] manova. Andrews and
Herzberg (1985, 357-360) present data on six apple tree rootstock groups with four measurements
on eight trees from each group.

We request the display of the leave-one-out (LOO) classification table in addition to the standard
resubstitution classification table produced by discrim qda.
. use https://www.stata-press.com/data/r18/rootstock
(Table 6.2. Rootstock data, Rencher and Christensen (2012))
. discrim qda y1 y2 y3 y4, group(rootstock) lootable

Quadratic discriminant analysis
Resubstitution classification summary

Key
Number
Percent
True Classified
rootstock 1 2 3 4 5 6 Total

1 8 0 0 0 0 0 8
100.00 0.00 0.00 0.00 0.00 0.00 100.00

0.00 87.50 0.00 12.50 0.00 0.00 100.00

12.50 0.00 75.00 0.00 12.50 0.00 100.00

0.00 0.00 12.50 87.50 0.00 0.00 100.00

0.00 37.50 0.00 0.00 50.00 12.50 100.00

25.00 0.00 0.00 0.00 12.50 62.50 100.00

Total 11 10 7 8 6 6 48
22.92  20.83 14.58 16.67 12.50 12.50 100.00

Priors | 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
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Leave-one-out classification summary

Key
Number
Percent
True Classified
rootstock 1 2 3 4 5 6 Total

25.00 0.00 0.00 37.50 12.50 25.00 100.00

0.00 37.50 0.00 25.00 25.00 12.50 100.00

12.50 25.00 50.00 0.00 12.50 0.00 100.00

12.50 12.50 37.50 25.00 0.00 12.50 100.00

0.00 50.00 12.50 0.00 25.00 12.50 100.00

37.50 12.50 0.00 0.00 25.00 25.00 100.00

Total 7 11 8 7 8 7 48
14.58 22.92 16.67 14.58 16.67 14.58 100.00

Priors | 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Compare the counts on the diagonal of the resubstitution classification table with those on the
LOO table. The LOO table has fewer of the observations with correct classifications. The resubstitution
classification table is overly optimistic.

The estat errorrate postestimation command provides estimates of the error rates for the
groups. We request the count-based estimates, first for the resubstitution classification and then for
the LOO classification. We also suppress display of the prior probabilities, which will default to equal
across the groups because that is how we estimated our QDA model. See [MV] discrim estat for
details of the estat errorrate command.

. estat errorrate, nopriors

Error rate estimated by error count

rootstock
1 2 3 4 5
Error rate 0 .125 .25 .125 .5
rootstock
6 | Total
Error rate .375 | .2291667
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. estat errorrate, nopriors looclass

Error rate estimated by leave-one-out error count

rootstock
1 2 3 4 5
Error rate .75 .625 .5 .75 .75
rootstock
6 | Total
Error rate .75 | .6875

The estimated group error rates are much higher in the LOO table.

See example 2 of [MV] discrim qda postestimation for an examination of the squared Mahalanobis
distances between the rootstock groups. We could also list the misclassified observations, produce
group summaries, examine covariances and correlations, and generate classification and probability

variables and more; see [MV] discrim qda postestimation.

See example 3 of [MV] discrim estat and example 1 of [MV] discrim qda postestimation for

other examples of the use of discrim gqda.

Stored results

discrim gda stores the following in e ():

Scalars
e(N)
e(N_groups)
e(k)

Macros
e(cmd)
e(subcmd)
e(cmdline)
e(groupvar)
e(grouplabels)
e(varlist)
e(wtype)
e (wexp)
e(title)
e(ties)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

Matrices
e(groupcounts)
e(grouppriors)
e(groupvalues)
e(means)

e (SSCP_W#)
e(W#_eigvals)
e(W#_eigvecs)
e(sqrtS#inv)

Functions
e(sample)

number of observations
number of groups
number of discriminating variables

discrim

qda

command as typed

name of group variable

labels for the groups
discriminating variables

weight type

weight expression

title in estimation output

how ties are to be handled

nob noV

program used to implement estat
program used to implement predict
predictions disallowed by margins

number of observations for each group
prior probabilities for each group
numeric value for each group

group means on discriminating variables
within group SSCP matrix for group #
eigenvalues of e (SSCP_W#)
eigenvectors of e (SSCP_W#)

Cholesky (square root) of the inverse covariance matrix for group #

marks estimation sample
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Methods and formulas

Let g be the number of groups, n; the number of observations for group %, and ¢; the prior
probability for group ¢. Let x denote an observation measured on p discriminating variables. For
consistency with the discriminant analysis literature, x will be a column vector, though it corresponds
to a row in your dataset. Let f;(x) represent the density function for group 4, and let P(x|G;) denote
the probability of observing x conditional on belonging to group ¢. Denote the posterior probability
of group ¢ given observation x as P(G;|x). With Bayes’s theorem, we have

g fi(x)

Gilx) = gt
POR) = o )

Substituting P(x|G;) for f;(x), we have

7 P(x|G;)

PGilx) = <7 — 577
j=1 0P (x|G;)

QDA assumes that the groups are multivariate no