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Description

meta bias performs tests for the presence of small-study effects in a meta-analysis, also known
as tests for funnel-plot asymmetry and publication-bias tests. Three regression-based tests and a
nonparametric rank correlation test are available. For regression-based tests, you can include moderators
to account for potential between-study heterogeneity.

Quick start
Test for small-study effects by using the Egger regression-based test

meta bias, egger

Same as above, but include a moderator x1 to account for between-study heterogeneity induced by
x1

meta bias x1, egger

Same as above, but assume a random-effects model with the empirical Bayes method for estimating
τ2 in the regression-based test

meta bias x1, egger random(ebayes)

With log risk-ratios, test for small-study effects by using the Harbord regression-based test with
moderators x1 and x2 to account for between-study heterogeneity

meta bias x1 i.x2, harbord

With log odds-ratios, test for small-study effects by using the Peters regression-based test and assuming
a common-effect model

meta bias, peters common

Menu
Statistics > Meta-analysis
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Syntax
Regression-based tests for small-study effects

Test using meta-analysis model as declared with meta set or meta esize

meta bias
[

moderators
] [

if
] [

in
]
, regtest

[
modelopts

]
Random-effects meta-analysis model

meta bias
[

moderators
] [

if
] [

in
]
, regtest random

[
(remethod)

][
se(seadj) options

]
Common-effect meta-analysis model

meta bias
[

if
] [

in
]
, regtest common

[
options

]
Fixed-effects meta-analysis model

meta bias
[

moderators
] [

if
] [

in
]
, regtest fixed

[
multiplicative options

]
Traditional test

meta bias
[

if
] [

in
]
, regtest traditional

[
options

]

Nonparametric rank correlation test for small-study effects

meta bias
[

if
] [

in
]
, begg

[ [
no
]
metashow detail

]
regtest Description

egger Egger’s test
harbord Harbord’s test
peters Peters’s test

modelopts is any option relevant for the declared model.

remethod Description

reml restricted maximum likelihood; the default
mle maximum likelihood
ebayes empirical Bayes
dlaird DerSimonian–Laird
sjonkman Sidik–Jonkman
hedges Hedges
hschmidt Hunter–Schmidt
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options Description

Main

tdistribution report t test instead of z test[
no
]
metashow display or suppress meta settings in the output

detail display intermediate estimation results

Maximization

maximize options control the maximization process of the between-study variance

moderators may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

One of egger, harbord, peters, or begg (or their synonyms) must be specified. In addition to
the traditional versions of the regression-based tests, their random-effects versions and extensions to
allow for moderators are also available.

egger (synonym esphillips) specifies that the regression-based test of Egger et al. (1997a) be
performed. This test is known as the Egger test in the literature. This is the test of the slope in
a weighted regression of the effect size, meta es, on its standard error, meta se, optionally
adjusted for moderators. This test tends to have an inflated type I error rate for two-sample binary
data.

harbord (synonym hesterne) specifies that the regression-based test of Harbord, Egger, and
Sterne (2006) be performed. This test is known as the Harbord test. This is the test of the slope in
a weighted regression of Zj/Vj on 1/

√
Vj , optionally adjusting for moderators, where Zj is the

score of the likelihood function and Vj is the score variance. This test is used for two-sample binary
data with effect sizes log odds-ratio and log risk-ratio. It was designed to reduce the correlation
between the effect-size estimates and their corresponding standard errors, which is inherent to the
Egger test with two-sample binary data.

peters (synonym petersetal) specifies that the regression-based test of Peters et al. (2006) be
performed. This test is known as the Peters test in the literature. This is the test of the slope in
a weighted regression of the effect size, meta es, on the inverse sample size, 1/nj , optionally
adjusted for moderators. The Peters test is used with two-sample binary data for log odds-ratios.
Because it regresses effect sizes on inverse sample sizes, they are independent by construction.

begg (synonym bmazumdar) specifies that the nonparametric rank correlation test of Begg and
Mazumdar (1994) be performed. This is not a regression-based test, so only options metashow,
nometashow, and detail are allowed with it. This test is known as the Begg test in the literature.
This test is no longer recommended in the literature and provided for completeness.

Options random(), common, and fixed, when specified with meta bias for regression-based tests,
temporarily override the global model declared by meta set or meta esize during the computation.
Options random(), common, and fixed may not be combined. If these options are omitted, the
declared meta-analysis model is assumed; see Declaring a meta-analysis model in [META] meta data.
Also see Meta-analysis models in [META] Intro.

random and random(remethod) specify that a random-effects model be assumed for regression-based
test; see Random-effects model in [META] Intro.
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remethod specifies the type of estimator for the between-study variance τ2. remethod is one of
reml, mle, ebayes, dlaird, sjonkman, hedges, or hschmidt. random is a synonym for
random(reml). See Options in [META] meta esize for more information.

common specifies that a common-effect model be assumed for regression-based test; see Common-
effect (“fixed-effect”) model in [META] Intro. It uses the inverse-variance estimation method;
see Meta-analysis estimation methods in [META] Intro. Also see the discussion in [META] meta
data about common-effect versus fixed-effects models. common is not allowed in the presence of
moderators.

fixed specifies that a fixed-effects model be assumed for regression-based test; see Fixed-effects
model in [META] Intro. It uses the inverse-variance estimation method; see Meta-analysis estimation
methods in [META] Intro. Also see the discussion in [META] meta data about fixed-effects versus
common-effect models.

se(seadj) specifies that the adjustment seadj be applied to the standard errors of the coefficients.
Additionally, the tests of significance of the coefficients are based on a Student’s t distribution
instead of the normal distribution. se() is allowed only with random-effects models.

seadj is khartung
[
, truncated

]
. Adjustment khartung specifies that the Knapp–Hartung

adjustment (Hartung and Knapp 2001a, 2001b; Knapp and Hartung 2003), also known as the
Sidik–Jonkman adjustment (Sidik and Jonkman 2002), be applied to the standard errors of the
coefficients. hknapp and sjonkman are synonyms for khartung. truncated specifies that the
truncated Knapp–Hartung adjustment (Knapp and Hartung 2003), also known as the modified
Knapp–Hartung adjustment, be used.

traditional specifies that the traditional version of the selected regression-based test be performed.
This option is equivalent to specifying options fixed, multiplicative, and tdistribution.
It may not be specified with moderators.

multiplicative performs a fixed-effects regression-based test that accounts for residual heterogeneity
by including a multiplicative variance parameter φ. φ is referred to as an “(over)dispersion
parameter”. See Introduction in [META] meta regress for details.

tdistribution reports a t test instead of a z test. This option may not be combined with option
se().

metashow and nometashow display or suppress the meta setting information. By default, this
information is displayed at the top of the output. You can also specify nometashow with meta
update to suppress the meta setting output for the entire meta-analysis session.

detail specifies that intermediate estimation results be displayed. For regression-based tests, the
results from the regression estimation will be displayed. For the nonparametric test, the results
from ktau ([R] spearman) will be displayed.

� � �
Maximization �

maximize options: iterate(#), tolerance(#), nrtolerance(#), nonrtolerance (see [R] Max-
imize), from(#), and showtrace. These options control the iterative estimation of the between-
study variance parameter, τ2, with random-effects methods reml, mle, and ebayes. These options
are seldom used.

from(#) specifies the initial value for τ2 during estimation. By default, the initial value for τ2

is the noniterative Hedges estimator.

showtrace displays the iteration log that contains the estimated parameter τ2, its relative difference
with the value from the previous iteration, and the scaled gradient.
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Using meta bias
Examples of using meta bias

Introduction

As we discussed in Introduction of [META] meta funnelplot, there is a tendency for smaller studies to
report different, often larger, effect sizes than the larger studies. There are various reasons that explain
this tendency, but the two more common ones are between-study heterogeneity and publication bias.
We covered the between-study heterogeneity in [META] meta summarize and [META] meta regress.
Here we focus on publication bias.

Publication bias often arises when the decision of whether to publish a study depends on the
statistical significance of the results of the study. Typically, nonsignificant results from small studies
have a tendency of not getting published. See Publication bias of [META] Intro for details.

The funnel plot ([META] meta funnelplot) is commonly used to investigate publication bias or,
more generally, small-study effects in meta-analysis. The presence of asymmetry in the funnel plot
may indicate the presence of publication bias. Graphical evaluation of funnel plots is useful for data
exploration but may be subjective when detecting the asymmetry. Thus, a more formal evaluation of
funnel-plot asymmetry is desired. Statistical tests were developed for detecting the asymmetry in a
funnel plot; they are often called tests for funnel-plot asymmetry. They are also sometimes referred
to as tests of publication bias, but this terminology may be misleading because the presence of a
funnel-plot asymmetry is not always due to publication bias (for example, Sterne et al. [2011]). Thus,
we prefer a more generic term—tests for small-study effects—suggested by Sterne, Gavaghan, and
Egger (2000).

There are two types of tests for small-study effects: regression-based tests and a nonparametric
rank-based test. The main idea behind these tests is to determine whether there is a statistically
significant association between the effect sizes and their measures of precision such as effect-size
standard errors.

The Egger regression-based test (Egger et al. 1997b) performs a weighted linear regression of the
effect sizes, θ̂j’s, on their standard errors, σ̂j’s, weighted by the precision, 1/σ̂j’s. The test for the
zero slope in that regression provides a formal test for small-study effects. In some cases, such as
in the presence of a large true effect or with two-sample binary data, the Egger test tends to have
an inflated type I error (for example, Harbord, Harris, and Sterne [2016]). Two alternative tests, the
Harbord test and the Peters test, were proposed to alleviate the type I error problem in those cases.

The Harbord regression-based test (Harbord, Egger, and Sterne 2006) corresponds to the zero-slope
test in a weighted regression of Zj/Vj’s on 1/

√
Vj’s, where Zj is the score of the likelihood function

and Vj is the score variance. The Peters regression-based test (Peters et al. 2006) corresponds to the
zero-slope test in a weighted regression of the effect sizes, θ̂j’s, on the respective inverse sample
sizes, 1/nj’s. With two-sample binary data, these tests tend to perform better than the Egger test in
terms of the type I error while maintaining similar power.

The rank correlation Begg test (Begg and Mazumdar 1994) tests whether Kendall’s rank correlation
between the effect sizes and their variances equals zero. The regression-based tests tend to perform
better in terms of type I error than the rank correlation test. This test is provided mainly for
completeness.

See Harbord, Harris, and Sterne (2016) and Steichen (2016) for more details about these tests.
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As we discussed in [META] meta funnelplot, the presence of between-study heterogeneity may
affect the symmetry of a funnel plot. Thus, any statistical method based on the funnel plot will
also be affected (Sutton 2009). To account for the between-study heterogeneity, the regression-based
tests can be extended to incorporate moderators that may help explain the heterogeneity (Sterne and
Egger 2005).

The traditional version of the regression-based tests used a multiplicative fixed-effects meta-
regression to account for residual heterogeneity (see Introduction of [META] meta regress). In addition
to adjusting for moderators, a random-effects meta-regression is considered a better alternative to
account for residual heterogeneity.

Ioannidis and Trikalinos (2007) provide the following recommendations for when it is appropriate
to use small-study tests: a) the number of studies should be greater than 10; b) there should be at
least one study with a statistically significant result; c) there should be no significant heterogeneity
(I2 < 50%); and d) the ratio of the maximum to minimum variances across studies should be larger
than 4; that is, max

(
{σ̂2

j }Kj=1

)
/min

(
{σ̂2

j }Ki=1

)
> 4. If a) is violated, the tests may have low power.

If c) is violated, the asymmetry of the funnel plot may be induced by between-study heterogeneity
rather than publication bias. If d) is violated, the funnel plot will look more like a horizontal line
than an inverted funnel, and the funnel-asymmetry tests will have an inflated type I error. Also see
Sterne et al. (2011) for details.

The results of the tests of small-study effects should be interpreted with caution. In the presence
of small-study effects, apart from publication bias, other reasons should also be explored to explain
the presence of small-study effects. If small-study effects are not detected by a test, their existence
should not be ruled out because the tests tend to have low power.

Also see [META] meta trimfill for assessing the impact of publication bias on the results.

Using meta bias

meta bias performs tests for small-study effects. These tests are also known as the tests for
funnel-plot asymmetry and tests for publication bias. You can choose from three regression-based
tests: the Egger test (option egger), the Harbord test for two-sample binary data with effect sizes
log odds-ratio and log risk-ratio (option harbord), and the Peters test for log odds-ratios (option
peters). You can also perform the Begg nonparametric rank correlation test (option begg), but this
test is no longer recommended in the meta-analysis literature.

Next, we describe the features that are relevant only to the regression-based tests. These tests are
based on meta-regression of effect sizes and their measures of precision.

The default meta-analysis model (and method) are as declared by meta set or meta esize; see
Declaring a meta-analysis model in [META] meta data. You can change the defaults by specifying
one of options random(), common(), or fixed().

Because the regression-based tests use meta-regression, many of the options of meta regress (see
[META] meta regress) apply to meta bias as well. For example, you can specify that a multiplicative
meta-regression be used by the test with option multiplicative. And you can specify to use the
t test instead of a z test for inference with option tdistribution.

The regression-based tests support the traditional option, which specifies that the tests be
performed as originally published. This option is a shortcut for fixed, multiplicative, and
tdistribution.

To account for between-study heterogeneity when checking for publication bias, you can specify
moderators with the regression-based tests.
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Examples of using meta bias

Recall the pupil IQ data (Raudenbush and Bryk 1985; Raudenbush 1984) described in Effects of
teacher expectancy on pupil IQ (pupiliq.dta) of [META] meta. Here we will use its declared version
and will focus on the demonstration of various options of meta bias and explanation of its output.

. use https://www.stata-press.com/data/r18/pupiliqset
(Effects of teacher expectancy on pupil IQ; set with -meta set-)

. meta query, short
-> meta set stdmdiff se , studylabel(studylbl) eslabel(Std. mean diff.)

Effect-size label: Std. mean diff.
Effect-size type: Generic

Effect size: stdmdiff
Std. err.: se

Model: Random effects
Method: REML

From the meta summary, our data were declared by using meta set with variables stdmdiff and se
specifying the effect sizes and their standard errors, respectively. The declared meta-analysis model
is the default random-effects model with the REML estimation method.

Examples are presented under the following headings:
Example 1: Small-study effects due to a confounding moderator
Example 2: Traditional tests and detailed output
Example 3: Harbord’s test for small-study effects

Example 1: Small-study effects due to a confounding moderator

Our main focus is on investigating the potential presence of small-study effects by using a
regression-based test. Because we are working with continuous data, we will use the Egger test.

. meta bias, egger

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se

Regression-based Egger test for small-study effects
Random-effects model
Method: REML

H0: beta1 = 0; no small-study effects
beta1 = 1.83

SE of beta1 = 0.724
z = 2.53

Prob > |z| = 0.0115

From the output header, the regression-based test uses the declared random-effects model with REML

estimation to account for residual heterogeneity. The estimated slope, β̂1, is 1.83 with a standard
error of 0.724, giving a test statistic of z = 2.53 and a p-value of 0.0115. This means that there is
some evidence of small-study effects.

In example 9 of [META] meta summarize, we used subgroup-analysis on binary variable week1,
which records whether teachers had prior contact with students for more than 1 week or for 1 week
or less, to account for between-study heterogeneity. It explained most of the heterogeneity present
among the effect sizes, with generally higher effect sizes in the low contact group.

Moderators that can explain a substantial amount of the heterogeneity should be included in the
regression-based test as a covariate. By properly accounting for heterogeneity through the inclusion
of week1, we can test for small-study effects due to reasons other than heterogeneity. We include
factor variable week1 as a moderator as follows:
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. meta bias i.week1, egger

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se

Regression-based Egger test for small-study effects
Random-effects model
Method: REML
Moderators: week1

H0: beta1 = 0; no small-study effects
beta1 = 0.30

SE of beta1 = 0.729
z = 0.41

Prob > |z| = 0.6839

Now that we have accounted for heterogeneity through moderator week1, the Egger test statistic
is 0.41 with a p-value of 0.6839. Therefore, we have strong evidence to say that the presence of
small-study effects was the result of heterogeneity induced by teacher-student prior contact time.

Example 2: Traditional tests and detailed output

For illustration, we perform the traditional version of the Egger regression-based test by specifying
the traditional option. We also use the detail option to report the meta-regression results used
to construct the Egger test.

. meta bias, egger traditional detail

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17

Prob > F = 0.0571

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367

Regression-based Egger test for small-study effects
Fixed-effects model
Method: Inverse-variance

H0: beta1 = 0; no small-study effects
beta1 = 1.63

SE of beta1 = 0.798
t = 2.04

Prob > |t| = 0.0571

The traditional version also suggests the presence of small-study effects, but its p-value, 0.0571, is
larger than that from example 1.

https://www.stata.com/manuals/meta.pdf#metametabiasRemarksandexamplesmbiasexsmd
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The results of the above command is identical to the following:

. meta regress _meta_se, fixed multiplicative tdistribution

Effect-size label: Std. mean diff.
Effect size: stdmdiff

Std. err.: se

Fixed-effects meta-regression Number of obs = 19
Error: Multiplicative Dispersion phi = 1.69
Method: Inverse-variance Model F(1,17) = 4.17

Prob > F = 0.0571

_meta_es Coefficient Std. err. t P>|t| [95% conf. interval]

_meta_se 1.627717 .7975212 2.04 0.057 -.0549052 3.31034
_cons -.1797108 .126835 -1.42 0.175 -.4473093 .0878876

Test of residual homogeneity: Q_res = chi2(17) = 28.77 Prob > Q_res = 0.0367

The header and coefficient table from meta bias’s detailed output is identical to that produced by
meta regress (see [META] meta regress).

Example 3: Harbord’s test for small-study effects

In example 1 of [META] meta funnelplot, we explored the presence of publication bias in the NSAIDS
data, which was described in Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta) of
[META] meta. The contour-enhanced funnel plot from example 5 of [META] meta funnelplot revealed
that the funnel-plot asymmetry was caused by the absence of small studies in the region where the tests
of the log odds-ratios equal to zero were not statistically significant. This may suggest the presence
of publication bias. We can explore this more formally by performing a test for small-study effects.

We use the declared version of the NSAIDS dataset.

. use https://www.stata-press.com/data/r18/nsaidsset, clear
(Effectiveness of nonsteroidal anti-inflammatory drugs; set with -meta esize-)

. meta query, short
-> meta esize nstreat nftreat nscontrol nfcontrol

Effect-size label: Log odds-ratio
Effect-size type: lnoratio

Effect size: _meta_es
Std. err.: _meta_se

Model: Random effects
Method: REML

https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplotRemarksandexamplesmfunexdefault
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
https://www.stata.com/manuals/metameta.pdf#metametaRemarksandexamplesnsaidsdta
https://www.stata.com/manuals/metameta.pdf#metameta
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplotRemarksandexamplesmfunexcontours
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
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The declared effect size is log odds-ratio, so we will use the Harbord regression-based test to
investigate whether the small-study effects (or funnel-plot asymmetry) is present in these data.

. meta bias, harbord

Effect-size label: Log odds-ratio
Effect size: _meta_es

Std. err.: _meta_se

Regression-based Harbord test for small-study effects
Random-effects model
Method: REML

H0: beta1 = 0; no small-study effects
beta1 = 3.03

SE of beta1 = 0.741
z = 4.09

Prob > |z| = 0.0000

The p-value is less than 0.0001, so we reject the null hypothesis of no small-study effects. It is
difficult to be certain whether the small-study affects are driven by publication bias because of the
presence of substantial heterogeneity in these data (see [META] meta summarize). Note that the
regression-based test assumed an (REML) random-effects model, which accounts for heterogeneity
present among the studies. If we had access to study-level covariates for these data that could explain
some of the between-study variability, we could have specified them with meta bias.

Stored results
For regression-based tests, meta bias stores the following in r():

Scalars
r(beta1) estimate of the main slope coefficient
r(se) standard error for the slope estimate
r(z) z statistic
r(t) t statistic
r(p) two-sided p-value

Macros
r(testtype) type of test: egger, harbord, or peters
r(model) meta-analysis model
r(method) meta-analysis estimation method
r(moderators) moderators used in regression-based tests

Matrices
r(table) regression results

For Begg’s test, meta bias stores the following in r():

Scalars
r(score) Kendall’s score estimate
r(se score) standard error of Kendall’s score
r(z) z test statistic
r(p) two-sided p-value

Macros
r(testtype) begg

https://www.stata.com/manuals/metametasummarize.pdf#metametasummarize
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Methods and formulas
Methods and formulas are presented under the following headings:

Regression-based tests
Egger’s linear regression test
Harbord’s test for log odds-ratios or log risk-ratios
Peters’s test for log odds-ratios

Begg’s rank correlation test

Let K be the number of studies for a given meta-analysis. For the jth study, θ̂j denotes the
estimated effect size, and σ̂2

j denotes the effect-size (within-study) variance. The tests are applicable
to any type of effect size as long as it is asymptotically normally distributed.

For two-sample binary data, also consider the following 2× 2 table for the jth study.

group event no event size
treatment aj bj n1j = aj + bj
control cj dj n2j = cj + dj

The total sample size for the jth study is denoted by nj = n1j + n2j .

Regression-based tests

Regression-based tests use meta-regression to examine a linear relationship between the individual
effect sizes and measures of study precision such as the effect-size standard errors, possibly adjusting
for moderators that explain some of the between-study variability.

In the subsections below, we provide the traditional versions of the regression-based tests. The
extensions of traditional versions include the support of other models such as a random-effects model
and the support of moderators.

In the presence of moderators, the test for small-study effects is the test of H0: β1 = 0 in the
corresponding meta-regression with the following linear predictor,

xjβ = β0 + β1mj + β2x2,j + · · ·+ βp−1xp−1,j

where x2,j , . . . , xp−1,j represent the moderators specified with meta bias and mj = σ̂j for the
Egger test, mj = 1/

√
Vj for the Harbord test, and mj = 1/nj for the Peters test. See the subsections

below for details about these tests. Also see Sterne and Egger (2005).

The computations of regression-based tests are based on the corresponding meta-regression models;
see Methods and formulas of [META] meta regress.

The formulas below are based on Harbord, Harris, and Sterne (2016), Sterne and Egger (2005),
and Peters et al. (2010).

Egger’s linear regression test

The formulas and discussion in this subsection are based on Sterne and Egger (2005).

The test proposed by Egger, Davey Smith, Schneider, and Minder (1997b) is based on a simple
linear regression of the standard normal variate, which is defined as the individual effect-size estimate
divided by its standard error, against the study precision, which is defined as the reciprocal of the
standard error:

https://www.stata.com/manuals/metametaregress.pdf#metametaregressMethodsandformulas
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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E

(
θ̂j
σ̂j

)
= b0 + b1

1

σ̂j
(1)

The Egger test of no small-study effects is the test of H0: b0 = 0.

Linear regression model (1) is equivalent to the weighted linear regression of the effect sizes θ̂j’s
on their standard errors σ̂j’s,

E
(
θ̂j

)
= b1 + b0σ̂j (2)

with weights inversely proportional to the variances of the effect sizes, wj = 1/σ̂2
j . Note that the

intercept b0 in regression (1) corresponds to the slope in the weighted regression (2). Therefore, Egger
test for small-study effects corresponds to a test of a linear trend in a funnel plot (see [META] meta
funnelplot) of effect sizes against their standard errors.

Let’s denote β0 = b1 and β1 = b0. The statistical model for the traditional Egger’s test, as it
originally appeared in the literature (Egger et al. 1997b), is given by

θ̂j = β0 + β1σ̂j + εj weighted by wj = 1/σ̂2
j , where εj ∼ N

(
0, σ̂2

jφ
)

and φ is the overdispersion parameter as defined in multiplicative meta-regression; see Introduction
of [META] meta regress.

Egger’s test for small-study effects is the test of H0: β1 = 0, and the null hypothesis is rejected if

tegger =

∣∣∣∣∣∣ β̂1

ŜE
(
β̂1

)
∣∣∣∣∣∣ > tK−2,1−α/2

where tK−2,1−α/2 is the (1− α/2)th quantile of the Student’s t distribution with K − 2 degrees of
freedom. The above test is performed when you specify options egger and traditional.

Technical note

Sterne and Egger (2005) point out that, originally, Egger et al. (1997b) used a weighted version of
(1) with weights equal to the inverse of the variances of effect sizes (1/σ̂2

j ’s). The authors strongly
recommend that this version of the test not be used because it does not have a theoretical justification.

Harbord’s test for log odds-ratios or log risk-ratios

Consider the fixed-effects model θ̂j ∼ N(θ, σ̂2
j ). For a study j, let Zj be the first derivative

(score) and Vj be the negative second derivative (Fisher’s information) of the model log likelihood
with respect to θ evaluated at θ = 0 (Whitehead and Whitehead 1991; Whitehead 1997).

For two-sample binary data, Harbord, Egger, and Sterne (2006) proposed a modification of the
Egger test based on the intercept in an unweighted regression of Zj/

√
V j against

√
Vj :

E

(
Zj√
Vj

)
= b0 + b1

√
Vj (3)

https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerwreg
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
https://www.stata.com/manuals/metametafunnelplot.pdf#metametafunnelplot
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
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When the effect of interest is the log odds-ratio,

Zj =
aj − (aj + cj)n1j

nj
and Vj =

n1jn2j (aj + cj) (bj + dj)

n2j (nj − 1)

Note that Zj and Vj are the numerator and denominator of the log Peto’s odds-ratio as defined in
Methods and formulas of [META] meta esize.

When the effect of interest is the log risk-ratio,

Zj =
ajnj − (aj + cj)n1j

bj + dj
and Vj =

n1jn2j (aj + cj)

nj (bj + dj)

Whitehead (1997) showed that when θj is small and nj is large, θ̂j ≈ Zj/Vj and σ̂2
j ≈ 1/Vj .

In this case, the Harbord regression model (3) is equivalent to Egger’s regression model (1). Thus,
Harbord’s test becomes equivalent to Egger’s test when all studies are large and have small effect
sizes (Harbord, Harris, and Sterne 2016).

As with Egger’s test, if we use the weighted version of regression model (3) and denote β0 = b1
and β1 = b0 in that model, the statistical model for the Harbord test, as it originally appeared in the
literature, is given by

Zj
Vj

= β0 + β1
1√
Vj

+ εj weighted by wj = Vj , where εj ∼ N
(
0,

φ

Vj

)
where φ is the overdispersion parameter as defined in multiplicative meta-regression; see Introduction
of [META] meta regress.

Then, the traditional Harbord test is the test of H0: β1 = 0, and its null hypothesis is rejected

if tharbord =
∣∣∣β̂1/SE(β̂1)

∣∣∣ > tK−2,1−α/2. This test can be performed when you specify options
harbord and traditional.

Peters’s test for log odds-ratios

Peters et al. (2006) provide a test based on the following model:

θ̂j = β0 + β1
1

nj
+ εj weighted by wj = (aj + cj) (bj + dj) /nj , where εj ∼ N

(
0, σ̂2

jφ
)

θ̂j = ln
(

ÔRj
)
, and φ is the overdispersion parameter as defined in multiplicative meta-regression;

see Introduction of [META] meta regress.

https://www.stata.com/manuals/metametaesize.pdf#metametaesizeMethodsandformulas
https://www.stata.com/manuals/metametaesize.pdf#metametaesize
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqharbordreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqeggerreg
https://www.stata.com/manuals/meta.pdf#metametabiasMethodsandformulasmbiaseqharbordreg
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
https://www.stata.com/manuals/metametaregress.pdf#metametaregressRemarksandexamplesIntroduction
https://www.stata.com/manuals/metametaregress.pdf#metametaregress
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The traditional Peters test is the test of H0 : β1 = 0, and its null hypothesis is rejected if

tpeters =
∣∣∣β̂1/SE(β̂1)

∣∣∣ > tK−2,1−α/2. This test can be performed when you specify options peters
and traditional.

When the test is based on the random-effects model, the weights are given by wj = 1/(σ̂2
j + τ̂2).

Begg’s rank correlation test
Consider the standardized effect sizes

θ̂sj =
θ̂j − θ̂IV√

vsj

where

θ̂IV =

∑K
j=1 θ̂j/σ̂

2
j∑K

j=1 1/σ̂
2
j

and

vsj = Var
(
θ̂j − θ̂IV

)
= σ̂2

j −

 K∑
j=1

σ̂−2
j

−1

The Begg test (Begg and Mazumdar 1994) is Kendall’s rank correlation test of independence
between θ̂sj’s and σ̂2

j ’s; see Methods and formulas of [R] spearman.
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