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Description

Mixed-effects models are characterized as containing both fixed effects and random effects. The
fixed effects are analogous to standard regression coefficients and are estimated directly. The random
effects are not directly estimated (although they may be obtained postestimation) but are summarized
according to their estimated variances and covariances. Random effects may take the form of either
random intercepts or random coefficients, and the grouping structure of the data may consist of
multiple levels of nested groups. As such, mixed-effects models are also known in the literature as
multilevel models and hierarchical models. Mixed-effects commands fit mixed-effects models for a
variety of distributions of the response conditional on normally distributed random effects.

Mixed-effects linear regression
mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model
meglm Multilevel mixed-effects generalized linear models

Mixed-effects censored regression

metobit Multilevel mixed-effects tobit regression
meintreg Multilevel mixed-effects interval regression

Mixed-effects binary regression

melogit Multilevel mixed-effects logistic regression
meprobit Multilevel mixed-effects probit regression
mecloglog Multilevel mixed-effects complementary log—log regression

Mixed-effects ordinal regression
meologit Multilevel mixed-effects ordered logistic regression
meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression

mepoisson Multilevel mixed-effects Poisson regression
menbreg Multilevel mixed-effects negative binomial regression
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Mixed-effects multinomial regression
Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM| Example 41g.

Mixed-effects survival model
mestreg Multilevel mixed-effects parametric survival models

Nonlinear mixed-effects regression
menl Nonlinear mixed-effects regression

Postestimation tools specific to mixed-effects commands

estat df Calculate and display degrees of freedom for fixed effects

estat group Summarize the composition of the nested groups

estat icc Estimate intraclass correlations

estat recovariance Display the estimated random-effects covariance matrices

estat sd Display variance components as standard deviations and correlations

estat wcorrelation Display within-cluster correlations and standard deviations

Quick start

Linear mixed-effects models

Linear model of y on x with random intercepts by id
mixed y x || id:

Three-level linear model of y on x with random intercepts by doctor and patient
mixed y x || doctor: || patient:

Linear model of y on x with random intercepts and coefficients on x by id
mixed y x || id: x

Same model with covariance between the random slope and intercept
mixed y x || id: x, covariance(unstructured)

Linear model of y on x with crossed random effects for id and week
mixed y x || _all: R.id || _all: R.week

Same model specified to be more computationally efficient
mixed y x || _all: R.id || week:

Full factorial repeated-measures ANOVA of y on a and b with random effects by field

mixed y a##b || field:
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Generalized linear mixed-effects models
Logistic model of y on x with random intercepts by id, reporting odds ratios
melogit y x || id: , or
Same model specified as a GLM
meglm y x || id:, family(bernoulli) link(logit)
Three-level ordered probit model of y on x with random intercepts by doctor and patient

meoprobit y x || doctor: || patient:

Nonlinear mixed-effects models

Nonlinear mixed-effects regression of y on x1 and x2 with parameters {b0}, {b1}, {b2}, and {b3}
and random intercepts UO by id

menl y = ({bO}+{b1}*x1+{U0[id]1})/(1+exp(-(x2-{b2})/{b33}))

Same as above, but using the more efficient specification of the linear combination
menl y = ({1c: x1 UO[id]l})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using define () to specify the linear combination
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), define(lc: x1 UO[id])

Include a random slope on continuous variable x1 in the define() option, and allow correlation
between random slopes U1l and intercepts UO
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), 11/
define(lc: x1 UO[id] c.x1#U1[id]) covariance(UO Ul, unstructured)

Specify a heteroskedastic within-subject error structure that varies as a power of predicted mean
values _yhat
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), /17
define(lc: x1 UO[id] c.x1#U1[id]) ///
covariance(UO Ul, unstructured) resvariance(power _yhat)

Three-level nonlinear regression of y on x1 with random intercepts WO and slopes W1 on continuous
x1 by lev2 and with random intercepts SO and slopes S1 on x1 by lev3, with 1ev2 nested within
lev3, using unstructured covariance for WO and W1 and exchangeable covariance for SO and S1

menl y = {phil:}+{bil}*cos({b2}*x1), ///
define(phil: x1 WO[lev3] SO[lev3>lev2] ///
c.x1#(Wi[lev3d] Si[lev3>lev2])) ///

covariance(WO W1, unstructured) covariance(SO S1, exchangeable)
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Syntax
Linear mixed-effects models

mixed depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [lf] [m] [weight] [ , fe_options]

and the syntax of a random-effects equation, re_equation, is the same as below for a generalized
linear mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [lf] [in] [, fe_options]
and the syntax of a random-effects equation, re_equation, is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

Nonlinear mixed-effects models
menl depvar = <menlexpr> [zf] [m] [ , options}
<menlexpr> defines a nonlinear regression function as a substitutable expression that contains model

parameters and random effects specified in braces {}, as in exp ({b}+{U[id]}); see Random-effects
substitutable expressions in [ME] menl for details.
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Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-etfects models
Linear mixed-effects models
Generalized linear mixed-effects models
Survival mixed-effects models
Nonlinear mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test
Examples
Two-level models
Covariance structures
Three-level models
Crossed-etfects models
Nonlinear models

Introduction

Multilevel models have been used extensively in diverse fields, from the health and social sciences
to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze
the effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union
membership of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for
example, Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and
Wilson (2004), who studied verbal aggressiveness. For applications of mixed-effects models for count
responses, see, for example, the study on police stops in New York City (Gelman and Hill 2007)
and the analysis of the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh
and Skrondal (2022) provide more examples of linear and generalized linear mixed-effects models.
Nonlinear mixed-effects (NLME) models are popular in, for example, population pharmacokinetics,
bioassays, and studies of biological and agricultural growth processes.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and
McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and
Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).
For NLME models, see, for example, Davidian and Giltinan (1995); Vonesh and Chinchilli (1997);
Demidenko (2013); Pinheiro and Bates (2000); and Davidian and Giltinan (2003).
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Shayle R. Searle (1928-2013) was born in New Zealand. He obtained his PhD in animal breeding
from Cornell University in 1958, with a minor in statistics. Prior to moving to New York, he
worked as a research statistician for the New Zealand Dairy Board, which provided the data that
he would analyze for his thesis. After completing his doctoral degree, he worked as a research
associate and published several articles. He later returned to his post as a statistician in New
Zealand, a position which would have a lasting influence on his career.

Through his analysis of dairy production data, Searle made advancements in estimation methods
for unbalanced data and published a book on this topic. He later returned to Cornell University,
teaching courses in matrix algebra, linear regression models, and estimation of variance compo-
nents. Searle was one of the first few statisticians to use matrices in statistics, and he wrote a
couple of books applying matrix algebra to economics and statistics. In 2001, he published a
book on mixed models, which proved to be a significant contribution considering that not many
statisticians were well acquainted with random effects in the 1950s. His contributions did not go
unnoticed: he was awarded the Alexander von Humboldt U.S. Senior Scientist Award and was
elected a fellow of the Royal Statistical Society and of the American Statistical Association.

George Casella (1951-2012) was born in Bronx, New York. After obtaining a PhD in statistics
from Purdue University, he went on to join the faculty at Rutgers University, and later Cornell
University, where he taught for 19 years, and the University of Florida. He published on topics
such as confidence estimation, Bayesian analysis, and empirical Bayes methods. In general, his
work was motivated by applications to science, and in particular, his work on variable selection
and clustering was motivated by genetics. Casella coauthored a book with Roger Berger that
introduced many graduate students to mathematical statistics. He coauthored another book with
Christian P. Robert on Monte Carlo methods. In addition to his own published work, Casella
was an editor for three journals: Statistical Science, Journal of the American Statistical Society,
and Journal of the Royal Statistical Society.

Casella’s many contributions are reflected in his election to fellowship on behalf of four different
associations and institutes and being made a foreign member of the Spanish Royal Academy of
Sciences. He acquired the Spanish language during a year he spent in Spain for sabbatical and
even gave talks on Monte Carlo methods in Spanish. Aside from his academic accomplishments,
Casella completed 13 marathons and spent time as a volunteer firefighter.

Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand
for any mixed-effects command, such as mixed, melogit, or meprobit, except menl. menl models
the mean function nonlinearly and thus has a different syntax; see [ME] menl.

1. Fit a two-level random-intercept model with levelvar defining the second level:

. mecmd depvar [indepvars} .o | levelvar:, ...
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2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the
level levelvar:

. mecmd depvar [ind@pvars} ... | levelvar: revars, ...

This model assumes an independent covariance structure between the random effects; that is, all
covariances are assumed to be 0. There is no statistical justification, however, for imposing any
particular covariance structure between random effects at the onset of the analysis. In practice,
models with an unstructured random-effects covariance matrix, which allows for distinct variances
and covariances between all random-effects covariates (revars) at the same level, must be explored
first; see Other covariance structures and example 3 in [ME] melogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.
Numerical methods for fitting mixed-effects models are computationally intensive—computation
time increases significantly as the number of parameters increases; see Computation time and the
Laplacian approximation for details. The unstructured covariance is the most general and contains
many parameters, which may result in an unreasonable computation time even for relatively simple
random-effects models. Whenever feasible, however, you should start your statistical analysis
by fitting mixed-effects models with an unstructured covariance between random effects, as we
show next.

3. Specify the unstructured covariance between the random effects in the above:
. mecmd depvar [imlepvars} ... || levelvar: revars, covariance(unstructured) ...

4. Fit a three-level nested model with levelvarl defining the third level and levelvar2 defining the
second level:

. mecmd depvar [indepvars} «oo |l levelvarl: || levelvar2:, ...

5. Fit the above three-level nested model as a two-level model with exchangeable covariance structure
at the second level (mixed only):

. mecmd depvar [indepvam} ... || levelvarl: R.levelvar2, cov(exchangeable) ...

See example 11 in [ME] mixed for details about this equivalent specification. This specification
may be useful for a more efficient fitting of random-effects models with a mixture of crossed
and nested effects.

6. Fit higher-level nested models:
. mecmd depvar [indepvars} ... |l levelvarl: || levelvar2: || levelvar3: || ...

7. Fit a two-way crossed-effects model with the —_all: notation for each random-effects equation:
. mecmd depvar [indepvm‘s} ... |l _all: R.factorl || _all: R.factor2 ...

When you use the _all: notation for each random-effects equation, the total dimension of the
random-effects design equals r; + 73, where 7; and 7o are the numbers of levels in factorl and
Jactor2, respectively. This specification may be infeasible for some mixed-effects models; see
item 8 below for a more efficient specification of this model.

8. Fit a two-way crossed-effects model with the —_all: notation for the first random-effects equation
only:

. mecmd depvar [ind()pvars} ... |l _all: R.factorl || factor2:, ...

Compared with the specification in item 7, this specification requires only 7 4 1 parameters and
is thus more efficient; see Crossed-effects models for details.
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9.

10.

11.

12.

13.

14.

15.

16.

Fit a two-way full-factorial random-effects model:

. mecmd depvar [indepvars} ... |l _all: R.factorl || factor2: || factorl: ...
Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars/
and revars2:

. mecmd depvar [ind()pvars} ... | levelvar: revarsl, noconstant ///

|| levelvar: revars2, noconstant ...

Fit a linear mixed-effects model where the correlation between the residual errors follows an
autoregressive process of order 1:

. mixed depvar [indepvars} ... |l levelvar:, residuals(ar 1, t(time)) ...

More residual error structures are available; see [ME] mixed for details.
Fit a two-level linear mixed-effects model accounting for sampling weights expr/ at the first
(residual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar [indepvars} [pweight=expri] ... || levelvar:, pweight (expr2) ...

Mixed-effects commands—with the exception of mixed—allow constraints on both fixed-effects
and random-effects parameters. We provide several examples below of imposing constraints on
variance components.

Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to
be 16:

. constraint 1 _b[var(_cons/[levelvar]):_cons]=16

. mecmd depvar [ind()pvars} ... |l levelvar:, constraints(1) ...
Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance
of the random slope on revar to be equal:

. constraint 1 _b[var(revar[levelvar]):_cons] = _b[var(_cons[levelvar]):_cons]

. mecmd depvar [indepvars} ... | levelvar: revar, constraints(1) ...

Note that the constraints above are equivalent to imposing an identity covariance structure for
the random-effects equation:

. mecmd depvar [ind@pvars} ... |l levelvar: revar, cov(identity) ...
Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to have a banded structure:

.mat p=(1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)

. mecmd depvar [indepvam‘} ... | levelvar: revars, noconstant ///

covariance(pattern(p)) ...

Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to the specified numbers, and with all the covariances constrained
to be 0:

. mat f = diag((1,2,3,4))

. mecmd depvar [indepwu‘s} ... |l levelvar: revars, noconstant ///
covariance(fixed(f)) ...

The variance components in models in items 15 and 16 can also be constrained by using the
constraints() option, but using covariance(pattern()) or covariance(fixed()) is more
convenient.
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Mixed-effects models

Linear mixed-effects models

Linear mixed-effects (LME) models for continuous responses are a generalization of linear regression
allowing for the inclusion of random deviations (effects) other than those associated with the overall
error term. In matrix notation,

y=XB8+Zu+e (1)

where y is the n X 1 vector of responses, X is an n X p design/covariate matrix for the fixed effects
B, and Z is the n X g design/covariate matrix for the random effects u. The n x 1 vector of errors
€ is assumed to be multivariate normal with mean 0 and variance matrix o2R.

The fixed portion of (1), X3, is analogous to the linear predictor from a standard OLS regression
model with 3 being the regression coefficients to be estimated. For the random portion of (1), Zu-+e,
we assume that u has variance—covariance matrix G and that u is orthogonal to € so that

var ¥ = |G 2]

The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the error-covariance parameters that include the overall error variance o2 and the parameters that are
contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random slope
on age (for example), or both. The general specification of G also provides additional flexibility: the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for within-cluster
errors to be heteroskedastic and correlated and allows flexibility in exactly how these characteristics
can be modeled.

In clustered-data situations, it is convenient not to consider all n observations at once but instead
to organize the mixed model as a series of M independent groups (or clusters)

y;j =X;B+ Zju; +€; (2)

for j = 1,..., M, with cluster j consisting of n; observations. The response y; comprises the rows
of y corresponding with the jth cluster, with X; and €; defined analogously. The random effects u;
can now be thought of as M realizations of a ¢ X 1 vector that is normally distributed with mean O
and ¢ X ¢ variance matrix X. The matrix Z; is the n; x ¢ design matrix for the jth cluster random
effects. Relating this to (1),

Z, 0 --- 0 "
0 Z, - O 1

Z= . . . ;ou= :  G=1IyeYE R=I,QA
0 0 0 Zu um

where A denotes the variance matrix of the level-1 errors and ® is the Kronecker product.
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The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to
allow random effects at both the school and the class-within-school levels.

By our convention on counting and ordering model levels, (2) is a two-level model, with extensions
to three, four, or any number of levels. The observation y;; is for individual 7 within cluster 7, and the
individuals compose the first level, whereas the clusters compose the second level of the model. In a
hypothetical three-level model with classes nested within schools, the observations within classes (the
students, presumably) would constitute the first level, the classes would constitute the second level,
and the schools would constitute the third level. This differs from certain citations in the classical
ANOVA literature and texts such as Pinheiro and Bates (2000) but is the standard in the vast literature
on hierarchical models, for example, Skrondal and Rabe-Hesketh (2004).

In Stata, you can use mixed to fit linear mixed-effects models; see [ME] mixed for a detailed
discussion and examples. Various predictions, statistics, and diagnostic measures are available after
fitting an LME model with mixed. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models
(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations
(effects). In matrix notation,

g{E(y|X, u)} = XB+ Zu, y~F (3)

where y is the n X 1 vector of responses from the distributional family ', X is an n X p design/covariate
matrix for the fixed effects 3, and Z is an n X ¢ design/covariate matrix for the random effects u.
The X3 + Zu part is called the linear predictor and is often denoted as 1. g(-) is called the link
function and is assumed to be invertible such that

E(ylu) =g "(XB+2Zu) =H(n) = p

For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for ¢g(-) and F results in a wide array of models. For instance,
if g(-) is the logit function and y is distributed as Bernoulli, we have

logit{ E(y|u)} = X8+ Zu, y ~ Bernoulli

or mixed-effects logistic regression. If g(+) is the natural log function and y is distributed as Poisson,
we have
In{E(y|u)} = X8+ Zu, y ~ Poisson

or mixed-effects Poisson regression.

For the random portion of (3), Zu, we assume that u has variance—covariance matrix G such that

Var(u) = G
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The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write
E(y;lu;) =g "(X;8+ Zju;) y;~F

with all the elements defined as before. In terms of the whole dataset, we now have

Z, 0 -~ 0 "
0 Z; --- 0 1

Z=| . . . ]y o u=] |y G=IyRY
0 0 0 Zy M

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of

meglm.
Command meglm equivalent
melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) 1link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family (nbinomial) link(log)

When no family-link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, allows
for modeling of the structure of the within-cluster errors; see [ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model
with meglm and other me commands. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] meglm postestimation for a detailed discussion and examples.

Survival mixed-effects models

Parametric survival mixed-effects models use a trivariate response variable (o, ¢, d), where each
response corresponds to a period under observation (Zg,t] and results in either failure (d = 1) or
right-censoring (d = 0) at time t. See [ST] streg for background information on parametric survival
models. Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model.

In the AFT parameterization, the natural logarithm of the survival time, logt, is expressed as a
linear function of the covariates. When we incorporate random effects, this yields the model

log(tj) = Xjﬁ + Zjllj + Vj
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where log(-) is an elementwise function, and v; is a vector of observation-level errors. The distri-
butional form of the error term determines the regression model.

In the PH model, the covariates have a multiplicative effect on the hazard function
h(t;) = ho(t;) exp(X;8 + Z;u;)

where all the functions are elementwise, and kg ( ) is a baseline hazard function. The functional form
of ho(-) determines the regression model.

In Stata, you can use mestreg to fit multilevel mixed-effects parametric survival models for the
following distributions and parameterizations.

Distribution Parameterization
exponential PH, AFT
loglogistic AFT
weibull PH, AFT
lognormal AFT
gamma AFT

mestreg is suitable only for data that have been set using the stset command. By using stset
on your data, you define the variables _t0, _t, and _d, which serve as the trivariate response. See
[ME] mestreg for more details about the command. Various predictions, statistics, and diagnostic
measures are available after fitting a mixed-effects survival model with mestreg; see [ME] mestreg
postestimation for a detailed discussion and examples.

Nonlinear mixed-effects models

NLME models are models containing both fixed effects and random effects where some of, or all,
the fixed and random effects enter the model nonlinearly. They can be viewed as a generalization of
LME models, in which the conditional mean of the outcome given the random effects is a nonlinear
function of the coefficients and random effects. Alternatively, they can be considered as an extension
of nonlinear regression models for independent data (see [R] nl), in which coefficients may incorporate
random effects, allowing them to vary across different levels of hierarchy and thus inducing correlation
within observations at the same level.

Using the notation from Linear mixed-effects models for LME models for clustered data, we can
write an NLME model as

where p(-) is a real-valued vector function and A; is an n; x [ matrix of covariates for the jth
cluster, which includes both within-subject and between-subject covariates. Do not be surprised to
see the A; matrix here instead of the more familiar fixed-effects and random-effects design matrices
X, and Z; from previous sections. Because both covariates and parameters can enter the model
nonlinearly in NLME, we cannot express the regression function as a function containing the linear
term X3+ Z;u; as we can for LME and GLME models. The distributional assumptions on u;’s and
€;’s are the same as for the LME models.

Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, NLME
models are often formulated by using a multistage formulation; see Alternative mixed-effects model
specification below for examples.
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We can formulate our previous NLME model as a two-stage hierarchical model:

Stage 1: Individual-level model y;; = m (x;-”j, ¢j) +e€j, 1=1,...,n;

d(x}, B w), j=1,....M

Stage 2: Group-level model ¢

In stage 1, we model the response by using a function m(-), which describes within-subject
behavior. This function depends on subject-specific parameters ¢;’s, which have a natural physical
interpretation, and a vector of within-subject covariates x;;. In stage 2, we use a known vector-valued
function d(-) to model between-subject behavior, that is, to model ¢;’s and to explain how they
vary across subjects. The dg) function incorporates random effects and, optionally, a vector of
between-subject covariates x;. The general idea is to specify a common functional form for each
subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

You can use the menl command to fit NLME models to continuous outcomes; see [ME| menl. menl
supports both the single-equation and multistage model formulations. It supports different covariance
structures for random effects and can model heteroskedasticity and correlations within lowest-level
groups. Various predictions, statistics, and diagnostic measures are available after fitting an NLME
model; see [ME] menl postestimation.

For an introductory example, see Nonlinear models.

Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where
each level is described by its own set of equations. This formulation is common for NLME models;
see Nonlinear mixed-effects models.

Consider a random-intercept model that we write here in general terms:
Yij = Bo + Brxij + uj + €5 (4)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form,
we specify a separate equation for each level.

Yij = Yoj + B1ij + €5
Y05 = Boo + woj

()

The equation for the intercept p; consists of the overall mean intercept 3y and a cluster-specific
random intercept ug;. To fit this model by using, for example, mixed, we must translate the multiple-
equation notation into a single-equation form. We substitute the second equation into the first one
and rearrange terms.

Yi; = Boo + uo; + f1aij + €5

(6)
= Poo + Przij + uoj + €5

Note that model (6) is the same as model (4) with g9 = By and ug; = u;. Thus the syntax for
our generic random-intercept model is

. mixed y x || id:

where id is the variable designating the clusters.
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We can extend model (5) to include a random slope. We do so by specifying an additional equation
for the slope on ;.

Yij = Yoj T V15Tij + €ij
Yo; = Boo + uoj (7)
715 = Bro + w14

The additional equation for the slope 1 ; consists of the overall mean slope 319 and a cluster-specific

random slope u1;. We substitute the last two equations into the first one to obtain a reduced-form
model.

Yij = (Boo + uoj) + (Bro + wij)wi; + €

= Boo + BroTi; + uoj + U5 + €45

The syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 u terms.

Here we further extend the random-slope random-intercept model (7) by adding a level-2 covariate
z; into the level-2 equations.

Yij = Yoj +715%i5 + €
Y05 = Boo + Bo1z;j + uo;
Y15 = Bio + Bi1z; + Ui

We substitute as before to obtain a single-equation form:

Yij = (Boo + Borzj + uoj) + (Bro + Br1zj + wj)wi; + €55
= Boo + Bo1zj + Browij + B1125Tij + Uoj + U1 Tij + €5
Now the fixed-effects portion of the equation contains a constant and variables x, z, and their

interaction. Assuming both x and z are continuous variables, we can use the following Stata syntax
to fit this model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)
Although the menl command is not as suitable for fitting LME models as mixed, it can accommodate
a multistage formulation. For example, (5) can be fit in menl as

. menl y = {gammaO:}+{bl}*x, define(gammaO: {b00}+{UO0[id]l})

and (7) as
. menl y = {gammaO:}+{gammal:2}*x, define(gammal: {b00}+{UO[id]}) ///
define(gammal: {b10}+{U1[id]})

In the above menl’s specifications, gamma0O and gammal can be specified more efficiently by using
linear combinations; see [ME] menl for details.

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2022) for a
more thorough discussion and further examples of multistage mixed-model formulations, including
three-level models.
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Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in LME models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38-39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

Stata uses maximum likelihood (ML) to fit LME and GLME models. The ML estimates are based
on the usual application of likelihood theory, given the distributional assumptions of the model. In
addition, for linear mixed-effects models, mixed offers the method of restricted maximum likelihood
(REML). The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects 3 but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood; see the Methods and formulas section of [ME] mixed for a detailed
discussion of ML and REML methods in the context of linear mixed-effects models.

Log-likelihood calculations for fitting any mixed-effects model require integrating out the random
effects. For LME models, this integral has a closed-form solution; for GLME and NLME models, it
does not. In dealing with this difficulty, early estimation methods avoided the integration altogether.
Two such popular methods are the closely related penalized quasilikelihood (PQL) and marginal
quasilikelihood (MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative
reweighted least squares (see [R] glm) and standard estimation techniques for fitting LME models.
Efficient computational methods for fitting LME models have existed for some time (Bates and
Pinheiro 1998; Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However,
both of these methods suffer from two key disadvantages. First, they have been shown to be biased,
and this bias can be severe when clusters are small or intracluster correlation is high (Rodriguez and
Goldman 1995; Lin and Breslow 1996). Second, because they are “quasilikelihood” methods and not
true likelihood methods, their use prohibits comparing nested models via likelihood-ratio (LR) tests,
blocking the main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models.
Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias. Stata
commands for fitting GLME models such as meglm support three types of Gauss—Hermite quadratures:
mean—variance adaptive Gauss—Hermite quadrature (MVAGH), mode-curvature adaptive Gauss—Hermite
quadrature (MCAGH), and nonadaptive Gauss—Hermite quadrature (GHQ); see Methods and formulas
of [ME] meglm for a detailed discussion of these quadrature methods. A fourth method, the Laplacian
approximation, that does not involve numerical integration is also offered; see Computation time
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and the Laplacian approximation below and Methods and formulas of [ME] meglm for a detailed
discussion of the Laplacian approximation method.

In the context of NLME models, the use of an adaptive quadrature to fit these models can be often
computationally infeasible. A popular alternative method used to fit NLME models is the linearization
method of Lindstrom and Bates (1990), also known as the conditional first-order linearization method.
It is based on a first-order Taylor-series approximation of the mean function and essentially linearizes
the mean function with respect to fixed and random effects. The linearization method is computationally
efficient because it avoids the intractable integration, but the approximation cannot be made arbitrarily
accurate. Despite its potential limiting accuracy, the linearization method has proven the most popular
in practice (Fitzmaurice et al. 2009, sec 5.4.8). The linearization method of Lindstrom and Bates (1990),
with extensions from Pinheiro and Bates (1995), is the method of estimation in menl.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p>{M + M(Ng)9}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, N¢ is the number of quadrature points, and ¢; is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time
is (Ng)?. However, because this is a power function, this factor can get prohibitively large. For
example, using five quadrature fomts for a model with one random intercept and three random
coefficients, we get (Ng)% =5 625. Even a modest increase to seven quadrature points would
increase this factor by almost fourfold (74 = 2,401), which, depending on M and p, could drastically
slow down estimation. When fitting mixed-effects models, you should always assess whether the
approximation is adequate by refitting the model with a larger number of quadrature points. If the
results are essentially the same, the lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of Ng = 1, otherwise known as the Laplacian approximation; see
Methods and formulas of [ME] meglm. The computational benefit is evident—1 raised to any power
equals 1—and the Laplacian approximation has been shown to perform well in certain situations
(Liu and Pierce 1994; Tierney and Kadane 1986). When using Laplacian approximation, keep the
following in mind:

1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.
Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable
alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via
quadrature methods.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
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more in the estimated variance components than in the estimates of the fixed effects as well as at the
lower levels in higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can
produce a decent estimate of the model log likelihood. Consequently, you can use the Laplacian
approximation during the model building phase of your analysis, during which you are comparing
competing models by using LR tests. Once you settle on a parsimonious model that fits well, you
can then increase the number of quadrature points and obtain more accurate parameter estimates for
further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas of [ME] meglm. Asymptotic theory dictates that this approximation improves with larger
clusters. Of course, the key question, as always, is “How large is large enough?” Also, there are data
situations where the Laplacian approximation performs well even with small clusters. Therefore, it
is difficult to make a definitive call as to when you can expect the Laplacian approximation to yield
accurate results across all aspects of the model.

Furthermore, the Pinheiro and Chao (2006) algorithm for the random-effects mode and curvature
estimates, available with option intmethod(pclaplace), can speed up computations dramatically
for hierarchical models with four or more levels, especially when random slopes are included.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge when
used with your data. The default gradient-based method used by mixed-effects commands, except
menl, is the Newton—Raphson algorithm, requiring the calculation of a gradient vector and Hessian
(second-derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:
1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or

3. the message “standard error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. A model that is not identified given the data, for example, fitting the three-level nested random
intercept model

3

Yik = XjiB + uy, @

without any replicated measurements at the (j,k) level, that is, with only one ¢ per (j,k)

combination. This model is unidentified for such data because the random intercepts uﬁ) are
confounded with the overall errors €.
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B. A model that contains a variance component whose estimate is really close to 0. When this occurs,
a ridge is formed by an interval of values near 0, which produce the same likelihood and look
equally good to the optimizer.

For LME models, one useful way to diagnose problems of nonconvergence is to rely on the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed
only as a means of refining starting values; see Diagnosing convergence problems of [ME] mixed for
details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many ‘“nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] Maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting
values; see Obtaining better starting values in [ME] meglm for details.

Achieving convergence and diagnosing convergence problems can be even more challenging with
NLME models. As with other mixed-effects models, complicated variance—covariance structures for
random effects and errors can often lead to overparameterized models that fail to converge. In addition,
highly nonlinear mean specifications can lead to multiple solutions and thus to potential convergence to
a local maximum. menl uses the linearization estimation method that alternates between the penalized
least-squares estimation of the fixed-effects parameters and the Newton—Raphson estimation of the
random-effects parameters of the approximating LME model, which was the result of the linearization
of the original NLME model. This alternating method does not provide a joint Hessian matrix for all
parameters, so there is no check for the tolerance of the scaled gradient, and thus the convergence
cannot be established in its strict sense. The convergence is declared based on the stopping rules
described in Methods and formulas of [ME] menl. Exploring different initial values to investigate
convergence is particularly important with NLME models; see Obtaining initial values in [ME] menl.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects
models, issues concerning boundary problems imposed by estimating strictly positive quantities (that
is, variances) can complicate the situation. For example, when performing LR tests involving linear
mixed-effects models (whether comparing with linear regression within mixed or comparing two
separate linear mixed-effects models with 1rtest), you may thus sometimes see a test labeled as
chibar rather than the usual chi2, or you may see a chi2 test with a note attached stating that the
test is conservative or possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to O in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is y?
with degrees of freedom equal to the difference in the number of estimated parameters between both
models.

When there is only one variance being set to 0 in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a Xf, and a X;% 1 distribution, where p is the number
of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.
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When more than one variance parameter is being set to 0 in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

2|:0’8 0'01:|

2
001 01

Because the random component of the mixed model comprises three parameters (03, 001,07),
on the surface it would seem that the LR comparison test would be distributed as X§~ However, two
complications need to be considered. First, the variances U% and o% are restricted to be positive, and
second, constraints such as o7 = 0 implicitly restrict the covariance o¢; to be 0 as well. From a
technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the
distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

The mixed and me commands use this reference distribution, the X2 with full degrees of freedom,
to produce a conservative test and place a note in the output labeling the test as such. Because the
displayed significance level is an upper bound, rejection of the null hypothesis based on the reported
level would imply rejection on the basis of the actual level.

Examples

Two-level models

> Example 1: Growth-curve model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth, but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weight,; = fo + Siweek;; + u; + €;;

fori =1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, 5y + fiweek;;,
simply states that we want one overall regression line representing the population average. The random
effect u; serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:
Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48
Obs per group:

min = 9

avg = 9.0

max = 9

Wald chi2(1) = 25337.49

Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight | Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18  0.000 6.133433 6.286359

_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate  Std. err. [95% conf. intervall]

id: Identity

var (_cons) 14.81751 3.124225 9.801716 22.40002

var (Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME] mixed. Here we only highlight the most important
points.

1. The first estimation table reports the fixed effects. We estimate Sy = 19.36 and (5 = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and
that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = UZI. The
estimate of 2 is 14.82 with standard error 3.12.

3. The row labeled var (Residual) displays the estimated standard deviation of the overall error
term; that is, 33 = 4.38. This is the variance of the level-one errors or the variance of the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly
significant for these data.


https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex1
https://www.stata.com/manuals/memixed.pdf#memixed
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We can predict the random intercept u; and list the predicted random intercept for the first 10
pigs by typing
. predict r_int, reffects
. egen byte tag = tag(id)
. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105

10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159
46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME] mixed, we show how to fit a random-slope model for these data, and in
example 1 of [ME] mixed postestimation, we show how to plot the estimated regression lines for

each of the pigs.
d

> Example 2: Split-plot design

Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers
investigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation
on the quality of golf turf. The experimental plots were arranged in a randomized complete block
design with two replications. After two years of nitrogen treatment, the second treatment factor, years
of thatch accumulation, was added to the experiment. Each of the eight experimental plots was split
into three subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for
a period of 2, 5, and 8 years.


https://www.stata.com/manuals/memixed.pdf#memixedRemarksandexamplesex_mixed_pigs
https://www.stata.com/manuals/memixed.pdf#memixed
https://www.stata.com/manuals/memixedpostestimation.pdf#memixedpostestimationRemarksandexamplesex1
https://www.stata.com/manuals/memixedpostestimation.pdf#memixedpostestimation
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. use https://www.stata-press.com/data/r18/clippings, clear

(Turfg

. desc

rass experiment)

ribe

Contains data from https://www.stata-press.com/data/r18/clippings.dta

Observations: 24 Turfgrass experiment
Variables: 4 21 Feb 2022 14:57
Variable Storage Display Value
name type format label Variable label
chlorophyll float  %9.0g Chlorophyll content (mg/g) of
grass clippings
thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer
Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch
accumulation is stored in the variable thatch. The response is the chlorophyll content of grass
clippings, recorded in mg/g and stored in the variable chlorophyll. The block variable identifies
the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the
subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation
in the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit
to represent the whole-plot units that correspond to the levels of the nitrogen treatment and block

interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||

> wpun
note:
note:
note:
note:
note:
note:
note:
note:

it:, reml

8.thatch omitted because of
1.nitrogen#8.thatch omitted
2.nitrogen#8.thatch omitted
3.nitrogen#8.thatch omitted
4.nitrogen#2.thatch omitted
4.nitrogen#5.thatch omitted
4.nitrogen#8.thatch omitted

collinearity.

because
because
because
because
because
because

of collinearity.
of collinearity.
of collinearity.
of collinearity.
of collinearity.
of collinearity.

2.block omitted because of collinearity.

Performing EM optimization ...

Performing gradient-based optimization:

Iterat
Iterat
Iterat
Iterat

ion 0: Log restricted-likelihood
ion 1: Log restricted-likelihood
ion 2: Log restricted-likelihood
ion 3: Log restricted-likelihood =

-13.212401
-13.203147
-13.203125
-13.203125
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Computing standard errors ...

Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8
Obs per group:
min = 3
avg = 3.0
max = 3
Wald chi2(13) = 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000
chlorophyll | Coefficient Std. err. z P>|z| [95% conf. intervall
nitrogen
Urea 5.245833 .3986014 13.16  0.000 4.464589 6.027078
Ammonium s.. 5.945833 .3986014 14.92  0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93  0.000 7.164589 8.727078
Urea (SC) 8.595833 .3986014 21.56  0.000 7.814589 9.377078
thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917  -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917
nitrogen#
thatch
Urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
Urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988
Ammonium s.. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988
Ammonium s.. #
5 -.1000006 .6551081 -0.15 0.879 -1.383989 1.183988
IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124
block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622
Random-effects parameters Estimate  Std. err. [95% conf. intervall
wpunit: Identity
var (_cons) .0682407 .1195933 .0021994 2.117345
var (Residual) .2145833 .1072917 .080537 .6717376

LR test vs. linear model: chibar2(01) = 0.53 Prob >= chibar2 = 0.2324
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We can calculate the cell means for source of nitrogen and years of thatch accumulation by using
margins.
. margins thatch#nitrogen
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method

Margin  std. err. z P>|z| [95% conf. intervall

thatch#

nitrogen
2#Urea 3.85 .3760479 10.24 0.000 3.11296 4.58704

2 #
Ammonium s.. 5.6 .3760479 14.89 0.000 4.86296 6.33704
2#IBDU 6.5 .3760479 17.29 0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55 0.000 6.61296 8.087041
5#Urea 5.35 .3760479 14.23 0.000 4.61296 6.087041

5 #
Ammonium s.. 5.85 .3760479 15.56 0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96 0.000 5.26296 6.73704
5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#Urea 5.1 .3760479 13.56 0.000 4.36296 5.837041

8 #
Ammonium s.. 5.8 .3760479 15.42 0.000 5.06296 6.53704
8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47 0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the
three thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus
years of thatch accumulation by nitrogen source.
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. marginsplot, ytitle(Chlorophyll (mg/g)) title("")

> subtitle("Mean chlorophyll content of grass clippings versus"

> "nitrogen source for years of thatch accumulation") xsize(3) ysize(3.2)
> legend(cols(1) position(5) ring(0) region(lwidth(none)))

> ylabel(0(2)10, angle(0))

Variables that uniquely identify margins: thatch nitrogen

Mean chlorophyll content of grass clippings versus
nitrogen source for years of thatch accumulation
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Years of thatch accumulation

We can see an increase in the mean chlorophyll content over the years of thatch accumulation for
all but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method

Margin  std. err. z P>|z| [95% conf. intervall

thatch
2 5.825 .188024 30.98 0.000 5.45648 6.193562
5 6.45 .188024 34.30 0.000 6.08148 6.81852

8 6.7875 .188024 36.10 0.000 6.41898 7.15602
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. margins nitrogen
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin  std. err. z P>|z| [95% conf. interval]
nitrogen
Urea 4.766667 .2643563 18.03 0.000 4.248538 5.284796
Ammonium s.. 5.75 .2643563 21.75 0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796
Urea (SC) 8.133333 .2643563 30.77 0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-
effects models.

4

> Example 3: Binomial counts

We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 departments
within the College of Liberal Arts and Sciences at the University of Florida during the 1997-1998
academic year. The dataset contains the department ID (department), the number of applications
(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use https://www.stata-press.com/data/r18/admissions, clear
(Graduate school admissions data)

. describe
Contains data from https://www.stata-press.com/data/r18/admissions.dta
Observations: 46 Graduate school admissions data

Variables: 4 25 Feb 2022 09:28
(_dta has notes)

Variable Storage Display Value
name type format label Variable label
department byte %8.0g dept Department ID
nadmitted byte %8.0g Number of admissions
napplied int %9.0g Number of applications
female byte %8.0g 1 if female; O if male
Sorted by:
We wish to investigate whether admission decisions are independent of gender. Given department
and gender, the probability of admission follows a binomial model, that is, Pr(Y;; = v;;)
Binomial(n;;, m;;), where ¢ = {0,1} and j = 1,...,23. We fit a mixed-effects binomial logistic

model with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or
Fitting fixed-effects model:

Iteration 0: Log likelihood = -302.47786
Iteration 1: Log likelihood = -300.00004
Iteration 2: Log likelihood = -299.99934
Iteration 3: Log likelihood = -299.99934
Refining starting values:

Grid node 0: Log likelihood = -145.08843
Fitting full model:

Iteration 0: Log likelihood = -145.08843
Iteration 1: Log likelihood = -140.8514
Iteration 2: Log likelihood = -140.61709

Iteration 3: Log likelihood = -140.61628
Iteration 4: Log likelihood = -140.61628

Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied
Group variable: department Number of groups = 23
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 2.14
Log likelihood = -140.61628 Prob > chi2 = 0.1435
nadmitted | Odds ratio  Std. err. z P>|z| [95% conf. intervall
female 1.176898 .1310535 1.46 0.144 .9461357 1.463944
_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655
department
var (_cons) 1.345383 .460702 .6876497 2.632234
Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 318.77 Prob >= chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance.
The estimate of 52 is 1.35 with the standard error of 0.46. An LR test comparing the model with
the one-level binomial regression model favors the random-intercept model, indicating that there is a
significant variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict
and plot Anscombe residuals.
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. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),

> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))

> xlabel(1/23) legend(label(l "females") label(2 "males"))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that
are above two in absolute value are usually considered outliers. In the graph above, the residual
for female admissions in department 2 is a clear outlier, suggesting a poor fit for that particular
observation; see [ME] meglm postestimation for more information about Anscombe residuals and
other model diagnostics tools.

d
Covariance structures
> Example 4: Growth-curve model with correlated random effects

Here we extend the model from example 1 of [ME] me to allow for a random slope on week and
an unstructured covariance structure between the random intercept and the random slope on week.


https://www.stata.com/manuals/memeglmpostestimation.pdf#memeglmpostestimation
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. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48
Obs per group:

min = 9

avg = 9.0

max = 9

Wald chi2(1) = 4649.17

Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight | Coefficient Std. err. z P>|z| [95% conf. intervall

week 6.209896  .0910745 68.18  0.000 6.031393 6.388399

_cons 19.35561 .3996387 48.43  0.000 18.57234 20.13889

Random-effects parameters Estimate  Std. err. [95% conf. intervall]

id: Unstructured

var (week) .3715251 .0812958 .2419532 .570486

var (_cons) 6.823363 1.566194 4.351297 10.69986

cov(week,_cons) -.0984378 .2645767 -.5973991 .4005234

var (Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The unstructured covariance structure allows for correlation between the random effects. Other
covariance structures supported by mixed, besides the default independent, include identity and
exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations
at the same level, in which case the covariance types can be combined to form more complex
blocked-diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The
fitted values are based on both the fixed and the random effects.


https://www.stata.com/manuals/memixed.pdf#memixed
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. predict wgt_hat, fitted

. twoway connected wgt_hat week if id<=10, connect(L) ytitle("Predicted weight")

80

60

Predicted weight

401

20

week

»> Example 5: Blocked-diagonal covariance structures

In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure

of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled
1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,
identified by the variable district. Each district contained either urban or rural areas (variable
urban) or both. The variable c_use is the binary response, with a value of 1 indicating contraceptive
use. Other covariates include mean-centered age and a factor variable for the number of children.
Below we fit a standard logistic regression model amended to have random coefficients for the

children factor variable and an overall district random intercept.

. use https://www.stata-press.com/data/r18/bangladesh, clear
(Bangladesh Fertility Survey, 1989)
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. melogit c_use i.urban age i.children

> || district: i.children, cov(exchangeable)
> || district:, or nolog baselevel nofvlabel
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 100.01
Log likelihood = -1206.2397 Prob > chi2 = 0.0000

(1) [/lvar(1l.children[district]) - [/]var(3.children[district]) = 0

( 2) [/lcov(l.children[district],2.children[district]) -
[/1cov(2.children[district],3.children[district])

( 3) [/lcov(l.children[district],3.children[district]) -
[/lcov(2.children[district],3.children[district]) = 0

0

( 4) [/lvar(2.children[district]) - [/]var(3.children[district]) = 0
c_use 0dds ratio Std. err. z P>|z]| [95% conf. intervall
urban
0 1 (constrained)
1 2.105163 .2546604 6.15 0.000 1.660796 2.668426
age .9735765 .0077461 -3.37 0.001 .9585122 .9888775
children
0 1  (constrained)
1 2.992596 .502149 6.53 0.000 2.153867 4.157931
2 3.879345 .7094125 7.41 0.000 2.710815 5.551584
3 3.774627 .7055812 7.11 0.000 2.616744 5.444863
_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214
district
var (
1.children) .0841518 .0880698 .0108201 .654479
var (
2.children) .0841518 .0880698 .0108201 .654479
var (
3.children) .0841518 .0880698 .0108201 .654479
var (_cons) .1870273 .0787274 .0819596 .426786
district
cov(
1.children,
2.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(
1.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(
2.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(3) = 44.57 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having
any number of children will increase the odds from three- to fourfold when compared with the base
category of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances for the children factor
levels are constrained to be the same, and the estimated covariances for the children factor levels
are constrained to be the same. More complex covariance structures with constraints can be specified
using covariance(pattern()) and covariance(fixed()); see example 6 below.

N

> Example 6: Meta analysis

In this example, we present a mixed-effects model for meta analysis of clinical trials. The term
“meta-analysis” refers to a statistical analysis that involves summary data from similar but independent
studies.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio
(variable 1nor) estimated from each study, and the corresponding estimated variance (variable var).
The square root of the variance is stored in the variable std and the trial identifier is stored in the
variable trial.

. use https://www.stata-press.com/data/r18/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. list

trial lnor var std
1 1 .04 .16 .4
2 2 -.92 .12 .3464102
3 3 -1.12 .18 .4242641
4 4 -1.47 .3 .5477226
5 5 -1.39 .11 .3316625
6 6 -.3 .01 .1
7 7 -.26 .12 .3464102
8 8 1.09 .69 .8306624
9 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a
continuous outcome and assumed to be normally distributed, and the true treatment effect varies
randomly among the trials. The random-effects model can be written as

Yi ~ N(Q—i—ui,of)
vi ~ N(0,7%)

where y; is the observed treatment effect corresponding to the ith study, 6 + v; is the true treatment
effect, 07;2 is the variance of the observed treatment effect, and 7 is the between-trial variance
component. Our aim is to estimate 6, the global mean.

Notice that the responses y; do not provide enough information to estimate this model, because
we cannot estimate the group-level variance component from a dataset that contains one observation
per group. However, we already have estimates for the o;’s, therefore we can constrain each o; to
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be equal to its estimated value, which will allow us to estimate 6 and 7. We use meglm to estimate
this model because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option
requires a Stata matrix defining the constraints, thus we first create matrix £ with the values of o;,
stored in variable var, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat var, mat(f)
. matrix f = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial.
Because random-effects equations support factor variables (see [U] 11.4.3 Factor variables), we can
use the ibn.trial notation. Because the model is computationally demanding, we use Laplacian
approximation instead of the default mean-variance adaptive quadrature; see Computation time and
the Laplacian approximation above for details.


https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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. meglm lnor || _all: ibn.trial, nocons cov(fixed(f)) intm(laplace) nocnsreport
Fitting fixed-effects model:

Iteration 0: Log likelihood = -10.643432

Iteration 1: Log likelihood = -10.643432

Refining starting values:

Grid node 0: Log likelihood = -10.205455

Fitting full model:

Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851561 (backed up)
Iteration 2: Log likelihood = -9.4587068
Iteration 3: Log likelihood = -9.4552982
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity

Group variable: _all Number of groups = 1
Obs per group:
min = 9
avg = 9.0
max = 9
Integration method: laplace
Wald chi2(0) =
Log likelihood = -9.4552759 Prob > chi2 =
lnor | Coefficient Std. err. z P>z [95% conf. intervall]
_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707
_all
var(1l.trial) .16 (constrained)
var(2.trial) .12 (constrained)
var(3.trial) .18 (constrained)
var(4.trial) .3 (constrained)
var(5.trial) .11 (constrained)
var(6.trial) .01 (constrained)
var(7.trial) .12  (constrained)
var(8.trial) .69 (constrained)
var(9.trial) .07 (constrained)
var (e.lnor) .2377469 .1950926 .0476023 1.187413

We estimate § = —0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent
random variables, each with variance unity, and each being multiplied by a different standard error.
To accomplish this, we treat trial as a random-effects level, use the standard deviations of the log
odds-ratios as a random covariate at the trial level, and constrain the variance component of trial
to unity.
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. constraint 1 _b[/var(std[trial])] = 1

. meglm lnor || trial: std, nocons constraints(1)

Fitting fixed-effects model:

Log likelihood = -10.643432
Log likelihood = -10.643432

Refining starting values:
Log likelihood = -10.205455
Fitting full model:
Log likelihood = -10.205455

Iteration O:
Iteration 1:

Grid node O:

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:
Iteration 4:
Iteration 5:

Log likelihood = -9.4851164

Log likelihood = -9.45869
Log likelihood = -9.4552794
Log likelihood = -9.4552759
Log likelihood = -9.4552759

(backed up)

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: trial Number of groups = 9
Obs per group:
min = 1
avg = 1.0
max = 1
Integration method: mvaghermite Integration pts. = 7
Wald chi2(0) =
Log likelihood = -9.4552759 Prob > chi2 =
(1) [/lvar(std[triall]) =1
Inor | Coefficient Std. err. z P>|z| [95% conf. intervall
_cons -.5166151 .2059448 -2.51  0.012 -.9202594  -.1129708
trial
var (std) 1 (constrained)
var (e.lnor) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient

specification.

Three-level models

N

The methods we have discussed so far extend from two-level models to models with three or
more levels with nested random effects. By “nested”, we mean that the random effects shared within
lower-level subgroups are unique to the upper-level groups. For example, assuming that classroom
effects would be nested within schools would be natural, because classrooms are unique to schools.
Below we illustrate a three-level mixed-effects ordered probit model.

> Example 7: Three-level ordinal response model

In this example, we fit a three-level ordered probit model. The data are from the Television,
School, and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and
Skrondal 2022, chap. 11), where schools were randomly assigned into one of four groups defined
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by two treatment variables. Students within each school are nested in classes, and classes are nested
in schools. The dependent variable is the tobacco and health knowledge (THK) scale score collapsed
into four ordered categories. We regress the outcome on the treatment variables and their interaction
and control for the pretreatment score.

. use https://www.stata-press.com/data/r18/tvsfpors, clear

(Television, School, and Family Project)

. meoprobit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775

Iteration 1: Log likelihood = -2127.8111

Iteration 2: Log likelihood = -2127.7612

Iteration 3: Log likelihood = -2127.7612

Refining starting values:

Grid node 0: Log likelihood = -2195.6424

Fitting full model:

Iteration 0: Log likelihood = -2195.6424 (not concave)

Iteration 1: Log likelihood = -2167.9576 (not concave)

Iteration 2: Log likelihood = -2140.2644 (not concave)

Iteration 3: Log likelihood = -2128.6948 (not concave)

Iteration 4: Log likelihood = -2119.9225

Iteration 5: Log likelihood = -2117.0947

Iteration 6: Log likelihood = -2116.7004

Iteration 7: Log likelihood = -2116.6981

Iteration 8: Log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000
thk | Coefficient Std. err. z P>|z| [95% conf. intervall
prethk .238841 .0231446 10.32  0.000 .1934784 .2842036
1l.cc .5254813 .1285816 4.09 0.000 .2734659 LTT74967
1.tv .1455573 .1255827 1.16  0.246 -.1005803 .3916949
ccH#tv
11 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251
/cutl -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401
school
var (_cons) .0186456 .0160226 .0034604 .1004695
school>class
var (_cons) .0519974 .0224014 .0223496 .1209745
LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000

Note: LR test is comservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will also suppress the rest
of the header.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

N

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

> Example 8: Crossed random effects

Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weight,; = fo + fiweek;; +u; +v; + €;; (8)
forthe i =1,...,9 weeks and j = 1,...,48 pigs and

Uj ~ N(O,ai); vj ~ N(O,m%); € ~ N(O,a?)

all independently. That is, we assume an overall population-average growth curve 5y + $1week and
a random pig-specific shift. In other words, the effect due to week, u;, is systematic to that week and
common to all pigs. The rationale behind (8) could be that, assuming that the pigs were measured
contemporaneously, we might be concerned that week-specific random factors such as weather and
feeding patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects v; being crossed
with the week effects u;. One way to fit such models is to consider all the data as one big cluster,
and treat u; and v; as a series of 9 + 48 = 57 random coefficients on indicator variables for week
and pig. The random effects u and the variance components G are now represented as
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U
2
o Uug . . Jng 0
u=| 7| ~N(©G) G—[ p 0_3148}
L V48 |

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID
variable to identify all the observations as one big group and a way to tell mixed-effects commands to
treat week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized
indicator variables identifying weeks and pigs, respectively). The mixed-effects commands support
the special group designation _all for the former and the R.varname notation for the latter.

. use https://www.stata-press.com/data/r18/pig

(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.id || _all: R.week

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1
Obs per group:
min = 432
avg = 432.0
max = 432
Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
week 6.209896 .05639313 115.14  0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56  0.000 18.11418 20.59705
Random-effects parameters Estimate Std. err. [95% conf. interval]
_all: Identity
var(R.id) 14.83623  3.126142 9.816733 22.42231
_all: Identity
var (R.week) .0849874 .0868856 .0114588 .6303302
var (Residual) 4.297328 .3134404 3.724888 4.957741
LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We estimate o2 = 0.08 and 5> = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you use R.varname, mixed-effects commands
handle the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and memory
requirements grow (roughly) quadratically with the dimension of the random effects. As a result,
fitting such crossed-effects models is feasible only when the total column dimension is small to
moderate. For this reason, mixed-effects commands use the Laplacian approximation as the default
estimation method for crossed-effects models; see Computation time and the Laplacian approximation
above for more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.
For example, we can treat pigs as nested within the _all group, yielding the equivalent and more
efficient (total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)
level with random-effects dimension 1 (a random intercept) is much more computationally efficient.
Whereas with the first form we are limited in how many pigs we can analyze, there is no such
limitation with the second form.

All the mixed-effects commands—except mixed—automatically attempt to recast the less efficient
model specification into a more efficient one. However, this automatic conversion may not be sufficient
for some complicated mixed-effects specifications, especially if both crossed and nested effects are
involved. Therefore, we strongly encourage you to always specify the more efficient syntax; see Rabe-
Hesketh and Skrondal (2022) and Marchenko (2006) for additional techniques to make calculations
more efficient in more complex mixed-effects models.

d

Nonlinear models

NLME models are popular in population pharmacokinetics, bioassays, studies of biological and
agricultural growth processes, and other applications, where the mean function is a nonlinear function
of fixed and random effects. Remarks and examples of [ME] menl provide many examples of fitting
different NLME models by using menl, including a pharmacokinetics model in example 15. Here we
consider simple data from Draper and Smith (1998) that contain trunk circumference (in mm) of five
different orange trees measured over seven different time points.


https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamples
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesmenlextheoph
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Let’s plot our data first.

. use https://wuw.stata-press.com/data/r18/orange
(Growth of orange trees (Draper and Smith, 1998))

. twoway scatter circumf age, connect(L) ylabel(#6 175)
250
200+

1754

150

100

Trunk circumference (mm)

50

0 500 1000 1500
Time since Dec 31, 1968 (days)

Consider the following nonlinear growth model for these data,

B
1+ exp {— (age;; — B2) /B3 }

circumf;; = + €5

where €;;’s are i.i.d. N(O, 062). In this model, 5, can be interpreted as the average asymptotic trunk
circumference of trees as age,; — co. We can crudely estimate it as the average of the trunk
circumference values at the last observed time point, which for these data is roughly 175 mm. f39 is
the age at which a tree attains half of the average asymptotic trunk circumference (31; that is, if we set
age;; = B2, then E(circumf,;) = 0.551. B3 is a scale parameter that represents the number of days
it takes for a tree to grow from 50% to about 73% of the average asymptotic trunk circumference.
That is, if we set age = tg.73 = (2 + f3, then E(circumf;;) = 81/{1 + exp(—1)} = 0.73/; and
then 83 = tg.73 — fa.

The above model can be easily fit by using, for example, nl; see [R] nl. However, if we study the
graph more carefully, we will notice that there is an increasing variability in the trunk circumferences
of trees as they approach their limiting age. So it may be more reasonable to allow (37 to vary between
trees,

B1 + uij

1+ exp{— (ageij — fB2) /B3}

where u;’s are i.i.d. N (0,02 ). We use menl to fit this model.

circumfij = + €ij (9)

The specification of NLME models in menl is fairly straightforward. Following the dependent
variable and the equality sign (=), we specify the expression for the mean function as a usual Stata
expression but with parameters and random effects enclosed in curly braces ({}).


https://www.stata.com/manuals/rnl.pdf#rnl
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. menl circumf = ({b1}+{Ul[treell})/(1+exp(-(age-{b2})/{b3}))
Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:

min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
/b1 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity

var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371  15.89568 37.11466 102.1184

In the above specification, we used {Ul[treel} to include random intercepts at the tree level in
our model. U1 is the name or label associated with these random intercepts.

The output of menl is similar to that of mixed—the header information is displayed first, fixed-
effects parameter estimates are displayed in the first or the fixed-effects parameter table, and the
estimates of variance components are displayed in the second or the random-effects parameter table.

The header information is similar to that of mixed, but unlike mixed, menl in general does
not report a model x? statistic in the header because a test of the joint significance of all fixed-
effects parameters (except the constant term) may not be relevant in a nonlinear model. menl also
reports the so-called linearization log likelihood. menl uses the linearization method of Lindstrom
and Bates (1990), with extensions from Pinheiro and Bates (1995), for estimation. This method is
based on the approximation of the NLME model by an LME model, in which a first-order Taylor-series
approximation is used to linearize the nonlinear mean function with respect to fixed and random
effects; see Introduction and Methods and formulas in [ME] menl for details. The linearization log
likelihood is the log likelihood of this approximating LME model. We can use this log likelihood
for model comparison of different NLME models and to form likelihood-ratio tests, but note that
this is not the log likelihood of the corresponding NLME model. Depending on the accuracy of the
approximation, the linearization log likelihood may be close to the true NLME log likelihood.

As part of Stata’s standard estimation output, menl reports z tests against zeros for the estimated
fixed-effects parameters. Testing a parameter against zero may or may not be of interest, or may not
even be appropriate, in a nonlinear model. In our example, {b3} is the denominator of a fraction,
so the test of {b3} against zero may not be feasible in this model. Instead, we may be interested in
testing {b3} against, for example, 300, which would correspond to testing whether the average trunk
circumference of orange trees increases from 50% to 73% of its asymptotic value in 300 days. We
can perform this test by using, for instance, the test command; see [R] test. As a side note, setting
B3 = 0 in (9) results in a simple random-intercept model, in a limiting sense.


https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesIntroduction
https://www.stata.com/manuals/memenl.pdf#memenlMethodsandformulas
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoy
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From the random-effects table, the variability in limiting growth (31 between trees, labeled as
var (U1), is statistically significant in this model with an estimate of 991 (mm?) and a 95% CI of

[280, 3510].

We can rewrite (9) as a two-stage model,

b1,
1+ exp{— (ageij — ¢25) /035 }

circumfﬁ = +-Qj

where the stage 2 specification is

®14 B1 + w1
P = | b2 | = B
¢35 B3

(10)

(11)

The model defined by (10) and (11) is the same as that defined by (9) but with a different

parameterization.

In menl, we can accommodate this two-stage formulation with the define () option. For example,

we can fit the two-stage model defined by (10) and (11) as follows:

. menl circumf = {phil:}/(1+exp(-(age-{b2})/{b3})), define(phil: {b1}+{U1[treell})

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58458
phil: {b1}+{U1[treel}
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
/bl 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate  Std. err. [95% conf. intervall
tree: Identity
var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371  15.89568 37.11466 102.1184

The results are identical to the previous model. Here we defined a substitutable expression phil in
the define () option as a function of {b1} and {U1[treel} and included it in our main expression
as {phil:}. Including a colon (:) in {phil:} is important to notify menl that it is a substitutable

expression rather than a simple scalar parameter {phil}.

In general, we can accommodate multistage formulations by using the define () option repeatedly.


https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoy
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoyphi
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoyphitwo
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoy
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoyphi
https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoyphitwo
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More conveniently, we can use a linear-combination specification (see Linear combinations in
[ME] menl) within the define () option to define the linear combination {b1}+{U1[tree]}.
. menl circumf = {phil:}/(1+exp(-(age-{b2})/{b3})), define(phil: Ul[treel, xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58458
phil: Ul[treel, xb
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Identity
var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371 15.89568 37.11466 102.1184

The {phil: Ul[tree], xb} specification used in the define() option, but without curly braces,
creates a linear combination named phi1 that contains a constant {phil: _cons} and random intercepts
{U1} at the tree level. In the linear-combination specification, the constant is included automatically
unless you specify the noconstant option such as {phil: Ul[tree], xb noconstant}. Also,
you do not specify curly braces around random effects within the linear-combination specification.
If we had covariates, say, x1 and x2, that we also wanted to include in the linear combination, we
would have used {phil: x1 x2 Ul[treel}. Notice that we did not specify the xb option in the
previous linear combination. When a linear combination contains more than one term, this option is
implied. When a linear combination contains only one term, such as in {phil: Ul[treel], xb},
the xb option must be specified to request that menl treat the specification as a linear combination
instead of a scalar parameter; see Random-effects substitutable expressions in [ME] menl for details.

Instead of using define(), we could have similarly specified the linear combination directly in
the main expression:

. menl circumf = {phil: Ul[treel, xb}/(1+exp(-(age-{b2})/{b3}))
(output omitted )

However, by using the define() option, we simplified the look of the main equation.


https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesLinearcombinations
https://www.stata.com/manuals/memenl.pdf#memenl
https://www.stata.com/manuals/memenl.pdf#memenlRemarksandexamplesRandom-effectssubstitutableexpressions
https://www.stata.com/manuals/memenl.pdf#memenl
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We can extend the stage 2 specification (11) to allow, for example, 82 to vary across trees by
including random intercepts at the tree level for ¢o;,

o1 B1 + uy;
b= | P25 | = | P2+ ugy
¢3;j B3

We can then fit the corresponding model by using menl as follows:
. menl circumf = {phil:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phil: Ul[tree], xb) define(phi2: U2[tree], xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.60539
Iteration 2: Linearization log likelihood = -131.5827
Iteration 3: Linearization log likelihood = -131.5805
Iteration 4: Linearization log likelihood = -131.58027
Iteration 5: Linearization log likelihood = -131.58026

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58026
phil: Ul[treel, xb
phi2: U2[treel, xb
circumf | Coefficient Std. err. P P>|z]| [95% conf. interval]
phil
_cons 190.5939 16.211 11.76  0.000 158.8209 222.3669
phi2
_cons 719.6027  35.77597 20.11  0.000 649.4831 789.7223
/b3 342.0794  26.42036 12.95  0.000 290.2965 393.8624
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Independent
var (U1) 1012.15  666.2808 278.557 3677.698
var (U2) 503.2308 2401.324 .0436507 5801534
var (Residual) 59.27073  18.21298 32.45482 108.2434

The large standard error for the estimate of the variance component var (U2) suggests that our model
is overparameterized—a common problem when fitting NLME models. We could verify this, for
instance, by computing information criteria ([R] estimates stats) or by performing a likelihood-ratio
test ([R] Irtest).

By default, menl assumes an independent covariance structure for the random effects such as
Ul and U2 in our example. We can specify, for example, an unstructured model by using the
covariance() option. We demonstrate this only for illustration, given that our simpler model that
assumed independence between Ul and U2 was already overparameterized.


https://www.stata.com/manuals/me.pdf#memeRemarksandexamplesmeeqsoyphitwo
https://www.stata.com/manuals/restimatesstats.pdf#restimatesstats
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
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. menl circumf = {phil:}/(1+exp(-(age-{phi2:})/{b3})),

> define(phil: Ul[tree], xb) define(phi2: U2[tree], xb)

> covariance(Ul U2, unstructured)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
log likelihood
log likelihood

log likelihood
log likelihood

Iteration 1: Linearization
Iteration 2: Linearization
Iteration 3: Linearization
Iteration 4: Linearization

Computing standard errors:

Mixed-effects ML nonlinear regression

Group variable: tree

Linearization log likelihood = -130.90177

phil: Ul[treel, xb
phi2: U2[treel, xb

-130.90452
-130.90205
-130.90177
-130.90177
Number of obs = 35
Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7

circumf | Coefficient Std. err. z P>|z| [95% conf. interval]
phil
_cons 189.8349  17.20035 11.04  0.000 156.1228 223.5469
phi2
_cons 709.5333  37.24229 19.05 0.000 636.5397 782.5268
/b3 340.4731  25.52176 13.34  0.000 290.4514 390.4948
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Unstructured
var (U1) 1180.097  775.0821 325.7263 4275.46
var (U2) 1469.879  2777.134 36.22873 59636.18
cov(U1,U2) 1015.504 1124.568 -1188.609 3219.617
var (Residual) 56.07332  16.20294 31.82681 98.79146

In menl, we need to list the names of the random effects in the covariance () option for which we
want to specify a covariance structure other than the independent one used by default.

In our example, parameters ¢; and ¢2; were modeled as linear functions of random effects and
parameters 37 and 2. The relationship does not have to be linear; see example 15 in [ME] menl.

This example has a small number of trees or clusters, so REML estimation would have been more
appropriate. We could have obtained REML estimates in our examples by specifying the reml option

with menl.

See [ME] menl for more examples of and details about the menl command.
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