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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual
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Description

Mixed-effects models are characterized as containing both fixed effects and random effects. The
fixed effects are analogous to standard regression coefficients and are estimated directly. The random
effects are not directly estimated (although they may be obtained postestimation) but are summarized
according to their estimated variances and covariances. Random effects may take the form of either
random intercepts or random coefficients, and the grouping structure of the data may consist of
multiple levels of nested groups. As such, mixed-effects models are also known in the literature as
multilevel models and hierarchical models. Mixed-effects commands fit mixed-effects models for a
variety of distributions of the response conditional on normally distributed random effects.

Mixed-effects linear regression
mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model
meglm Multilevel mixed-effects generalized linear models

Mixed-effects censored regression

metobit Multilevel mixed-effects tobit regression
meintreg Multilevel mixed-effects interval regression

Mixed-effects binary regression

melogit Multilevel mixed-effects logistic regression
meprobit Multilevel mixed-effects probit regression
mecloglog Multilevel mixed-effects complementary log—log regression

Mixed-effects ordinal regression

meologit Multilevel mixed-effects ordered logistic regression
meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression

mepoisson Multilevel mixed-effects Poisson regression
menbreg Multilevel mixed-effects negative binomial regression
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Mixed-effects multinomial regression
Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM| Example 41g.

Mixed-effects survival model
mestreg Multilevel mixed-effects parametric survival models

Nonlinear mixed-effects regression
menl Nonlinear mixed-effects regression

Postestimation tools specific to mixed-effects commands

estat df Calculate and display degrees of freedom for fixed effects

estat group Summarize the composition of the nested groups

estat icc Estimate intraclass correlations

estat recovariance Display the estimated random-effects covariance matrices

estat sd Display variance components as standard deviations and correlations

estat wcorrelation Display within-cluster correlations and standard deviations

Quick start

Linear mixed-effects models

Linear model of y on x with random intercepts by id
mixed y x || id:

Three-level linear model of y on x with random intercepts by doctor and patient
mixed y x || doctor: || patient:

Linear model of y on x with random intercepts and coefficients on x by id
mixed y x || id: x

Same model with covariance between the random slope and intercept
mixed y x || id: x, covariance(unstructured)

Linear model of y on x with crossed random effects for id and week
mixed y x || _all: R.id || _all: R.week

Same model specified to be more computationally efficient
mixed y x || _all: R.id || week:

Full factorial repeated-measures ANOVA of y on a and b with random effects by field

mixed y a##b || field:
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Generalized linear mixed-effects models
Logistic model of y on x with random intercepts by id, reporting odds ratios
melogit y x || id: , or
Same model specified as a GLM
meglm y x || id:, family(bernoulli) link(logit)
Three-level ordered probit model of y on x with random intercepts by doctor and patient

meoprobit y x || doctor: || patient:

Nonlinear mixed-effects models

Nonlinear mixed-effects regression of y on x1 and x2 with parameters {b0}, {b1}, {b2}, and {b3}
and random intercepts UO by id

menl y = ({bO}+{b1}*x1+{U0[id]1})/(1+exp(-(x2-{b2})/{b33}))

Same as above, but using the more efficient specification of the linear combination
menl y = ({1c: x1 UO[id]l})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using define () to specify the linear combination
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), define(lc: x1 UO[id])

Include a random slope on continuous variable x1 in the define() option, and allow correlation
between random slopes U1l and intercepts UO
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), 11/
define(lc: x1 UO[id] c.x1#U1[id]) covariance(UO Ul, unstructured)

Specify a heteroskedastic within-subject error structure that varies as a power of predicted mean
values _yhat
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), /17
define(lc: x1 UO[id] c.x1#U1[id]) ///
covariance(UO Ul, unstructured) resvariance(power _yhat)

Three-level nonlinear regression of y on x1 with random intercepts WO and slopes W1 on continuous
x1 by lev2 and with random intercepts SO and slopes S1 on x1 by lev3, with 1ev2 nested within
lev3, using unstructured covariance for WO and W1 and exchangeable covariance for SO and S1

menl y = {phil:}+{bil}*cos({b2}*x1), ///
define(phil: x1 WO[lev3] SO[lev3>lev2] ///
c.x1#(Wi[lev3d] Si[lev3>lev2])) ///

covariance(WO W1, unstructured) covariance(SO S1, exchangeable)
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Syntax
Linear mixed-effects models

mixed depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [lf] [m] [weight] [ , fe_options]

and the syntax of a random-effects equation, re_equation, is the same as below for a generalized
linear mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe_equation [II re_equation} [II re_equation ] [, options]

where the syntax of the fixed-effects equation, fe_equation, is
[indepvars] [lf] [in] [, fe_options]
and the syntax of a random-effects equation, re_equation, is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

Nonlinear mixed-effects models
menl depvar = <menlexpr> [zf] [m] [ , options}
<menlexpr> defines a nonlinear regression function as a substitutable expression that contains model

parameters and random effects specified in braces {}, as in exp ({b}+{U[id]}); see Random-effects
substitutable expressions in [ME] menl for details.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-effects models
Linear mixed-effects models
Generalized linear mixed-effects models
Survival mixed-effects models
Nonlinear mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test
Examples
Two-level models
Covariance structures
Three-level models
Crossed-effects models
Nonlinear models

Introduction

Multilevel models have been used extensively in diverse fields, from the health and social sciences
to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze
the effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union
membership of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for
example, Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and
Wilson (2004), who studied verbal aggressiveness. For applications of mixed-effects models for count
responses, see, for example, the study on police stops in New York City (Gelman and Hill 2007)
and the analysis of the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh
and Skrondal (2022) provide more examples of linear and generalized linear mixed-effects models.
Nonlinear mixed-effects (NLME) models are popular in, for example, population pharmacokinetics,
bioassays, and studies of biological and agricultural growth processes.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and
McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and
Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).
For NLME models, see, for example, Davidian and Giltinan (1995); Vonesh and Chinchilli (1997);
Demidenko (2013); Pinheiro and Bates (2000); and Davidian and Giltinan (2003).
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Shayle R. Searle (1928-2013) was born in New Zealand. He obtained his PhD in animal breeding
from Cornell University in 1958, with a minor in statistics. Prior to moving to New York, he
worked as a research statistician for the New Zealand Dairy Board, which provided the data that
he would analyze for his thesis. After completing his doctoral degree, he worked as a research
associate and published several articles. He later returned to his post as a statistician in New
Zealand, a position which would have a lasting influence on his career.

Through his analysis of dairy production data, Searle made advancements in estimation methods
for unbalanced data and published a book on this topic. He later returned to Cornell University,
teaching courses in matrix algebra, linear regression models, and estimation of variance compo-
nents. Searle was one of the first few statisticians to use matrices in statistics, and he wrote a
couple of books applying matrix algebra to economics and statistics. In 2001, he published a
book on mixed models, which proved to be a significant contribution considering that not many
statisticians were well acquainted with random effects in the 1950s. His contributions did not go
unnoticed: he was awarded the Alexander von Humboldt U.S. Senior Scientist Award and was
elected a fellow of the Royal Statistical Society and of the American Statistical Association.

George Casella (1951-2012) was born in Bronx, New York. After obtaining a PhD in statistics
from Purdue University, he went on to join the faculty at Rutgers University, and later Cornell
University, where he taught for 19 years, and the University of Florida. He published on topics
such as confidence estimation, Bayesian analysis, and empirical Bayes methods. In general, his
work was motivated by applications to science, and in particular, his work on variable selection
and clustering was motivated by genetics. Casella coauthored a book with Roger Berger that
introduced many graduate students to mathematical statistics. He coauthored another book with
Christian P. Robert on Monte Carlo methods. In addition to his own published work, Casella
was an editor for three journals: Statistical Science, Journal of the American Statistical Society,
and Journal of the Royal Statistical Society.

Casella’s many contributions are reflected in his election to fellowship on behalf of four different
associations and institutes and being made a foreign member of the Spanish Royal Academy of
Sciences. He acquired the Spanish language during a year he spent in Spain for sabbatical and
even gave talks on Monte Carlo methods in Spanish. Aside from his academic accomplishments,
Casella completed 13 marathons and spent time as a volunteer firefighter.

Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand
for any mixed-effects command, such as mixed, melogit, or meprobit, except menl. menl models
the mean function nonlinearly and thus has a different syntax; see [ME] menl.

1. Fit a two-level random-intercept model with levelvar defining the second level:

. mecmd depvar [indepvars} .o | levelvar:, ...


https://www.stata.com/giftshop/bookmarks/series10/casella/

me — Introduction to multilevel mixed-effects models 7

2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the
level levelvar:

. mecmd depvar [ind@pvars} ... | levelvar: revars, ...

This model assumes an independent covariance structure between the random effects; that is, all
covariances are assumed to be 0. There is no statistical justification, however, for imposing any
particular covariance structure between random effects at the onset of the analysis. In practice,
models with an unstructured random-effects covariance matrix, which allows for distinct variances
and covariances between all random-effects covariates (revars) at the same level, must be explored
first; see Other covariance structures and example 3 in [ME] melogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.
Numerical methods for fitting mixed-effects models are computationally intensive—computation
time increases significantly as the number of parameters increases; see Computation time and the
Laplacian approximation for details. The unstructured covariance is the most general and contains
many parameters, which may result in an unreasonable computation time even for relatively simple
random-effects models. Whenever feasible, however, you should start your statistical analysis
by fitting mixed-effects models with an unstructured covariance between random effects, as we
show next.

3. Specify the unstructured covariance between the random effects in the above:
. mecmd depvar [imlepvars} ... || levelvar: revars, covariance(unstructured) ...

4. Fit a three-level nested model with levelvarl defining the third level and levelvar2 defining the
second level:

. mecmd depvar [indepvars} «oo |l levelvarl: || levelvar2:, ...

5. Fit the above three-level nested model as a two-level model with exchangeable covariance structure
at the second level (mixed only):

. mecmd depvar [indepvam} ... || levelvarl: R.levelvar2, cov(exchangeable) ...

See example 11 in [ME] mixed for details about this equivalent specification. This specification
may be useful for a more efficient fitting of random-effects models with a mixture of crossed
and nested effects.

6. Fit higher-level nested models:
. mecmd depvar [indepvars} ... |l levelvarl: || levelvar2: || levelvar3: || ...

7. Fit a two-way crossed-effects model with the —_all: notation for each random-effects equation:
. mecmd depvar [indepvm‘s} ... |l _all: R.factorl || _all: R.factor2 ...

When you use the _all: notation for each random-effects equation, the total dimension of the
random-effects design equals r; + 73, where 7; and 7o are the numbers of levels in factorl and
Jactor2, respectively. This specification may be infeasible for some mixed-effects models; see
item 8 below for a more efficient specification of this model.

8. Fit a two-way crossed-effects model with the —_all: notation for the first random-effects equation
only:

. mecmd depvar [ind()pvars} ... |l _all: R.factorl || factor2:, ...

Compared with the specification in item 7, this specification requires only 7 4 1 parameters and
is thus more efficient; see Crossed-effects models for details.
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9.

10.

11.

12.

13.

14.

15.

16.

Fit a two-way full-factorial random-effects model:

. mecmd depvar [indepvars} ... |l _all: R.factorl || factor2: || factorl: ...
Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars/
and revars2:

. mecmd depvar [ind()pvars} ... | levelvar: revarsl, noconstant ///

|| levelvar: revars2, noconstant ...

Fit a linear mixed-effects model where the correlation between the residual errors follows an
autoregressive process of order 1:

. mixed depvar [indepvars} ... |l levelvar:, residuals(ar 1, t(time)) ...

More residual error structures are available; see [ME] mixed for details.
Fit a two-level linear mixed-effects model accounting for sampling weights expr/ at the first
(residual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar [indepvars} [pweight=expri] ... || levelvar:, pweight (expr2) ...

Mixed-effects commands—with the exception of mixed—allow constraints on both fixed-effects
and random-effects parameters. We provide several examples below of imposing constraints on
variance components.

Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to
be 16:

. constraint 1 _b[var(_cons/[levelvar]):_cons]=16

. mecmd depvar [ind()pvars} ... |l levelvar:, constraints(1) ...
Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance
of the random slope on revar to be equal:

. constraint 1 _b[var(revar[levelvar]):_cons] = _b[var(_cons[levelvar]):_cons]

. mecmd depvar [indepvars} ... | levelvar: revar, constraints(1) ...

Note that the constraints above are equivalent to imposing an identity covariance structure for
the random-effects equation:

. mecmd depvar [ind@pvars} ... |l levelvar: revar, cov(identity) ...
Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to have a banded structure:

.mat p=(1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)

. mecmd depvar [indepvam‘} ... | levelvar: revars, noconstant ///

covariance(pattern(p)) ...

Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to the specified numbers, and with all the covariances constrained
to be 0:

. mat f = diag((1,2,3,4))

. mecmd depvar [indepwu‘s} ... |l levelvar: revars, noconstant ///
covariance(fixed(f)) ...

The variance components in models in items 15 and 16 can also be constrained by using the
constraints() option, but using covariance(pattern()) or covariance(fixed()) is more
convenient.



me — Introduction to multilevel mixed-effects models 9

Mixed-effects models

Linear mixed-effects models

Linear mixed-effects (LME) models for continuous responses are a generalization of linear regression
allowing for the inclusion of random deviations (effects) other than those associated with the overall
error term. In matrix notation,

y=XB8+Zu+e (1)

where y is the n X 1 vector of responses, X is an n X p design/covariate matrix for the fixed effects
B, and Z is the n X g design/covariate matrix for the random effects u. The n x 1 vector of errors
€ is assumed to be multivariate normal with mean 0 and variance matrix o2R.

The fixed portion of (1), X3, is analogous to the linear predictor from a standard OLS regression
model with 3 being the regression coefficients to be estimated. For the random portion of (1), Zu-+e,
we assume that u has variance—covariance matrix G and that u is orthogonal to € so that

var ¥ = |G 2]

The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the error-covariance parameters that include the overall error variance o2 and the parameters that are
contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random slope
on age (for example), or both. The general specification of G also provides additional flexibility: the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for within-cluster
errors to be heteroskedastic and correlated and allows flexibility in exactly how these characteristics
can be modeled.

In clustered-data situations, it is convenient not to consider all n observations at once but instead
to organize the mixed model as a series of M independent groups (or clusters)

y;j =X;B+ Zju; +€; (2)

for j = 1,..., M, with cluster j consisting of n; observations. The response y; comprises the rows
of y corresponding with the jth cluster, with X; and €; defined analogously. The random effects u;
can now be thought of as M realizations of a ¢ X 1 vector that is normally distributed with mean O
and ¢ X ¢ variance matrix X. The matrix Z; is the n; x ¢ design matrix for the jth cluster random
effects. Relating this to (1),

Z, 0 --- 0 "
0 Z, - O 1

Z= . . . ;ou= :  G=1IyeYE R=I,QA
0 0 0 Zu um

where A denotes the variance matrix of the level-1 errors and ® is the Kronecker product.
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The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to
allow random effects at both the school and the class-within-school levels.

By our convention on counting and ordering model levels, (2) is a two-level model, with extensions
to three, four, or any number of levels. The observation y;; is for individual 7 within cluster 7, and the
individuals compose the first level, whereas the clusters compose the second level of the model. In a
hypothetical three-level model with classes nested within schools, the observations within classes (the
students, presumably) would constitute the first level, the classes would constitute the second level,
and the schools would constitute the third level. This differs from certain citations in the classical
ANOVA literature and texts such as Pinheiro and Bates (2000) but is the standard in the vast literature
on hierarchical models, for example, Skrondal and Rabe-Hesketh (2004).

In Stata, you can use mixed to fit linear mixed-effects models; see [ME] mixed for a detailed
discussion and examples. Various predictions, statistics, and diagnostic measures are available after
fitting an LME model with mixed. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models
(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations
(effects). In matrix notation,

g{E(y|X, u)} = XB+ Zu, y~F (3)

where y is the n X 1 vector of responses from the distributional family ', X is an n X p design/covariate
matrix for the fixed effects 3, and Z is an n X ¢ design/covariate matrix for the random effects u.
The X3 + Zu part is called the linear predictor and is often denoted as 1. g(-) is called the link
function and is assumed to be invertible such that

E(ylu) =g "(XB+2Zu) =H(n) = p

For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for ¢g(-) and F results in a wide array of models. For instance,
if g(-) is the logit function and y is distributed as Bernoulli, we have

logit{ E(y|u)} = X8+ Zu, y ~ Bernoulli

or mixed-effects logistic regression. If g(+) is the natural log function and y is distributed as Poisson,
we have
In{E(y|u)} = X8+ Zu, y ~ Poisson

or mixed-effects Poisson regression.

For the random portion of (3), Zu, we assume that u has variance—covariance matrix G such that

Var(u) = G
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The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write
E(y;lu;) =g "(X;8+ Zju;) y;~F

with all the elements defined as before. In terms of the whole dataset, we now have

Z, 0 -~ 0 "
0 Z; --- 0 1

Z=| . . . ]y o u=] |y G=IyRY
0 0 0 Zy M

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of

meglm.
Command meglm equivalent
melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) 1link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family (nbinomial) link(log)

When no family-link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, allows
for modeling of the structure of the within-cluster errors; see [ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model
with meglm and other me commands. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] meglm postestimation for a detailed discussion and examples.

Survival mixed-effects models

Parametric survival mixed-effects models use a trivariate response variable (o, ¢, d), where each
response corresponds to a period under observation (Zg,t] and results in either failure (d = 1) or
right-censoring (d = 0) at time t. See [ST] streg for background information on parametric survival
models. Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model.

In the AFT parameterization, the natural logarithm of the survival time, logt, is expressed as a
linear function of the covariates. When we incorporate random effects, this yields the model

log(tj) = Xjﬁ + Zjllj + Vj
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where log(-) is an elementwise function, and v; is a vector of observation-level errors. The distri-
butional form of the error term determines the regression model.

In the PH model, the covariates have a multiplicative effect on the hazard function
h(t;) = ho(t;) exp(X;8 + Z;u;)

where all the functions are elementwise, and kg ( ) is a baseline hazard function. The functional form
of ho(-) determines the regression model.

In Stata, you can use mestreg to fit multilevel mixed-effects parametric survival models for the
following distributions and parameterizations.

Distribution Parameterization
exponential PH, AFT
loglogistic AFT
weibull PH, AFT
lognormal AFT
gamma AFT

mestreg is suitable only for data that have been set using the stset command. By using stset
on your data, you define the variables _t0, _t, and _d, which serve as the trivariate response. See
[ME] mestreg for more details about the command. Various predictions, statistics, and diagnostic
measures are available after fitting a mixed-effects survival model with mestreg; see [ME] mestreg
postestimation for a detailed discussion and examples.

Nonlinear mixed-effects models

NLME models are models containing both fixed effects and random effects where some of, or all,
the fixed and random effects enter the model nonlinearly. They can be viewed as a generalization of
LME models, in which the conditional mean of the outcome given the random effects is a nonlinear
function of the coefficients and random effects. Alternatively, they can be considered as an extension
of nonlinear regression models for independent data (see [R] nl), in which coefficients may incorporate
random effects, allowing them to vary across different levels of hierarchy and thus inducing correlation
within observations at the same level.

Using the notation from Linear mixed-effects models for LME models for clustered data, we can
write an NLME model as

where p(-) is a real-valued vector function and A; is an n; x [ matrix of covariates for the jth
cluster, which includes both within-subject and between-subject covariates. Do not be surprised to
see the A; matrix here instead of the more familiar fixed-effects and random-effects design matrices
X, and Z; from previous sections. Because both covariates and parameters can enter the model
nonlinearly in NLME, we cannot express the regression function as a function containing the linear
term X3+ Z;u; as we can for LME and GLME models. The distributional assumptions on u;’s and
€;’s are the same as for the LME models.

Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, NLME
models are often formulated by using a multistage formulation; see Alternative mixed-effects model
specification below for examples.
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We can formulate our previous NLME model as a two-stage hierarchical model:

Stage 1: Individual-level model y;; = m (x;-”j, ¢j) +e€j, 1=1,...,n;

d(x}, B w), j=1,....M

Stage 2: Group-level model ¢

In stage 1, we model the response by using a function m(-), which describes within-subject
behavior. This function depends on subject-specific parameters ¢;’s, which have a natural physical
interpretation, and a vector of within-subject covariates x;;. In stage 2, we use a known vector-valued
function d(-) to model between-subject behavior, that is, to model ¢;’s and to explain how they
vary across subjects. The dg) function incorporates random effects and, optionally, a vector of
between-subject covariates x;. The general idea is to specify a common functional form for each
subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

You can use the menl command to fit NLME models to continuous outcomes; see [ME| menl. menl
supports both the single-equation and multistage model formulations. It supports different covariance
structures for random effects and can model heteroskedasticity and correlations within lowest-level
groups. Various predictions, statistics, and diagnostic measures are available after fitting an NLME
model; see [ME] menl postestimation.

For an introductory example, see Nonlinear models.

Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where
each level is described by its own set of equations. This formulation is common for NLME models;
see Nonlinear mixed-effects models.

Consider a random-intercept model that we write here in general terms:
Yij = Bo + Brxij + uj + €5 (4)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form,
we specify a separate equation for each level.

Yij = Yoj + B1ij + €5
Y05 = Boo + woj

()

The equation for the intercept p; consists of the overall mean intercept 3y and a cluster-specific
random intercept ug;. To fit this model by using, for example, mixed, we must translate the multiple-
equation notation into a single-equation form. We substitute the second equation into the first one
and rearrange terms.

Yi; = Boo + uo; + f1aij + €5

(6)
= Poo + Przij + uoj + €5

Note that model (6) is the same as model (4) with g9 = By and ug; = u;. Thus the syntax for
our generic random-intercept model is

. mixed y x || id:

where id is the variable designating the clusters.
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We can extend model (5) to include a random slope. We do so by specifying an additional equation
for the slope on ;.

Yij = Yoj T V15Tij + €ij
Yo; = Boo + uoj (7)
715 = Bro + w14

The additional equation for the slope 1 ; consists of the overall mean slope 319 and a cluster-specific

random slope u1;. We substitute the last two equations into the first one to obtain a reduced-form
model.

Yij = (Boo + uoj) + (Bro + wij)wi; + €

= Boo + BroTi; + uoj + U5 + €45

The syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 u terms.

Here we further extend the random-slope random-intercept model (7) by adding a level-2 covariate
z; into the level-2 equations.

Yij = Yoj +715%i5 + €
Y05 = Boo + Bo1z;j + uo;
Y15 = Bio + Bi1z; + Ui

We substitute as before to obtain a single-equation form:

Yij = (Boo + Borzj + uoj) + (Bro + Br1zj + wj)wi; + €55
= Boo + Bo1zj + Browij + B1125Tij + Uoj + U1 Tij + €5
Now the fixed-effects portion of the equation contains a constant and variables x, z, and their

interaction. Assuming both x and z are continuous variables, we can use the following Stata syntax
to fit this model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)
Although the menl command is not as suitable for fitting LME models as mixed, it can accommodate
a multistage formulation. For example, (5) can be fit in menl as

. menl y = {gammaO:}+{bl}*x, define(gammaO: {b00}+{UO0[id]l})

and (7) as
. menl y = {gammaO:}+{gammal:2}*x, define(gammal: {b00}+{UO[id]}) ///
define(gammal: {b10}+{U1[id]})

In the above menl’s specifications, gamma0O and gammal can be specified more efficiently by using
linear combinations; see [ME] menl for details.

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2022) for a
more thorough discussion and further examples of multistage mixed-model formulations, including
three-level models.
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Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in LME models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38-39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

Stata uses maximum likelihood (ML) to fit LME and GLME models. The ML estimates are based
on the usual application of likelihood theory, given the distributional assumptions of the model. In
addition, for linear mixed-effects models, mixed offers the method of restricted maximum likelihood
(REML). The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects 3 but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood; see the Methods and formulas section of [ME] mixed for a detailed
discussion of ML and REML methods in the context of linear mixed-effects models.

Log-likelihood calculations for fitting any mixed-effects model require integrating out the random
effects. For LME models, this integral has a closed-form solution; for GLME and NLME models, it
does not. In dealing with this difficulty, early estimation methods avoided the integration altogether.
Two such popular methods are the closely related penalized quasilikelihood (PQL) and marginal
quasilikelihood (MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative
reweighted least squares (see [R] glm) and standard estimation techniques for fitting LME models.
Efficient computational methods for fitting LME models have existed for some time (Bates and
Pinheiro 1998; Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However,
both of these methods suffer from two key disadvantages. First, they have been shown to be biased,
and this bias can be severe when clusters are small or intracluster correlation is high (Rodriguez and
Goldman 1995; Lin and Breslow 1996). Second, because they are “quasilikelihood” methods and not
true likelihood methods, their use prohibits comparing nested models via likelihood-ratio (LR) tests,
blocking the main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss—Hermite quadrature or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models.
Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias. Stata
commands for fitting GLME models such as meglm support three types of Gauss—Hermite quadratures:
mean—variance adaptive Gauss—Hermite quadrature (MVAGH), mode-curvature adaptive Gauss—Hermite
quadrature (MCAGH), and nonadaptive Gauss—Hermite quadrature (GHQ); see Methods and formulas
of [ME] meglm for a detailed discussion of these quadrature methods. A fourth method, the Laplacian
approximation, that does not involve numerical integration is also offered; see Computation time
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and the Laplacian approximation below and Methods and formulas of [ME] meglm for a detailed
discussion of the Laplacian approximation method.

In the context of NLME models, the use of an adaptive quadrature to fit these models can be often
computationally infeasible. A popular alternative method used to fit NLME models is the linearization
method of Lindstrom and Bates (1990), also known as the conditional first-order linearization method.
It is based on a first-order Taylor-series approximation of the mean function and essentially linearizes
the mean function with respect to fixed and random effects. The linearization method is computationally
efficient because it avoids the intractable integration, but the approximation cannot be made arbitrarily
accurate. Despite its potential limiting accuracy, the linearization method has proven the most popular
in practice (Fitzmaurice et al. 2009, sec 5.4.8). The linearization method of Lindstrom and Bates (1990),
with extensions from Pinheiro and Bates (1995), is the method of estimation in menl.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p>{M + M(Ng)9}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, N¢ is the number of quadrature points, and ¢; is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time
is (Ng)?. However, because this is a power function, this factor can get prohibitively large. For
example, using five quadrature fomts for a model with one random intercept and three random
coefficients, we get (Ng)% =5 625. Even a modest increase to seven quadrature points would
increase this factor by almost fourfold (74 = 2,401), which, depending on M and p, could drastically
slow down estimation. When fitting mixed-effects models, you should always assess whether the
approximation is adequate by refitting the model with a larger number of quadrature points. If the
results are essentially the same, the lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of Ng = 1, otherwise known as the Laplacian approximation; see
Methods and formulas of [ME] meglm. The computational benefit is evident—1 raised to any power
equals 1—and the Laplacian approximation has been shown to perform well in certain situations
(Liu and Pierce 1994; Tierney and Kadane 1986). When using Laplacian approximation, keep the
following in mind:

1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.
Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable
alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via
quadrature methods.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
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more in the estimated variance components than in the estimates of the fixed effects as well as at the
lower levels in higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can
produce a decent estimate of the model log likelihood. Consequently, you can use the Laplacian
approximation during the model building phase of your analysis, during which you are comparing
competing models by using LR tests. Once you settle on a parsimonious model that fits well, you
can then increase the number of quadrature points and obtain more accurate parameter estimates for
further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas of [ME] meglm. Asymptotic theory dictates that this approximation improves with larger
clusters. Of course, the key question, as always, is “How large is large enough?” Also, there are data
situations where the Laplacian approximation performs well even with small clusters. Therefore, it
is difficult to make a definitive call as to when you can expect the Laplacian approximation to yield
accurate results across all aspects of the model.

Furthermore, the Pinheiro and Chao (2006) algorithm for the random-effects mode and curvature
estimates, available with option intmethod(pclaplace), can speed up computations dramatically
for hierarchical models with four or more levels, especially when random slopes are included.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge when
used with your data. The default gradient-based method used by mixed-effects commands, except
menl, is the Newton—Raphson algorithm, requiring the calculation of a gradient vector and Hessian
(second-derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:
1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or

3. the message “standard error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. A model that is not identified given the data, for example, fitting the three-level nested random
intercept model

3

Yik = XjiB + uy, @

without any replicated measurements at the (j,k) level, that is, with only one ¢ per (j,k)

combination. This model is unidentified for such data because the random intercepts uﬁ) are
confounded with the overall errors €.
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B. A model that contains a variance component whose estimate is really close to 0. When this occurs,
a ridge is formed by an interval of values near 0, which produce the same likelihood and look
equally good to the optimizer.

For LME models, one useful way to diagnose problems of nonconvergence is to rely on the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed
only as a means of refining starting values; see Diagnosing convergence problems of [ME] mixed for
details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many ‘“nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] Maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting
values; see Obtaining better starting values in [ME] meglm for details.

Achieving convergence and diagnosing convergence problems can be even more challenging with
NLME models. As with other mixed-effects models, complicated variance—covariance structures for
random effects and errors can often lead to overparameterized models that fail to converge. In addition,
highly nonlinear mean specifications can lead to multiple solutions and thus to potential convergence to
a local maximum. menl uses the linearization estimation method that alternates between the penalized
least-squares estimation of the fixed-effects parameters and the Newton—Raphson estimation of the
random-effects parameters of the approximating LME model, which was the result of the linearization
of the original NLME model. This alternating method does not provide a joint Hessian matrix for all
parameters, so there is no check for the tolerance of the scaled gradient, and thus the convergence
cannot be established in its strict sense. The convergence is declared based on the stopping rules
described in Methods and formulas of [ME] menl. Exploring different initial values to investigate
convergence is particularly important with NLME models; see Obtaining initial values in [ME] menl.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects
models, issues concerning boundary problems imposed by estimating strictly positive quantities (that
is, variances) can complicate the situation. For example, when performing LR tests involving linear
mixed-effects models (whether comparing with linear regression within mixed or comparing two
separate linear mixed-effects models with 1rtest), you may thus sometimes see a test labeled as
chibar rather than the usual chi2, or you may see a chi2 test with a note attached stating that the
test is conservative or possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to O in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is y?
with degrees of freedom equal to the difference in the number of estimated parameters between both
models.

When there is only one variance being set to 0 in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a Xf, and a X;% 1 distribution, where p is the number
of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.
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When more than one variance parameter is being set to 0 in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

2|:0’8 0'01:|

2
001 01

Because the random component of the mixed model comprises three parameters (03, 001,07),
on the surface it would seem that the LR comparison test would be distributed as X§~ However, two
complications need to be considered. First, the variances U% and o% are restricted to be positive, and
second, constraints such as o7 = 0 implicitly restrict the covariance o¢; to be 0 as well. From a
technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the
distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

The mixed and me commands use this reference distribution, the X2 with full degrees of freedom,
to produce a conservative test and place a note in the output labeling the test as such. Because the
displayed significance level is an upper bound, rejection of the null hypothesis based on the reported
level would imply rejection on the basis of the actual level.

Examples

Two-level models

> Example 1: Growth-curve model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth, but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weight,; = fo + Siweek;; + u; + €;;

fori =1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, 5y + fiweek;;,
simply states that we want one overall regression line representing the population average. The random
effect u; serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:
Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48
Obs per group:

min = 9

avg = 9.0

max = 9

Wald chi2(1) = 25337.49

Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight | Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18  0.000 6.133433 6.286359

_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate  Std. err. [95% conf. intervall]

id: Identity

var (_cons) 14.81751 3.124225 9.801716 22.40002

var (Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME] mixed. Here we only highlight the most important
points.

1. The first estimation table reports the fixed effects. We estimate Sy = 19.36 and (5 = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and
that their variance—covariance matrix is a multiple of the identity matrix; that is, ¥ = UZI. The
estimate of 2 is 14.82 with standard error 3.12.

3. The row labeled var (Residual) displays the estimated standard deviation of the overall error
term; that is, 33 = 4.38. This is the variance of the level-one errors or the variance of the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly
significant for these data.
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We can predict the random intercept u; and list the predicted random intercept for the first 10
pigs by typing
. predict r_int, reffects
. egen byte tag = tag(id)
. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105

10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159
46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME] mixed, we show how to fit a random-slope model for these data, and in
example 1 of [ME] mixed postestimation, we show how to plot the estimated regression lines for

each of the pigs.
d

> Example 2: Split-plot design

Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers
investigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation
on the quality of golf turf. The experimental plots were arranged in a randomized complete block
design with two replications. After two years of nitrogen treatment, the second treatment factor, years
of thatch accumulation, was added to the experiment. Each of the eight experimental plots was split
into three subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for
a period of 2, 5, and 8 years.
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. use https://www.stata-press.com/data/r18/clippings, clear

(Turfg

. desc

rass experiment)

ribe

Contains data from https://www.stata-press.com/data/r18/clippings.dta

Observations: 24 Turfgrass experiment
Variables: 4 21 Feb 2022 14:57
Variable Storage Display Value
name type format label Variable label
chlorophyll float  %9.0g Chlorophyll content (mg/g) of
grass clippings
thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer
Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch
accumulation is stored in the variable thatch. The response is the chlorophyll content of grass
clippings, recorded in mg/g and stored in the variable chlorophyll. The block variable identifies
the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the
subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation
in the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit
to represent the whole-plot units that correspond to the levels of the nitrogen treatment and block

interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||

> wpun
note:
note:
note:
note:
note:
note:
note:
note:

it:, reml

8.thatch omitted because of
1.nitrogen#8.thatch omitted
2.nitrogen#8.thatch omitted
3.nitrogen#8.thatch omitted
4.nitrogen#2.thatch omitted
4.nitrogen#5.thatch omitted
4.nitrogen#8.thatch omitted

collinearity.

because
because
because
because
because
because

of collinearity.
of collinearity.
of collinearity.
of collinearity.
of collinearity.
of collinearity.

2.block omitted because of collinearity.

Performing EM optimization ...

Performing gradient-based optimization:

Iterat
Iterat
Iterat
Iterat

ion 0: Log restricted-likelihood
ion 1: Log restricted-likelihood
ion 2: Log restricted-likelihood
ion 3: Log restricted-likelihood =

-13.212401
-13.203147
-13.203125
-13.203125
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Computing standard errors ...

Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8
Obs per group:
min = 3
avg = 3.0
max = 3
Wald chi2(13) = 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000
chlorophyll | Coefficient Std. err. z P>|z| [95% conf. intervall
nitrogen
Urea 5.245833 .3986014 13.16  0.000 4.464589 6.027078
Ammonium s.. 5.945833 .3986014 14.92  0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93  0.000 7.164589 8.727078
Urea (SC) 8.595833 .3986014 21.56  0.000 7.814589 9.377078
thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917  -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917
nitrogen#
thatch
Urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
Urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988
Ammonium s.. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988
Ammonium s.. #
5 -.1000006 .6551081 -0.15 0.879 -1.383989 1.183988
IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124
block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622
Random-effects parameters Estimate  Std. err. [95% conf. intervall
wpunit: Identity
var (_cons) .0682407 .1195933 .0021994 2.117345
var (Residual) .2145833 .1072917 .080537 .6717376

LR test vs. linear model: chibar2(01) = 0.53 Prob >= chibar2 = 0.2324
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We can calculate the cell means for source of nitrogen and years of thatch accumulation by using
margins.
. margins thatch#nitrogen
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method

Margin  std. err. z P>|z| [95% conf. intervall

thatch#

nitrogen
2#Urea 3.85 .3760479 10.24 0.000 3.11296 4.58704

2 #
Ammonium s.. 5.6 .3760479 14.89 0.000 4.86296 6.33704
2#IBDU 6.5 .3760479 17.29 0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55 0.000 6.61296 8.087041
5#Urea 5.35 .3760479 14.23 0.000 4.61296 6.087041

5 #
Ammonium s.. 5.85 .3760479 15.56 0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96 0.000 5.26296 6.73704
5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#Urea 5.1 .3760479 13.56 0.000 4.36296 5.837041

8 #
Ammonium s.. 5.8 .3760479 15.42 0.000 5.06296 6.53704
8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47 0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the
three thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus
years of thatch accumulation by nitrogen source.
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. marginsplot, ytitle(Chlorophyll (mg/g)) title("")

> subtitle("Mean chlorophyll content of grass clippings versus"

> "nitrogen source for years of thatch accumulation") xsize(3) ysize(3.2)
> legend(cols(1) position(5) ring(0) region(lwidth(none)))

> ylabel(0(2)10, angle(0))

Variables that uniquely identify margins: thatch nitrogen

Mean chlorophyll content of grass clippings versus
nitrogen source for years of thatch accumulation
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Years of thatch accumulation

We can see an increase in the mean chlorophyll content over the years of thatch accumulation for
all but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method

Margin  std. err. z P>|z| [95% conf. intervall

thatch
2 5.825 .188024 30.98 0.000 5.45648 6.193562
5 6.45 .188024 34.30 0.000 6.08148 6.81852

8 6.7875 .188024 36.10 0.000 6.41898 7.15602
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. margins nitrogen
Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin  std. err. z P>|z| [95% conf. interval]
nitrogen
Urea 4.766667 .2643563 18.03 0.000 4.248538 5.284796
Ammonium s.. 5.75 .2643563 21.75 0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796
Urea (SC) 8.133333 .2643563 30.77 0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-
effects models.

4

> Example 3: Binomial counts

We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 departments
within the College of Liberal Arts and Sciences at the University of Florida during the 1997-1998
academic year. The dataset contains the department ID (department), the number of applications
(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use https://www.stata-press.com/data/r18/admissions, clear
(Graduate school admissions data)

. describe
Contains data from https://www.stata-press.com/data/r18/admissions.dta
Observations: 46 Graduate school admissions data

Variables: 4 25 Feb 2022 09:28
(_dta has notes)

Variable Storage Display Value
name type format label Variable label
department byte %8.0g dept Department ID
nadmitted byte %8.0g Number of admissions
napplied int %9.0g Number of applications
female byte %8.0g 1 if female; O if male
Sorted by:
We wish to investigate whether admission decisions are independent of gender. Given department
and gender, the probability of admission follows a binomial model, that is, Pr(Y;; = v;;)
Binomial(n;;, m;;), where ¢ = {0,1} and j = 1,...,23. We fit a mixed-effects binomial logistic

model with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or
Fitting fixed-effects model:

Iteration 0: Log likelihood = -302.47786
Iteration 1: Log likelihood = -300.00004
Iteration 2: Log likelihood = -299.99934
Iteration 3: Log likelihood = -299.99934
Refining starting values:

Grid node 0: Log likelihood = -145.08843
Fitting full model:

Iteration 0: Log likelihood = -145.08843
Iteration 1: Log likelihood = -140.8514
Iteration 2: Log likelihood = -140.61709

Iteration 3: Log likelihood = -140.61628
Iteration 4: Log likelihood = -140.61628

Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied
Group variable: department Number of groups = 23
Obs per group:
min = 2
avg = 2.0
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 2.14
Log likelihood = -140.61628 Prob > chi2 = 0.1435
nadmitted | Odds ratio  Std. err. z P>|z| [95% conf. intervall
female 1.176898 .1310535 1.46 0.144 .9461357 1.463944
_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655
department
var (_cons) 1.345383 .460702 .6876497 2.632234
Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 318.77 Prob >= chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance.
The estimate of 52 is 1.35 with the standard error of 0.46. An LR test comparing the model with
the one-level binomial regression model favors the random-intercept model, indicating that there is a
significant variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict
and plot Anscombe residuals.
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. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),

> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))

> xlabel(1/23) legend(label(l "females") label(2 "males"))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that
are above two in absolute value are usually considered outliers. In the graph above, the residual
for female admissions in department 2 is a clear outlier, suggesting a poor fit for that particular
observation; see [ME] meglm postestimation for more information about Anscombe residuals and
other model diagnostics tools.

d
Covariance structures
> Example 4: Growth-curve model with correlated random effects

Here we extend the model from example 1 of [ME] me to allow for a random slope on week and
an unstructured covariance structure between the random intercept and the random slope on week.
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. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)
Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432

Group variable: id Number of groups = 48
Obs per group:

min = 9

avg = 9.0

max = 9

Wald chi2(1) = 4649.17

Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight | Coefficient Std. err. z P>|z| [95% conf. intervall

week 6.209896  .0910745 68.18  0.000 6.031393 6.388399

_cons 19.35561 .3996387 48.43  0.000 18.57234 20.13889

Random-effects parameters Estimate  Std. err. [95% conf. intervall]

id: Unstructured

var (week) .3715251 .0812958 .2419532 .570486

var (_cons) 6.823363 1.566194 4.351297 10.69986

cov(week,_cons) -.0984378 .2645767 -.5973991 .4005234

var (Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The unstructured covariance structure allows for correlation between the random effects. Other
covariance structures supported by mixed, besides the default independent, include identity and
exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations
at the same level, in which case the covariance types can be combined to form more complex
blocked-diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The
fitted values are based on both the fixed and the random effects.
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. predict wgt_hat, fitted

. twoway connected wgt_hat week if id<=10, connect(L) ytitle("Predicted weight")

80

60

Predicted weight

401

20

week

»> Example 5: Blocked-diagonal covariance structures

In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure

of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled
1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,
identified by the variable district. Each district contained either urban or rural areas (variable
urban) or both. The variable c_use is the binary response, with a value of 1 indicating contraceptive
use. Other covariates include mean-centered age and a factor variable for the number of children.
Below we fit a standard logistic regression model amended to have random coefficients for the

children factor variable and an overall district random intercept.

. use https://www.stata-press.com/data/r18/bangladesh, clear
(Bangladesh Fertility Survey, 1989)
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. melogit c_use i.urban age i.children

> || district: i.children, cov(exchangeable)
> || district:, or nolog baselevel nofvlabel
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 100.01
Log likelihood = -1206.2397 Prob > chi2 = 0.0000

(1) [/lvar(1l.children[district]) - [/]var(3.children[district]) = 0

( 2) [/lcov(l.children[district],2.children[district]) -
[/1cov(2.children[district],3.children[district])

( 3) [/lcov(l.children[district],3.children[district]) -
[/lcov(2.children[district],3.children[district]) = 0

0

( 4) [/lvar(2.children[district]) - [/]var(3.children[district]) = 0
c_use 0dds ratio Std. err. z P>|z]| [95% conf. intervall
urban
0 1 (constrained)
1 2.105163 .2546604 6.15 0.000 1.660796 2.668426
age .9735765 .0077461 -3.37 0.001 .9585122 .9888775
children
0 1  (constrained)
1 2.992596 .502149 6.53 0.000 2.153867 4.157931
2 3.879345 .7094125 7.41 0.000 2.710815 5.551584
3 3.774627 .7055812 7.11 0.000 2.616744 5.444863
_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214
district
var (
1.children) .0841518 .0880698 .0108201 .654479
var (
2.children) .0841518 .0880698 .0108201 .654479
var (
3.children) .0841518 .0880698 .0108201 .654479
var (_cons) .1870273 .0787274 .0819596 .426786
district
cov(
1.children,
2.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(
1.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419
cov(
2.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(3) = 44.57 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having
any number of children will increase the odds from three- to fourfold when compared with the base
category of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances for the children factor
levels are constrained to be the same, and the estimated covariances for the children factor levels
are constrained to be the same. More complex covariance structures with constraints can be specified
using covariance(pattern()) and covariance(fixed()); see example 6 below.

N

> Example 6: Meta analysis

In this example, we present a mixed-effects model for meta analysis of clinical trials. The term
“meta-analysis” refers to a statistical analysis that involves summary data from similar but independent
studies.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio
(variable 1nor) estimated from each study, and the corresponding estimated variance (variable var).
The square root of the variance is stored in the variable std and the trial identifier is stored in the
variable trial.

. use https://www.stata-press.com/data/r18/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. list

trial lnor var std
1 1 .04 .16 .4
2 2 -.92 .12 .3464102
3 3 -1.12 .18 .4242641
4 4 -1.47 .3 .5477226
5 5 -1.39 .11 .3316625
6 6 -.3 .01 .1
7 7 -.26 .12 .3464102
8 8 1.09 .69 .8306624
9 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a
continuous outcome and assumed to be normally distributed, and the true treatment effect varies
randomly among the trials. The random-effects model can be written as

Yi ~ N(Q—i—ui,of)
vi ~ N(0,7%)

where y; is the observed treatment effect corresponding to the ith study, 6 + v; is the true treatment
effect, 07;2 is the variance of the observed treatment effect, and 7 is the between-trial variance
component. Our aim is to estimate 6, the global mean.

Notice that the responses y; do not provide enough information to estimate this model, because
we cannot estimate the group-level variance component from a dataset that contains one observation
per group. However, we already have estimates for the o;’s, therefore we can constrain each o; to
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be equal to its estimated value, which will allow us to estimate 6 and 7. We use meglm to estimate
this model because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option
requires a Stata matrix defining the constraints, thus we first create matrix £ with the values of o;,
stored in variable var, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat var, mat(f)
. matrix f = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial.
Because random-effects equations support factor variables (see [U] 11.4.3 Factor variables), we can
use the ibn.trial notation. Because the model is computationally demanding, we use Laplacian
approximation instead of the default mean-variance adaptive quadrature; see Computation time and
the Laplacian approximation above for details.
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. meglm lnor || _all: ibn.trial, nocons cov(fixed(f)) intm(laplace) nocnsreport
Fitting fixed-effects model:

Iteration 0: Log likelihood = -10.643432

Iteration 1: Log likelihood = -10.643432

Refining starting values:

Grid node 0: Log likelihood = -10.205455

Fitting full model:

Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851561 (backed up)
Iteration 2: Log likelihood = -9.4587068
Iteration 3: Log likelihood = -9.4552982
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity

Group variable: _all Number of groups = 1
Obs per group:
min = 9
avg = 9.0
max = 9
Integration method: laplace
Wald chi2(0) =
Log likelihood = -9.4552759 Prob > chi2 =
lnor | Coefficient Std. err. z P>z [95% conf. intervall]
_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707
_all
var(1l.trial) .16 (constrained)
var(2.trial) .12 (constrained)
var(3.trial) .18 (constrained)
var(4.trial) .3 (constrained)
var(5.trial) .11 (constrained)
var(6.trial) .01 (constrained)
var(7.trial) .12  (constrained)
var(8.trial) .69 (constrained)
var(9.trial) .07 (constrained)
var (e.lnor) .2377469 .1950926 .0476023 1.187413

We estimate § = —0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent
random variables, each with variance unity, and each being multiplied by a different standard error.
To accomplish this, we treat trial as a random-effects level, use the standard deviations of the log
odds-ratios as a random covariate at the trial level, and constrain the variance component of trial
to unity.
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. constraint 1 _b[/var(std[trial])] = 1

. meglm lnor || trial: std, nocons constraints(1)

Fitting fixed-effects model:

Log likelihood = -10.643432
Log likelihood = -10.643432

Refining starting values:
Log likelihood = -10.205455
Fitting full model:
Log likelihood = -10.205455

Iteration O:
Iteration 1:

Grid node O:

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:
Iteration 4:
Iteration 5:

Log likelihood = -9.4851164

Log likelihood = -9.45869
Log likelihood = -9.4552794
Log likelihood = -9.4552759
Log likelihood = -9.4552759

(backed up)

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: trial Number of groups = 9
Obs per group:
min = 1
avg = 1.0
max = 1
Integration method: mvaghermite Integration pts. = 7
Wald chi2(0) =
Log likelihood = -9.4552759 Prob > chi2 =
(1) [/lvar(std[triall]) =1
Inor | Coefficient Std. err. z P>|z| [95% conf. intervall
_cons -.5166151 .2059448 -2.51  0.012 -.9202594  -.1129708
trial
var (std) 1 (constrained)
var (e.lnor) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient

specification.

Three-level models

N

The methods we have discussed so far extend from two-level models to models with three or
more levels with nested random effects. By “nested”, we mean that the random effects shared within
lower-level subgroups are unique to the upper-level groups. For example, assuming that classroom
effects would be nested within schools would be natural, because classrooms are unique to schools.
Below we illustrate a three-level mixed-effects ordered probit model.

> Example 7: Three-level ordinal response model

In this example, we fit a three-level ordered probit model. The data are from the Television,
School, and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and
Skrondal 2022, chap. 11), where schools were randomly assigned into one of four groups defined
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by two treatment variables. Students within each school are nested in classes, and classes are nested
in schools. The dependent variable is the tobacco and health knowledge (THK) scale score collapsed
into four ordered categories. We regress the outcome on the treatment variables and their interaction
and control for the pretreatment score.

. use https://www.stata-press.com/data/r18/tvsfpors, clear

(Television, School, and Family Project)

. meoprobit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775

Iteration 1: Log likelihood = -2127.8111

Iteration 2: Log likelihood = -2127.7612

Iteration 3: Log likelihood = -2127.7612

Refining starting values:

Grid node 0: Log likelihood = -2195.6424

Fitting full model:

Iteration 0: Log likelihood = -2195.6424 (not concave)

Iteration 1: Log likelihood = -2167.9576 (not concave)

Iteration 2: Log likelihood = -2140.2644 (not concave)

Iteration 3: Log likelihood = -2128.6948 (not concave)

Iteration 4: Log likelihood = -2119.9225

Iteration 5: Log likelihood = -2117.0947

Iteration 6: Log likelihood = -2116.7004

Iteration 7: Log likelihood = -2116.6981

Iteration 8: Log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000
thk | Coefficient Std. err. z P>|z| [95% conf. intervall
prethk .238841 .0231446 10.32  0.000 .1934784 .2842036
1l.cc .5254813 .1285816 4.09 0.000 .2734659 LTT74967
1.tv .1455573 .1255827 1.16  0.246 -.1005803 .3916949
ccH#tv
11 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251
/cutl -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401
school
var (_cons) .0186456 .0160226 .0034604 .1004695
school>class
var (_cons) .0519974 .0224014 .0223496 .1209745
LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000

Note: LR test is comservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will also suppress the rest
of the header.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

N

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by | |. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

> Example 8: Crossed random effects

Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weight,; = fo + fiweek;; +u; +v; + €;; (8)
forthe i =1,...,9 weeks and j = 1,...,48 pigs and

Uj ~ N(O,ai); vj ~ N(O,m%); € ~ N(O,a?)

all independently. That is, we assume an overall population-average growth curve 5y + $1week and
a random pig-specific shift. In other words, the effect due to week, u;, is systematic to that week and
common to all pigs. The rationale behind (8) could be that, assuming that the pigs were measured
contemporaneously, we might be concerned that week-specific random factors such as weather and
feeding patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects v; being crossed
with the week effects u;. One way to fit such models is to consider all the data as one big cluster,
and treat u; and v; as a series of 9 + 48 = 57 random coefficients on indicator variables for week
and pig. The random effects u and the variance components G are now represented as
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U
2
o Uug . . Jng 0
u=| 7| ~N(©G) G—[ p 0_3148}
L V48 |

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID
variable to identify all the observations as one big group and a way to tell mixed-effects commands to
treat week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized
indicator variables identifying weeks and pigs, respectively). The mixed-effects commands support
the special group designation _all for the former and the R.varname notation for the latter.

. use https://www.stata-press.com/data/r18/pig

(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.id || _all: R.week

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824
Computing standard errors ...
Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1
Obs per group:
min = 432
avg = 432.0
max = 432
Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
week 6.209896 .05639313 115.14  0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56  0.000 18.11418 20.59705
Random-effects parameters Estimate Std. err. [95% conf. interval]
_all: Identity
var(R.id) 14.83623  3.126142 9.816733 22.42231
_all: Identity
var (R.week) .0849874 .0868856 .0114588 .6303302
var (Residual) 4.297328 .3134404 3.724888 4.957741
LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We estimate o2 = 0.08 and 5> = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you use R.varname, mixed-effects commands
handle the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and memory
requirements grow (roughly) quadratically with the dimension of the random effects. As a result,
fitting such crossed-effects models is feasible only when the total column dimension is small to
moderate. For this reason, mixed-effects commands use the Laplacian approximation as the default
estimation method for crossed-effects models; see Computation time and the Laplacian approximation
above for more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.
For example, we can treat pigs as nested within the _all group, yielding the equivalent and more
efficient (total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)
level with random-effects dimension 1 (a random intercept) is much more computationally efficient.
Whereas with the first form we are limited in how many pigs we can analyze, there is no such
limitation with the second form.

All the mixed-effects commands—except mixed—automatically attempt to recast the less efficient
model specification into a more efficient one. However, this automatic conversion may not be sufficient
for some complicated mixed-effects specifications, especially if both crossed and nested effects are
involved. Therefore, we strongly encourage you to always specify the more efficient syntax; see Rabe-
Hesketh and Skrondal (2022) and Marchenko (2006) for additional techniques to make calculations
more efficient in more complex mixed-effects models.

d

Nonlinear models

NLME models are popular in population pharmacokinetics, bioassays, studies of biological and
agricultural growth processes, and other applications, where the mean function is a nonlinear function
of fixed and random effects. Remarks and examples of [ME] menl provide many examples of fitting
different NLME models by using menl, including a pharmacokinetics model in example 15. Here we
consider simple data from Draper and Smith (1998) that contain trunk circumference (in mm) of five
different orange trees measured over seven different time points.
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Let’s plot our data first.

. use https://wuw.stata-press.com/data/r18/orange
(Growth of orange trees (Draper and Smith, 1998))

. twoway scatter circumf age, connect(L) ylabel(#6 175)
250
200+

1754

150

100

Trunk circumference (mm)

50

0 500 1000 1500
Time since Dec 31, 1968 (days)

Consider the following nonlinear growth model for these data,

B
1+ exp {— (age;; — B2) /B3 }

circumf;; = + €5

where €;;’s are i.i.d. N(O, 062). In this model, 5, can be interpreted as the average asymptotic trunk
circumference of trees as age,; — co. We can crudely estimate it as the average of the trunk
circumference values at the last observed time point, which for these data is roughly 175 mm. f39 is
the age at which a tree attains half of the average asymptotic trunk circumference (31; that is, if we set
age;; = B2, then E(circumf,;) = 0.551. B3 is a scale parameter that represents the number of days
it takes for a tree to grow from 50% to about 73% of the average asymptotic trunk circumference.
That is, if we set age = tg.73 = (2 + f3, then E(circumf;;) = 81/{1 + exp(—1)} = 0.73/; and
then 83 = tg.73 — fa.

The above model can be easily fit by using, for example, nl; see [R] nl. However, if we study the
graph more carefully, we will notice that there is an increasing variability in the trunk circumferences
of trees as they approach their limiting age. So it may be more reasonable to allow (37 to vary between
trees,

B1 + uij

1+ exp{— (ageij — fB2) /B3}

where u;’s are i.i.d. N (0,02 ). We use menl to fit this model.

circumfij = + €ij (9)

The specification of NLME models in menl is fairly straightforward. Following the dependent
variable and the equality sign (=), we specify the expression for the mean function as a usual Stata
expression but with parameters and random effects enclosed in curly braces ({}).
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. menl circumf = ({b1}+{Ul[treell})/(1+exp(-(age-{b2})/{b3}))
Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:

min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
/b1 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity

var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371  15.89568 37.11466 102.1184

In the above specification, we used {Ul[treel} to include random intercepts at the tree level in
our model. U1 is the name or label associated with these random intercepts.

The output of menl is similar to that of mixed—the header information is displayed first, fixed-
effects parameter estimates are displayed in the first or the fixed-effects parameter table, and the
estimates of variance components are displayed in the second or the random-effects parameter table.

The header information is similar to that of mixed, but unlike mixed, menl in general does
not report a model x? statistic in the header because a test of the joint significance of all fixed-
effects parameters (except the constant term) may not be relevant in a nonlinear model. menl also
reports the so-called linearization log likelihood. menl uses the linearization method of Lindstrom
and Bates (1990), with extensions from Pinheiro and Bates (1995), for estimation. This method is
based on the approximation of the NLME model by an LME model, in which a first-order Taylor-series
approximation is used to linearize the nonlinear mean function with respect to fixed and random
effects; see Introduction and Methods and formulas in [ME] menl for details. The linearization log
likelihood is the log likelihood of this approximating LME model. We can use this log likelihood
for model comparison of different NLME models and to form likelihood-ratio tests, but note that
this is not the log likelihood of the corresponding NLME model. Depending on the accuracy of the
approximation, the linearization log likelihood may be close to the true NLME log likelihood.

As part of Stata’s standard estimation output, menl reports z tests against zeros for the estimated
fixed-effects parameters. Testing a parameter against zero may or may not be of interest, or may not
even be appropriate, in a nonlinear model. In our example, {b3} is the denominator of a fraction,
so the test of {b3} against zero may not be feasible in this model. Instead, we may be interested in
testing {b3} against, for example, 300, which would correspond to testing whether the average trunk
circumference of orange trees increases from 50% to 73% of its asymptotic value in 300 days. We
can perform this test by using, for instance, the test command; see [R] test. As a side note, setting
B3 = 0 in (9) results in a simple random-intercept model, in a limiting sense.
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From the random-effects table, the variability in limiting growth (31 between trees, labeled as
var (U1), is statistically significant in this model with an estimate of 991 (mm?) and a 95% CI of

[280, 3510].

We can rewrite (9) as a two-stage model,

b1,
1+ exp{— (ageij — ¢25) /035 }

circumfﬁ = +-Qj

where the stage 2 specification is

®14 B1 + w1
P = | b2 | = B
¢35 B3

(10)

(11)

The model defined by (10) and (11) is the same as that defined by (9) but with a different

parameterization.

In menl, we can accommodate this two-stage formulation with the define () option. For example,

we can fit the two-stage model defined by (10) and (11) as follows:

. menl circumf = {phil:}/(1+exp(-(age-{b2})/{b3})), define(phil: {b1}+{U1[treell})

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58458
phil: {b1}+{U1[treel}
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
/bl 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate  Std. err. [95% conf. intervall
tree: Identity
var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371  15.89568 37.11466 102.1184

The results are identical to the previous model. Here we defined a substitutable expression phil in
the define () option as a function of {b1} and {U1[treel} and included it in our main expression
as {phil:}. Including a colon (:) in {phil:} is important to notify menl that it is a substitutable

expression rather than a simple scalar parameter {phil}.

In general, we can accommodate multistage formulations by using the define () option repeatedly.
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More conveniently, we can use a linear-combination specification (see Linear combinations in
[ME] menl) within the define () option to define the linear combination {b1}+{U1[tree]}.
. menl circumf = {phil:}/(1+exp(-(age-{b2})/{b3})), define(phil: Ul[treel, xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58458
phil: Ul[treel, xb
circumf | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 191.049  16.15403 11.83  0.000 159.3877 222.7103
/b2 722.556  35.15082 20.56  0.000 653.6616 791.4503
/b3 344.1624  27.14739 12.68  0.000 290.9545 397.3703
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Identity
var (U1) 991.1514  639.4637 279.8776 3510.038
var (Residual) 61.56371 15.89568 37.11466 102.1184

The {phil: Ul[tree], xb} specification used in the define() option, but without curly braces,
creates a linear combination named phi1 that contains a constant {phil: _cons} and random intercepts
{U1} at the tree level. In the linear-combination specification, the constant is included automatically
unless you specify the noconstant option such as {phil: Ul[tree], xb noconstant}. Also,
you do not specify curly braces around random effects within the linear-combination specification.
If we had covariates, say, x1 and x2, that we also wanted to include in the linear combination, we
would have used {phil: x1 x2 Ul[treel}. Notice that we did not specify the xb option in the
previous linear combination. When a linear combination contains more than one term, this option is
implied. When a linear combination contains only one term, such as in {phil: Ul[treel], xb},
the xb option must be specified to request that menl treat the specification as a linear combination
instead of a scalar parameter; see Random-effects substitutable expressions in [ME] menl for details.

Instead of using define(), we could have similarly specified the linear combination directly in
the main expression:

. menl circumf = {phil: Ul[treel, xb}/(1+exp(-(age-{b2})/{b3}))
(output omitted )

However, by using the define() option, we simplified the look of the main equation.



44 me — Introduction to multilevel mixed-effects models

We can extend the stage 2 specification (11) to allow, for example, 82 to vary across trees by
including random intercepts at the tree level for ¢o;,

o1 B1 + uy;
b= | P25 | = | P2+ ugy
¢3;j B3

We can then fit the corresponding model by using menl as follows:
. menl circumf = {phil:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phil: Ul[tree], xb) define(phi2: U2[tree], xb)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.60539
Iteration 2: Linearization log likelihood = -131.5827
Iteration 3: Linearization log likelihood = -131.5805
Iteration 4: Linearization log likelihood = -131.58027
Iteration 5: Linearization log likelihood = -131.58026

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7
Linearization log likelihood = -131.58026
phil: Ul[treel, xb
phi2: U2[treel, xb
circumf | Coefficient Std. err. P P>|z]| [95% conf. interval]
phil
_cons 190.5939 16.211 11.76  0.000 158.8209 222.3669
phi2
_cons 719.6027  35.77597 20.11  0.000 649.4831 789.7223
/b3 342.0794  26.42036 12.95  0.000 290.2965 393.8624
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Independent
var (U1) 1012.15  666.2808 278.557 3677.698
var (U2) 503.2308 2401.324 .0436507 5801534
var (Residual) 59.27073  18.21298 32.45482 108.2434

The large standard error for the estimate of the variance component var (U2) suggests that our model
is overparameterized—a common problem when fitting NLME models. We could verify this, for
instance, by computing information criteria ([R] estimates stats) or by performing a likelihood-ratio
test ([R] Irtest).

By default, menl assumes an independent covariance structure for the random effects such as
Ul and U2 in our example. We can specify, for example, an unstructured model by using the
covariance() option. We demonstrate this only for illustration, given that our simpler model that
assumed independence between Ul and U2 was already overparameterized.
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. menl circumf = {phil:}/(1+exp(-(age-{phi2:})/{b3})),

> define(phil: Ul[tree], xb) define(phi2: U2[tree], xb)

> covariance(Ul U2, unstructured)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
log likelihood
log likelihood

log likelihood
log likelihood

Iteration 1: Linearization
Iteration 2: Linearization
Iteration 3: Linearization
Iteration 4: Linearization

Computing standard errors:

Mixed-effects ML nonlinear regression

Group variable: tree

Linearization log likelihood = -130.90177

phil: Ul[treel, xb
phi2: U2[treel, xb

-130.90452
-130.90205
-130.90177
-130.90177
Number of obs = 35
Number of groups = 5
Obs per group:
min = 7
avg = 7.0
max = 7

circumf | Coefficient Std. err. z P>|z| [95% conf. interval]
phil
_cons 189.8349  17.20035 11.04  0.000 156.1228 223.5469
phi2
_cons 709.5333  37.24229 19.05 0.000 636.5397 782.5268
/b3 340.4731  25.52176 13.34  0.000 290.4514 390.4948
Random-effects parameters Estimate Std. err. [95% conf. intervall
tree: Unstructured
var (U1) 1180.097  775.0821 325.7263 4275.46
var (U2) 1469.879  2777.134 36.22873 59636.18
cov(U1,U2) 1015.504 1124.568 -1188.609 3219.617
var (Residual) 56.07332  16.20294 31.82681 98.79146

In menl, we need to list the names of the random effects in the covariance () option for which we
want to specify a covariance structure other than the independent one used by default.

In our example, parameters ¢; and ¢2; were modeled as linear functions of random effects and
parameters 37 and 2. The relationship does not have to be linear; see example 15 in [ME] menl.

This example has a small number of trees or clusters, so REML estimation would have been more
appropriate. We could have obtained REML estimates in our examples by specifying the reml option

with menl.

See [ME] menl for more examples of and details about the menl command.
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Title

estat df — Calculate degrees of freedom for fixed effects

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description

estat df is for use after estimation with mixed.

estat df calculates and displays the degrees of freedom (DF) for each fixed effect using the

specified methods. This allows for a comparison of different DF methods. estat df can also be used

to

continue with postestimation using a different DF method without rerunning the model.

Menu for estat

Statistics > Postestimation

Syntax

estat df [, method (df_methods) post[(df_meﬂwd)] eim oim]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

method (df—methods) specifies a list of methods to compute DF. The supported methods are residual,

repeated, anova, satterthwaite, and kroger; more than one method may be specified. Meth-
ods satterthwaite and kroger are only available with REML estimation. If option dfmethod ()
was not specified in the most recently fit mixed model, then option method () is required. See
Small-sample inference for fixed effects under Remarks and examples in [ME] mixed for more
details.

post causes estat df to behave like a Stata estimation command. When post is specified, estat

df will post the DF for each fixed effect as well as everything related to the DF computation to
e () for the method specified in method (). Thus, after posting, you could continue to use this DF
for other postestimation commands. For example, you could use test, small to perform Wald
F tests on linear combination of the fixed effects.

post may also be specified using the syntax post (df—method). You must use this syntax if you
specify multiple df_methods in option method (). With this syntax, estat df computes the DF
using the method specified in post () and stores the results in e (). Only one computation method
may be specified using the syntax post ().

The df_method specified in post () must be one of the DF methods specified in option method ().
If only one method is specified in option method (), then one can simply use post to make this
DF method active for postestimation and for mixed replay.

eim specifies that the expected information matrix be used in the DF computation. It can be used

only when method() contains kroger or satterthwaite. eim is the default.
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oim specifies that the observed information matrix be used in the DF computation. It can be used
only when method() contains kroger or satterthwaite.

Remarks and examples

> Example 1: Changing the degrees of freedom method
To illustrate the use of estat df, we refit the dental veneer data from example 14 of [ME] mixed
using the Kenward—Roger method (option dfmethod (kroger)) to compute the DF for fixed effects.

. use https://www.stata-press.com/data/r18/veneer
(Dental veneer data)

. mixed gcf followup base_gcf cda age || patient: followup,
> covariance(unstructured) || tooth:, reml nolog dfmethod(kroger)
Mixed-effects REML regression Number of obs = 110
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
patient 12 2 9.2 12
tooth 55 2 2.0 2
DF method: Kenward-Roger DF: min = 10.41
avg = 28.96
max = 50.71
F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370
gcf | Coefficient Std. err. t P>|t| [95% conf. intervall
followup .3009815  1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127  .1466261 -0.12  0.901 -.3132419 .2766164
cda -.329303  .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932  .2350491 -2.46 0.033 -1.098324 -.056462
_cons 45.73862  13.21824 3.46  0.002 18.53866 72.93858
Random-effects parameters Estimate  Std. err. [95% conf. intervall
patient: Unstructured
var (followup) 41.88772  18.79997 17.38009 100.9535
var (_cons) 524.9851  253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099  -9.935904
tooth: Identity
var (_cons) 47.45738  16.63034 23.8792 94.3165
var (Residual) 48.86704  10.50523 32.06479 74.47382

LR test vs.

linear model: chi2(4) = 91.12

Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Rather than specifying option dftable (pvalue) or dftable(ci) at estimation, we can display
the covariate-specific DFs during postestimation by typing

. estat df
Degrees of freedom
Kenward-Roger
gef
followup 10.96355
base_gcf 47.2708
cda 50.70932
age 10.41127
_cons 25.43377

estat df can also compare different DF methods using the method () option. For example, we
can compare the Kenward—Roger method with the Satterthwaite method by typing

. estat df, method(kroger satterthwaite)

Degrees of freedom

Kenward-Roger Satterthwaite

gcf
followup 10.96355 10.96355
base_gcf 47.2708 47.2708
cda 50.70932 50.70932
age 10.41127 10.41127
_cons 25.43377 25.43377

The two methods produce the same estimates of DFs for single-hypothesis tests, but the results
differ for multiple-hypotheses tests; see example 4 of [ME] mixed postestimation for details.

Suppose that we decide to proceed with the Satterthwaite method in subsequent analysis. Rather
than retyping our mixed command with the dfmethod(satterthwaite) option, we can post the
Satterthwaite DFs using the post option of estat df.

. estat df, method(satterthwaite) post

Degrees of freedom

Satterthwaite

gcf
followup 10.96355
base_gcf 47.2708
cda 50.70932
age 10.41127
_cons 25.43377

The returned values associated with dfmethod (kroger) from the mixed command will be replaced

with those of dfmethod(satterthwaite).
d
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Stored results

estat df stores the following in r():

Macros
r(dfmethods) DF methods
Matrices
r(df) parameter-specific DFs for each method specified in method ()
r(V_df) variance—covariance matrix of the estimators when kroger method is specified

If post () is specified, estat df also stores the following in e():

Scalars
e(F) overall F test statistic for the method specified in post ()
e(ddf_m) model DDF for the method specified in post ()
e(df _max) maximum DF for the method specified in post ()
e(df_avg) average DF for the method specified in post()
e(df _min) minimum DF for the method specified in post ()

Macros
e(dfmethod) DF method specified in post ()
e(dftitle) title for DF method

Matrices
e(df) parameter-specific DFs for the method specified in post ()
e(V_df) variance—covariance matrix of the estimators when kroger method is posted

Also see

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat group — Summarize the composition of the nested groups

Description Menu for estat Syntax Remarks and examples
Also see

Description

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

Menu for estat

Statistics > Postestimation

Syntax

estat group

Remarks and examples

See example 3 in [ME] mixed postestimation and example 4 in [ME] menl postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[ME] meglm — Multilevel mixed-effects generalized linear models
[ME] meintreg — Multilevel mixed-effects interval regression
[ME] melogit — Multilevel mixed-effects logistic regression
[ME] menbreg — Multilevel mixed-effects negative binomial regression
[ME] menl — Nonlinear mixed-effects regression
[ME] meologit — Multilevel mixed-effects ordered logistic regression
[ME] meoprobit — Multilevel mixed-effects ordered probit regression
[ME] mepoisson — Multilevel mixed-effects Poisson regression
[ME] meprobit — Multilevel mixed-effects probit regression
[ME] mestreg — Multilevel mixed-effects parametric survival models
[ME] metobit — Multilevel mixed-effects tobit regression
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands
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Title

estat icc — Estimate intraclass correlations

Description Menu for estat Syntax Option
Remarks and examples Stored results Methods and formulas Also see
Description

estat icc is for use after estimation with mixed, meintreg, metobit, melogit, meprobit,
meologit, meoprobit, and mecloglog. estat icc is also for use after estimation with meglm in
cases when the fitted model is a linear, logit, probit, ordered logit, ordered probit, or complementary
log—log mixed-effects model.

estat icc displays the intraclass correlation for pairs of responses at each nested level of the model.
Intraclass correlations are available for random-intercept models or for random-coefficients models
conditional on random-effects covariates being equal to 0. They are not available for crossed-effects
models or with residual error structures other than independent structures.

Menu for estat

Statistics > Postestimation
Syntax

estat icc [, level(#)]

collect is allowed; see [U] 11.1.10 Prefix commands.

Option
level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

See, for instance, example 2 in [ME] mixed postestimation and examples 1 and 4 in [ME] melogit
postestimation.

Stored results

estat icc stores the following in r():

Scalars
r(icc#) level-# intraclass correlation
r(se#) standard errors of level-# intraclass correlation
r(level) confidence level of confidence intervals
Macros
r(label#) label for level #
Matrices
r(ci#) vector of confidence intervals (lower and upper) for level-# intraclass correlation

For a G-level nested model, # can be any integer between 2 and G.
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Methods and formulas

Intraclass correlations

Consider a simple, two-level random-intercept model, stated in terms of a latent linear response,
where only y;; = I (y:‘] > 0) is observed for the latent variable,

* (2) (1)
Yij = BHuy + e

with ¢ = 1,...,n; and level-2 groups j = 1,..., M. Here § is an unknown fixed intercept, u§2>
is a level-2 random intercept, and el(»Jl») is a level-1 error term. In a mixed-effects linear, probit, and
ordered probit regression, errors are assumed to be normally distributed with mean O and variance
~. In a mixed-effects logistic and ordered logistic regression, errors are assumed to be logistic with
mean O and variance y. Random intercepts are assumed to be normally distributed with mean 0 and
variance o3 and to be independent of error terms.

The intraclass correlation for this model is

2
93

( 177 J1 ]) y + 0_%

where v = o for a mixed-effects linear regression, v = 1 for a mixed-effects probit and ordered
probit regression, v = 72 /3 for a mixed-effects logistic and ordered logistic regression, and v = 72 /6
for a mixed-effects complementary log—log regression. The intraclass correlation corresponds to the
correlation between the latent responses 4 and ¢ from the same group ;.

Now consider a three-level nested random-intercept model,

" 2 3 1

i = B+ oD+ + )
for measurements ¢ = 1,...,n,; and level-2 groups j = 1,..., M}, nested within level-3 groups
k=1,..., M. Here u<2) is a level-2 random intercept, u(s) is a level-3 random intercept, and 6(»1.)
k Pl Uy p ijk

is a level-1 error term. The random intercepts are assumed to be normally distributed with mean
0 and variances 03 and o3, respectively, and to be mutually independent. The error terms are also
independent of the random intercepts.

We can consider two types of intraclass correlations for this model. We will refer to them as
level-2 and level-3 intraclass correlations. The level-3 intraclass correlation is
o3

(3) — C * %‘, - =
P Orl'(yzgk:ayzj k) ,_Y+O_% +O’§

This is the correlation between latent responses ¢ and i’ from the same level-3 group k and from
different level-2 groups j and j'.
The level-2 intraclass correlation is
2 2
@) — Corr(u™ .. 1) = _0pto03
P (yz]kvyz ]k) v 4 O'% + O.g

This is the correlation between latent responses ¢ and ¢’ from the same level-3 group k and level-2
group j. (Note that level-1 intraclass correlation is undefined.)
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More generally, for a G-level nested random-intercept model, the g-level intraclass correlation is

defined as o
(9) _ Zl:g 012
- G
Y+, 07

The above formulas also apply in the presence of fixed-effects covariates X in a random-
effects model. In this case, intraclass correlations are conditional on fixed-effects covariates and are
referred to as residual intraclass correlations. estat icc also uses the same formulas to compute
intraclass correlations for random-coefficients models, assuming O baseline values for the random-
effects covariates, and labels them as conditional intraclass correlations.

Intraclass correlations will always fall in [0,1] because variance components are nonnegative. To
accommodate the range of an intraclass correlation, we use the logit transformation to obtain confidence
intervals. We use the delta method to estimate the standard errors of the intraclass correlations.

Let p(9) be a point estimate of the intraclass correlation and SAE(ﬁ(g)) be its standard error. The
(1 — ) x 100% confidence interval for logit(p(9)) is

. SE(P'?))
1 t’\(g) + 7
ogl (p ) Za/Qﬁ(g)(l—ﬁ(g))

where 2,5 is the 1 —a/2 quantile of the standard normal distribution and logit(z) = In{z/(1—x)}.
Let k,, be the upper endpoint of this interval, and let k; be the lower. The (1 — ) x 100% confidence

interval for p(g) is then given by
1 1
1+e k14 e hu

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[ME] meglm — Multilevel mixed-effects generalized linear models
[ME] meintreg — Multilevel mixed-effects interval regression
[ME] melogit — Multilevel mixed-effects logistic regression
[ME] meologit — Multilevel mixed-effects ordered logistic regression
[ME] meoprobit — Multilevel mixed-effects ordered probit regression
[ME] meprobit — Multilevel mixed-effects probit regression
[ME] metobit — Multilevel mixed-effects tobit regression
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat recovariance — Display estimated random-effects covariance matrices

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description

estat recovariance is for use after estimation with menl and mixed.

estat recovariance displays the estimated variance—covariance matrix of the random effects
for each level in the model.

Menu for estat

Statistics > Postestimation

Syntax

estat recovariance [, relevel (levelvar) correlation matlist_options]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

relevel (levelvar) specifies the level in the model for which the random-effects covariance matrix
is to be displayed. By default, the covariance matrices for all levels in the model are displayed.
levelvar is the name of the model level and is either the name of the variable describing the
grouping at that level or is _all, a special designation for a group comprising all the estimation
data. The _all designation is not supported with menl.

correlation displays the covariance matrix as a correlation matrix.

matlist_options are style and formatting options that control how the matrix (or matrices) is displayed;
see [P] matlist for a list of options that are available.

Remarks and examples

For men1, the rows and columns of the matrix are labeled with full random-effects names as they
are defined in the model.

For other commands, the rows and columns of the matrix are labeled as _cons for the random
intercepts; for random coefficients, the label is the name of the associated variable in the data.

See example 1 in [ME] mixed postestimation.
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Stored results

estat recovariance stores the following in r():

Scalars
r(relevels) number of levels
Matrices
r (Cov#) level-# random-effects covariance matrix
r(Corr#) level-# random-effects correlation matrix (if option correlation was specified)

For a G-level nested model, # can be any integer between 2 and G.

Also see
[ME] menl — Nonlinear mixed-effects regression
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat sd — Display variance components as standard deviations and correlations

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description

estat sd displays the random-effects and within-group error parameter estimates as standard
deviations and correlations.

Menu for estat

Statistics > Postestimation

Syntax

estat sd [, variance verbose post coeflegend]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

variance specifies that estat sd display the random-effects and within-group error parameter
estimates as variances and covariances. If the post option is specified, the estimated variances
and covariances and their respective standard errors are posted to e(). variance is allowed only
after mixed and menl.

verbose specifies that the full estimation table be displayed. By default, only the random-effects and
within-group error parameters are displayed. This option is implied when post is specified.

post causes estat sd to behave like a Stata estimation (e-class) command. estat sd posts the
vector of calculated standard deviation and correlation parameters along with the corresponding
variance—covariance matrix to e(), so that you can treat the estimated parameters just as you
would results from any other estimation command. For example, you could use test to perform
simultaneous tests of hypotheses on the parameters, or you could use lincom to create linear
combinations.

The following option is not shown in the dialog box:

coeflegend specifies that the legend of the coefficients and how to specify them in an expression
be displayed rather than displaying the statistics for the coefficients. This option is allowed only
if post is also specified.
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Remarks and examples

See example 1 in [ME] mixed postestimation and example 16 in [ME] menl.

Stored results

estat sd stores the following in r():

Matrices
r(b) coefficient vector
r(V) variance—covariance matrix of the estimators
r(table) table of results

If post is specified, estat sd stores the following in e():

Macros
e(cmd) estat sd
e(properties) bV
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Also see

[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[ME] meglm — Multilevel mixed-effects generalized linear models
[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] menbreg — Multilevel mixed-effects negative binomial regression
[ME] menl — Nonlinear mixed-effects regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression
[ME] meoprobit — Multilevel mixed-effects ordered probit regression
[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] mestreg — Multilevel mixed-effects parametric survival models
[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat wcorrelation — Display within-cluster correlations and standard deviations

Description Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

estat wcorrelation is for use after estimation with menl and mixed.

estat wcorrelation displays the overall correlation matrix for a given cluster calculated on the
basis of the design of the random effects and their assumed covariance and the correlation structure
of the residuals. This allows for a comparison of different multilevel models in terms of the ultimate
within-cluster correlation matrix that each model implies.

Menu for estat

Statistics > Postestimation

Syntax

estat wcorrelation [, options}

options Description

at (at_spec) specify the cluster for which you want the correlation matrix; default
is the first two-level cluster encountered in the data

all display correlation matrix for all the data

covariance display the covariance matrix instead of the correlation matrix
list list the data corresponding to the correlation matrix
nosort list the rows and columns of the correlation matrix in the order they
were originally present in the data
iterate(#) maximum number of iterations to compute random effects;
default is iterate(50); only for use after menl
tolerance (#) convergence tolerance when computing random effects;

nrtolerance (#)

nonrtolerance
format (% fimt)
matlist_options

default is tolerance(le-6); only for use after menl
scaled gradient tolerance when computing random effects;
default is nrtolerance(le-5); only for use after menl
ignore the nrtolerance () option; only for use after menl
set the display format; default is format (%6.3f)
style and formatting options that control how matrices are displayed

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options
at (at_spec) specifies the cluster of observations for which you want the within-cluster correlation

matrix. at_spec is
relevel_var = value [, relevel_var = value . . ]

For example, if you specify
. estat wcorrelation, at(school = 33)

you get the within-cluster correlation matrix for those observations in school 33. If you specify
. estat wcorrelation, at(school = 33 classroom = 4)

you get the correlation matrix for classroom 4 in school 33.

If at () is not specified, then you get the correlations for the first level-two cluster encountered
in the data. This is usually what you want.

all specifies that you want the correlation matrix for all the data. This is not recommended unless
you have a relatively small dataset or you enjoy seeing large n X n matrices. However, this can
prove useful in some cases.

covariance specifies that the within-cluster covariance matrix be displayed instead of the default
correlations and standard deviations.

list lists the model data for those observations depicted in the displayed correlation matrix. With
linear mixed-effects models, this option is also useful if you have many random-effects design
variables and you wish to see the represented values of these design variables.

nosort lists the rows and columns of the correlation matrix in the order that they were originally
present in the data. Normally, estat wcorrelation will first sort the data according to level
variables, by-group variables, and time variables to produce correlation matrices whose rows and
columns follow a natural ordering. nosort suppresses this.

iterate(#) specifies the maximum number of iterations when computing estimates of the random
effects. The default is iterate(50). This option is only for use after menl.

tolerance (#) specifies a convergence tolerance when computing estimates of the random effects.
The default is tolerance(1e-6). This option is only for use after menl.

nrtolerance (#) and nonrtolerance control the tolerance for the scaled gradient when computing
estimates of the random effects. These options are only for use after menl.

nrtolerance (#) specifies the tolerance for the scaled gradient. Convergence is declared when
g(—Hil)g/ is less than nrtolerance (#), where g is the gradient row vector and H is the
approximated Hessian matrix from the current iteration. The default is nrtolerance(1le-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

format (% fint) sets the display format for the standard deviation vector and correlation matrix. The
default is format (%6.3f).

matlist_options are style and formatting options that control how the matrix (or matrices) is displayed;
see [P] matlist for a list of options that are available.
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Remarks and examples

> Example 1: Displaying within-cluster correlations for different clusters

Here we fit a model where different clusters have different within-cluster correlations, and we show
how to display them for different clusters. We use the Asian children weight data from example 6 of
[ME] mixed.

. use https://www.stata-press.com/data/r18/childweight
(Weight data on Asian children)

. mixed weight age || id: age, covariance(unstructured)
Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -344.37065
Iteration 1: Log likelihood = -342.83814
Iteration 2: Log likelihood = -342.71861
Iteration 3: Log likelihood = -342.71777
Iteration 4: Log likelihood = -342.71777

Computing standard errors ...

Mixed-effects ML regression Number of obs = 198

Group variable: id Number of groups = 68
Obs per group:

min = 1

avg = 2.9

max = 5

Wald chi2(1) = 755.27

Log likelihood = -342.71777 Prob > chi2 = 0.0000

weight | Coefficient Std. err. z P>|z| [95% conf. intervall

age 3.459671 .1258878 27.48  0.000 3.212936 3.706407

_cons 5.110496 .149478 34.19  0.000 4.817524 5.403468

Random-effects parameters Estimate  Std. err. [95% conf. intervall

id: Unstructured

var (age) .2023928 .12429 .0607393 .6744041

var (_cons) .0970259 .1108024 .0103473 .9098067

cov(age,_cons) .1401334 .0566912 .0290206 .2512461

var (Residual) 1.357922 .1650507 1.070075 1.723199

LR test vs. linear model: chi2(3) = 27.38 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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We use estat wcorrelation to display the within-cluster correlations for the first cluster.

. estat wcorrelation, list
Standard deviations and correlations for id = 45:
Standard deviations:

obs 1 2 3 4 5

sd 1.224 1.314 1.448 1.506 1.771

Correlations:
obs 1 2 3 4 5
1 1.000
2 0.141 1.000
3 0.181 0.274 1.000
4 0.193 0.293 0.376 1.000
5 0.230 0.348 0.447 0.477 1.000
Data:
id weight age
1. 45 5.171 .136893
2. 45 10.86 .657084
3. 45 13.15 1.21834
4. 45 13.2 1.42916
5. 45 15.88 2.27242

We specified the 1ist option to display the data associated with the cluster. The next cluster in
the dataset has ID 258. To display the within-cluster correlations for this cluster, we specify the at ()
option.

. estat wcorrelation, at(id=258) list
Standard deviations and correlations for id = 258:

Standard deviations:

obs 1 2 3 4
sd 1.231 1.320 1.424 1.782
Correlations:
obs 1 2 3 4
1 1.000
2 0.152 1.000
3 0.186 0.270 1.000
4 0.244 0.356 0.435 1.000
Data:
id weight age
1. 258 5.3 .19165
2. 258 9.74 .687201
3. 258 9.98 1.12799
4. 258 11.34 2.30527

The within-cluster correlations for this model depend on age. The values for age in the two clusters
are different, as are the corresponding within-cluster correlations.

4
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See example 1 of [ME] mixed postestimation for a model fit where each cluster had the same
model-implied within-cluster correlations.

Stored results

estat wcorrelation stores the following in r():

Matrices
r(sd) standard deviations
r(Corr) within-cluster correlation matrix
r(Cov) within-cluster variance—covariance matrix
r(G) variance—covariance matrix of random effects
r(Z) model-based design matrix
r(R) variance—covariance matrix of level-one errors
r(path) path identifying cluster for which correlation is reported

Results r(G), r(Z), and r (R) are available only after mixed. Result r (path) is available only after
menl.

Methods and formulas

Methods and formulas are presented under the following headings:

Linear mixed-effects model
Nonlinear mixed-effects model

Linear mixed-effects model

A two-level linear mixed model of the form
i =X;B+2Zju; + €

implies the marginal model
yi = Xjﬂ + E;

where ej ~ N (O,Vj), V, = ZjGZ;- + R. In a marginal model, the random part is described in
terms of the marginal or total residuals e;, and V; is the covariance structure of these residuals.

estat wcorrelation calculates the marginal covariance matrix V; for cluster j and by default
displays the results in terms of standard deviations and correlations. This allows for a comparison of
different multilevel models in terms of the ultimate within-cluster correlation matrix that each model
implies.

Calculation of the marginal covariance matrix extends naturally to higher-level models; see, for
example, chapter 4.8 in West, Welch, and Gatecki (2022).

Nonlinear mixed-effects model

For nonlinear mixed-effects models, there is no closed-form expression for the marginal covariance
matrix Cov(y;). This is because it is expressed in terms of a g-dimensional integral (¢ is the number
of random effects in the model), which, in general, is analytically 1ntractable Under the linear

mixed-effects approximation, the marginal covariance matrix is estimated by V = Z EZ’ + O'QAJ,
where Zj, 2, and Aj are defined in Methods and formulas of [ME] menl.



66 estat wcorrelation — Display within-cluster correlations and standard deviations

estat wcorrelation calculates the estimated marginal covariance matrix V; for cluster j and
by default displays the results in terms of standard deviations and correlations.

Under the linear mixed-effects approximation, estimation of the marginal covariance matrix extends
naturally to higher-level models; see, for example, chapter 4.8 in West, Welch, and Gatecki (2022).

Reference

West, B. T., K. B. Welch, and A. T. Gatecki. 2022. Linear Mixed Models: A Practical Guide Using Statistical
Software. 3rd ed. Boca Raton, FL: CRC Press.

Also see
[ME] menl — Nonlinear mixed-effects regression
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands


http://www.stata.com/bookstore/linear-mixed-models/
http://www.stata.com/bookstore/linear-mixed-models/

Title

mecloglog — Multilevel mixed-effects complementary log—log regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

mecloglog fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with probability of success
determined by the inverse complementary log—log function.

Quick start

Two-level complementary log—log model of y on x with random intercepts by lev2
mecloglog y x || lev2:

Add binary variable a and random coefficients for a
mecloglog y x a || lev2: a

Same as above, but allow the random effects to be correlated
mecloglog y x a || lev2: a, covariance(unstructured)

Three-level random-intercept model of y on x with 1lev2 nested within lev3
mecloglog y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
mecloglog y x || _all:R.a || b:

Menu

Statistics > Multilevel mixed-effects models > Complementary log—log regression

67
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Syntax

mecloglog depvar fe_equation [ |l re_equation] [ || re_equation ... ] [ , ()pti()ns]

where the syntax of fe_equation is
[indepvars] [lf] [ln] [weighl] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable in a crossed-effects model
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight (varname) frequency weights at higher levels
iweight (varname) importance weights at higher levels

pweight (varname) sampling weights at higher levels
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options

Description

Model
binomial (varname | #)
constraints (constraints)

SE/Robust
vce (veetype)

Reporting

level (#)
eform
nocnsreport
notable
noheader
nogroup
K‘play_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

set binomial trials if data are in binomial form
apply specified linear constraints

vcetype may be oim, opg, robust, or cluster clustvar

set confidence level; default is 1level (95)
report exponentiated coefficients

do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances O; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean—variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: mecloglog.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.
Weights are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog
box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
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covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mammame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, j) and (k,) are constrained to be equal if matnameli, j| = matnamel[k,1].

fweight (varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvarl]. varname can be any valid Stata variable name, and you can specify
fweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wtl] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight (varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvarl]. varname can be any valid Stata variable name, and you can specify
iweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wtl] || school: ... , iweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight (varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvarl]. varname can be any valid Stata variable name, and you can specify
pweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wtl1] || school: ... , pweight(wt2) ...
variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial () is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints (constraints) ; see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] Estimation options.

eform reports exponentiated coefficients and corresponding standard errors and confidence intervals.
This option may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.



72 mecloglog — Multilevel mixed-effects complementary log-log regression

notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap (#), fvwrapon(style), cformat (% fint), pformat (% fmt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean—variance adaptive Gauss—Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive Gauss—
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs) ; see [R] Maximize. Those that require
special mention for mecloglog are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
The following options are available with mecloglog but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples

Mixed-effects complementary log—log (cloglog) regression is cloglog regression containing both
fixed effects and random effects. In longitudinal data and panel data, random effects are useful for
modeling intracluster correlation; that is, observations in the same cluster are correlated because they
share common cluster-level random effects.

mecloglog allows for many levels of random effects. However, for simplicity, we here consider
the two-level model, where for a series of M independent clusters, and conditional on a set of fixed
effects x;; and a set of random effects u;,

Pr(y;; = 1|xi5,u;) = H(xi8 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of ¢ = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar;; # 0
and treating 3;; = O otherwise. The 1 X p row vector x;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard cloglog regression model, with regression
coefficients (fixed effects) 3. For notational convenience here and throughout this manual entry, we
suppress the dependence of 7;; on X;;.

The 1 x g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;;, so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is cloglog regression, H () is the inverse of the complementary log-log function
that maps the linear predictor to the probability of a success (y;; = 1) with H (v) = 1— exp{—exp(v)}.

Model (1) may also be stated in terms of a latent linear response, where only y;; = I (yZ*J > 0)
is observed for the latent
Yij = XijB + 2ijuj + €

The errors €;; are independent and identically extreme-value (Gumbel) distributed with the mean
equal to Euler’s constant and variance 02 = 72 /6, independently of u;. This nonsymmetric error
distribution is an alternative to the symmetric error distribution underlying logistic and probit analysis
and is usually used when the positive (or negative) outcome is rare.

Below we present two short examples of mixed-effects cloglog regression; refer to [ME] me and
[ME] meglm for examples of other random-effects models. A two-level cloglog model can also be
fit using xtcloglog with the re option; see [XT] xtcloglog. In the absence of random effects,
mixed-effects cloglog regression reduces to standard cloglog regression; see [R] cloglog.

> Example 1: Two-level random-intercept model

In example 1 of [XT] xtcloglog, we analyze unionization of women in the United States over
the period 1970-1988. The women are identified by the variable idcode. Here we refit that model
with mecloglog. Because the original example used 12 integration points by default, we request 12
integration points as well.

. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)
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. mecloglog union age grade not_smsa south##c.year || idcode:, intpoints(12)
Fitting fixed-effects model:

Iteration 0: Log likelihood = -14237.139
Iteration 1: Log likelihood = -13546.159
Iteration 2: Log likelihood = -13540.611
Iteration 3: Log likelihood = -13540.607
Iteration 4: Log likelihood = -13540.607
Refining starting values:

Grid node 0: Log likelihood = -11104.448
Fitting full model:

Iteration 0: Log likelihood = -11104.448
Iteration 1: Log likelihood = -10617.891
Iteration 2: Log likelihood = -10537.919
Iteration 3: Log likelihood = -10535.946
Iteration 4: Log likelihood = -10535.941
Iteration 5: Log likelihood = -10535.941

Mixed-effects cloglog regression Number of obs = 26,200
Group variable: idcode Number of groups = 4,434
Obs per group:

min = 1
avg = 5.9
max = 12
Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 248.12
Log likelihood = -10535.941 Prob > chi2 = 0.0000
union | Coefficient Std. err. z P>|z| [95% conf. intervall
age .0128542 .0119441 1.08 0.282 -.0105559 .0362642
grade .0699965 .0138551 5.06 0.000 .0428409 .097152
not_smsa -.1982009 .0649258 -3.05 0.002 -.3254531  -.0709488
1.south -2.049901 .4892644 -4.19  0.000 -3.008842 -1.090961
year -.0006158 .0123999 -0.05 0.960 -.0249191 .0236875

south#c.year
1 .0164457 .0060685 2.71  0.007 .0045516 .0283399
_cons -3.277375 .6610552 -4.96  0.000 -4.57302 -1.981731

idcode

var (_cons) 3.489803 .1630921 3.184351 3.824555
LR test vs. cloglog model: chibar2(01) = 6009.33 Prob >= chibar2 = 0.0000

The estimates are practically the same. xtcloglog reports the estimated variance component as a
standard deviation, 7, = 1.86. mecloglog reports o2 = 3.49, the square root of which is 1.87. We
find that age and education each have a positive effect on union membership, although the former is
not statistically significant. Women who live outside of metropolitan areas are less likely to unionize.

The estimated variance of the random intercept at the individual level, 8’2, is 3.49 with standard
error 0.16. The reported likelihood-ratio test shows that there is enough variability between women to
favor a mixed-effects cloglog regression over an ordinary cloglog regression; see Distribution theory
for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.

N
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> Example 2: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a cloglog model with response dt1lm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families. The first
is a random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—mecloglog
assumes that subject is nested within family. The equations are separated by | |.
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. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. mecloglog dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:

Iteration 0: Log likelihood = -337.21921
Iteration 1: Log likelihood = -313.79023
Iteration 2: Log likelihood = -313.56906
Iteration 3: Log likelihood = -313.56888
Iteration 4: Log likelihood = -313.56888
Refining starting values:

Grid node 0: Log likelihood = -314.57061
Fitting full model:

Iteration 0: Log likelihood = -314.57061 (not concave)
Iteration 1: Log likelihood = -308.82101
Iteration 2: Log likelihood = -305.71841
Iteration 3: Log likelihood = -305.26804
Iteration 4: Log likelihood = -305.26516
Iteration 5: Log likelihood = -305.26516

Mixed-effects cloglog regression Number of obs = 677
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000
dtlm | Coefficient Std. err. z P>|z| [95% conf. intervall
difficulty -1.342844 .1501508 -8.94 0.000 -1.637135  -1.048554
group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411
_cons -1.6718 .2290325 -7.30 0.000 -2.120695  -1.222905
family
var (_cons) .2353453 .2924064 .0206122 2.687117
family>
subject
var (_cons) .7T737687 .4260653 .2629714 2.276742
LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002

Note: LR test is comnservative and provided only for reference.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects.

d

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by | |.
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Stored results

mecloglog stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)

e(k_eq_model)
e(k_f)

e(datasignature)
e(datasignaturevars)

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)
e(marginswtype)

number of equations in overall model test
number of fixed-effects parameters

e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) p-value for model test
e(1l_c) log likelihood, comparison model
e(chi2_c) x2, comparison test
e(df_c) degrees of freedom, comparison test
e(p-c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) meglm
e(cmd2) mecloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e (wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) cloglog
e(title) title in estimation output
e(1link) cloglog
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n_quad) number of integration points
e(chi2type) Wald; type of model x?
e(vce) veetype specified in vee ()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
weight type for margins
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e(marginswexp) weight expression for margins
e (asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g-avg) group-size averages
e(g_max) group-size maximums
e (V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

mecloglog is a convenience command for meglm with a cloglog link and a bernoulli or
binomial family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by mecloglog (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a

series of r;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (y;1,- .- ,yjn].)’, given a set of cluster-level random effects u;, is
nj
Tij Yij Tij —Yij
f(yjla;) = H K U) {H(mj)} ’ {1 - H(ﬂz‘j)} ! J}
=1 L\Yig
nj
.y
=exp (> {y] log { H(n;)} — (rij — yij) exp(n;;) + log (yz_]_ )]
i=1 v

for m;; = x;;8 + ziju; + offset;; and H(v) = 1 — exp{—exp(v)}.
Defining r; = (j1,...,7jn,) and

c(yj.rj) Z log( j)

=1 yl]

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yjlug) = exp [yjlog {H(n;)} — (rj —y;) exp(n;) + c(y;,r;)]
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where 7); is formed by stacking the row vectors 7;,;. We extend the definitions of the functions H (),
log(-), and exp(-) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and ¢ X ¢ variance matrix
X, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density

f(yj,u;),

L;(B,%)

(2m) /2 |51/ / f(yjlu;) exp (—ujE " u;/2) du,

= exp {e(yyor)) (20) 227 [ exp (b (8.5, w)} du,

where
h(B,2, ;) = yjlog {H(n;)} — (r; — y;) exp(n;) — ;= u; /2
and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(¥, 15, X5, Zy).
The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

mecloglog supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.

Reference

Rabe-Hesketh, S., T. Toulopoulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenic
patients and their first degree relatives. Multivariate Behavioral Research 36: 279-298. https://doi.org/10.1207/
S15327906MBR3602_07.

Also see

[ME] mecloglog postestimation — Postestimation tools for mecloglog

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: mecloglog — Bayesian multilevel complementary log—log regression
[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands
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Title

mecloglog postestimation — Postestimation tools for mecloglog

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands

The following postestimation command is of special interest after mecloglog:

Command

Description

estat group
estat icc
estat sd

summarize the composition of the nested groups
estimate intraclass correlations

display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

estat summarize

estat vce

estat (svy)

estimates

etable
*hausman

lincom

*1rtest

margins

marginsplot

nlcom

predict
predictnl

pwcompare
test
testnl

information criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data

cataloging estimation results

table of estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients
likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combi-
nations of coefficients
means, probabilities, densities, REs, residuals, etc.

point estimates, standard errors, testing, and inference for generalized pre-
dictions
pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [type] {stub*|newvarlist} [lf} [m] [, statistic opli(ms}

Syntax for obtaining estimated random effects and their standard errors

predict [type] {stub*|newvarlist} [lf} [in], reffects [re_options]

Syntax for obtaining ML scores

predict [Iype] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
&iance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main
conditional (ctype) compute statistic conditional on estimated random effects; default is
conditional (ebmeans)
marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
Integration
int_options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description
ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only
re_options Description

Main
ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects

reses (stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int_options integration options

int_options Description

intpoints (#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Options for predict
Main

r

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

Integration

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()ns]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional (ebmeans) and conditional(ebmodes) are not allowed with margins.

Option marginal is assumed where applicable if conditional (fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
complementary log—log model with mecloglog. Here we show a short example of predicted proba-
bilities and predicted random effects; refer to [ME] meglm postestimation for additional examples.

> Example 1: Obtaining predicted probabilities and random effects

In example 2 of [ME] mecloglog, we analyzed the cognitive ability (dtlm) of patients with
schizophrenia compared with their relatives and control subjects, by using a three-level complementary
log—log model with random effects at the family and subject levels. Cognitive ability was measured
as the successful completion of the “Tower of London”, a computerized task, measured at three levels
of difficulty.
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. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. mecloglog dtlm difficulty i.group || family: || subject:
Fitting fixed-effects model:
(output omitted )
Mixed-effects cloglog regression Number of obs = 677
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000
dtlm | Coefficient Std. err. z P>|z| [95% conf. interval]
difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554
group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411
_cons -1.6718 .2290325 -7.30 0.000 -2.120695  -1.222905
family
var (_cons) .2353453 .2924064 .0206122 2.687117
family>
subject
var (_cons) .7T737687 .4260653 .2629714 2.276742
LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

We obtain predicted probabilities based on the contribution of both fixed effects and random effects
by typing
. predict pr
(option mu assumed)

(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict rex, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject
level, Stata saved the predicted posterior means in the variables rel and re2, respectively. If you are
not sure which prediction corresponds to which level, you can use the describe command to show
the variable labels.
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Here we list the data for family 16:

. list family subject dtlm pr rel re2 if family==16, sepby(subject)

family subject dtlm pr rel re2
208. 16 5 1 .486453  .4184933 .2760492
209. 16 5 0  .1597047  .4184933 .2760492
210. 16 5 0  .0444156  .4184933 .2760492
211. 16 34 1 .9659582 4184933 1.261488
212. 16 34 1 .5862808  .4184933 1.261488
213. 16 34 1 .205816  .4184933 1.261488
214. 16 35 0 .5571261 .4184933  -.1616545
215. 16 35 1 .1915688  .4184933 -.1616545
216. 16 35 0  .0540124  .4184933 -.1616545

We can see that the predicted random effects (rel) at the family level are the same for all members
of the family. Similarly, the predicted random effects (re2) at the individual level are constant within
each individual.

4

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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meglm — Multilevel mixed-effects generalized linear models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions
for the response conditional on normally distributed random effects.

Quick start
Without weights

Random-effects probit regression of y on x1 with random intercepts by lev2
meglm y x1 || lev2:, family(binomial) link(probit)

Same as above, but fit a logit model and report odds ratios
meglm y x1 || lev2:, family(binomial) or

Two-level gamma model of y with fixed and random coefficients on x1
meglm y x1 || lev2: x1, family(gamma)

Nested three-level random-intercept Poisson model reporting incidence-rate ratios
meglm y x1 || lev3: || lev2:, family(poisson) irr

Two-level linear regression of y on x1 and x2 with random intercepts by lev2, random coefficients
on x2, and robust standard errors

meglm y x1 x2 || lev2: x2, vce(robust)

With weights

Two-level linear regression of y on x with random intercepts by psu for two-stage sampling with
PSU-level and observation-level sampling weights wvar2 and wvarl, respectively

meglm y x [pweight=wvarl] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

meglm y x [pw=wvaril] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first

svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvarl)
svy: meglm y x || psu: || ssu:

86
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Menu

Statistics > Multilevel mixed-effects models > Generalized linear models (GLM)

Syntax

meglm depvar fe_equation [ [ re_equation] [ || re_equation ... ] [ , options]

where the syntax of fe_equation is
[indepvars] [zf] [zn] [weighz] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable in a crossed-effects model
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure (varname,) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight (varname) frequency weights at higher levels

iweight (varname) importance weights at higher levels

pweight (varname) sampling weights at higher levels
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options Description
Model
family (family) distribution of depvar; default is family(gaussian)
link (link) link function; default varies per family
constraints (constraints) apply specified linear constraints
SE/Robust
vce (veetype) vcetype may be oim, opg, robust, or cluster clustvar
Reporting
level (#) set confidence level; default is 1level (95)
eform report exponentiated fixed-effects coefficients
irr report fixed-effects coefficients as incidence-rate ratios
or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups

display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization

maximize_options

startvalues (svmethod)
startgrid[(grhhpec)]
noestimate
dnumerical
collinear
coeflegend

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values

perform a grid search to improve starting values
do not fit the model; show starting values instead
use numerical derivative techniques

keep collinear variables

display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matame) user-selected variances and covariances constrained to be equal;
the remaining variances and covariances unrestricted

Sfamily Description

gaussian Gaussian (normal); the default

Enoulli Bernoulli

binomial [# | varname} binomial; default number of binomial trials is 1

gamma gamma

Enomial [mean | mtant] negative binomial; default dispersion is mean

ordinal ordinal

poisson Poisson

link Description

identity identity

log log

logit logit

probit probit

cloglog complementary log—log

intmethod Description

mvaghermite mean—variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

pcaghermite Pinheiro—Chao mode-curvature adaptive Gauss—Hermite
quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects

pclaplace

models
Pinheiro—Chao Laplacian approximation
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indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: meglm.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.
Weights are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog
box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname.) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the 7, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (4, 7) and (k,l) are constrained to be equal if mamameli, j| = matmamelk, .
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fweight (varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvarl]. varname can be any valid Stata variable name, and you can specify
fweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wtl] || school: ... , fweight(wt2) ...
the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight (varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvarl]. varname can be any valid Stata variable name, and you can specify
iweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight (varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvarl]. varname can be any valid Stata variable name, and you can specify
pweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wtl] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

family (family) specifies the distribution of depvar; family (gaussian) is the default.

link(/ink) specifies the link function; the default is the canonical link for the family () specified
except for the gamma and negative binomial families.

If you specify both family() and link(), not all combinations make sense. You may choose
from the following combinations:

identity log logit probit cloglog

Gaussian D X
Bernoulli D X X
binomial D X X
gamma D
negative binomial D
ordinal D X X
Poisson D

D denotes the default.

constraints (constraints) ; see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.
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Reporting

level (#); see [R] Estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(/3)
rather than (. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp( 153 ) rather than .
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or upon replay. This
option is allowed for logistic models only.

nocnsreport; see [R] Estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fmt),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean—variance adaptive Gauss—Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss—Hermite quadrature; ghermite performs
nonadaptive Gauss—Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace are available only with family(binomial) and
family(bernoulli) combined with 1ink(logit) and with family (poisson); these techniques
obtain the random-effects mode and curvature using the efficient hierarchical decomposition
algorithm described in Pinheiro and Chao (2006). For hierarchical models, this algorithm takes
advantage of the design structure to minimize memory use and utilizes a series of orthogonal
triangulations to compute the factored random-effects Hessian indirectly, avoiding the sparse full
Hessian. Techniques mcaghermite and laplace use Cholesky factorization on the full Hessian.
For four- and higher-level hierarchical designs, there can be dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).
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The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [no] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance (#),
nrtolerance(#), nonrtolerance, and from(init_specs) ; see [R] Maximize. Those that require
special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meglm but are not shown in the dialog box:

startvalues (svmethod) specifies how starting values are to be computed. Starting values specified
in from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
to obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances
of random effects.

startvalues (fixedonly[ , iterate(#) } ) builds on startvalues(constantonly) by fitting
a full fixed-effects model to obtain estimates of coefficients along with intercept and auxiliary
parameters, and it continues to use 1 for the variances of random effects. This is the default
behavior. iterate (#) limits the number of iterations for fitting the fixed-effects model.

startvalues (iv[ , iterate(#) ] ) builds on startvalues(fixedonly) by using instrumental-
variable methods with generalized residuals to obtain variances of random effects. iterate (#)
limits the number of iterations for fitting the instrumental-variable model.

startvalues (iterate(#)) limits the number of iterations for fitting the default model (fixed
effects).

startgrid[ (gridspec) ] performs a grid search on variance components of random effects to improve
starting values. No grid search is performed by default unless the starting values are found to be
not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving
¢° likelihood evaluations, where ¢ is the number of random effects. Sometimes this resolves the
problem. Usually, however, there is no problem and startgrid() is not run by default. There
can be benefits from running startgrid() to get better starting values even when starting values
are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances
and chooses the ones that work best. You may already be using a default form of startgrid()
without knowing it. If you see meglm displaying Grid node 1, Grid node 2, ... following Grid
node O in the iteration log, that is meglm doing a default search because the original starting values
were not feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid (numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. covspec is name[level] for variances and namel [level]l *name?2 [level] for
covariances. For example, the variance of the random intercept at level id is specified as _cons [id],
and the variance of the random slope on variable week at the same level is specified as week [id].
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The residual variance for the linear mixed-effects model is specified as e.depvar, where depvar
is the name of the dependent variable. The covariance between the random slope and the random
intercept above is specified as _cons [id] *week [id].

startgrid (numlist covspec) combines the two syntaxes. You may also specify startgrid()
multiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as
modified by the above options if modifications were made), and they are to be shown using the
coeflegend style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, analytical formulas for com-
puting the gradient and Hessian are used for all integration methods except intmethod(laplace).

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects
models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog.
For additional examples of mixed-effects models for ordinal responses, see [ME] meologit and
[ME] meoprobit. For additional examples of mixed-effects models for multinomial outcomes, see
[SEM] Example 41g. For additional examples of mixed-effects models for count outcomes, see
[ME] mepoisson and [ME] menbreg. For additional examples of mixed-effects parametric survival
models, see [ME] mestreg. For additional examples of mixed-effects models for censored outcomes,
see [ME] metobit and [ME] meintreg.

Remarks are presented under the following headings:

Introduction

Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models

Obtaining better starting values

Survey data

Video example

Introduction

meglnm fits multilevel mixed-effects generalized linear models of the form

g{E(y\X, u)} = X8+ Zu, y~F (1)

where y is the n X 1 vector of responses from the distributional family F', X is an n X p design/covariate
matrix for the fixed effects 3, and Z is the n X q design/covariate matrix for the random effects u.
The X3 + Zu part is called the linear predictor, and it is often denoted as 7. The linear predictor
also contains the offset or exposure variable when offset () or exposure() is specified. g(-) is
called the link function and is assumed to be invertible such that

E(y|X,u) =g X8+ Zu)=H(n) = p
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For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for ¢g(-) and F results in a wide array of models. For instance,
if y is distributed as Gaussian (normal) and g(-) is the identity function, we have

E(y) = X8+ Zu, y ~ normal

or mixed-effects linear regression. If g(-) is the logit function and y is distributed as Bernoulli, we
have
logit{E(y)} =XB+ Zu, y ~ Bernoulli

or mixed-effects logistic regression. If g(+) is the natural log function and y is distributed as Poisson,
we have
ln{E(y)} = X8+ Zu, y ~ Poisson

or mixed-effects Poisson regression. In fact, some combinations of families and links are so common
that we implemented them as separate commands in terms of meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)
meprobit family(bernoulli) link(probit)
mecloglog family(bernoulli) link(cloglog)
meologit family(ordinal) 1link(logit)
meoprobit family(ordinal) link(probit)
mepoisson family(poisson) link(log)
menbreg family (nbinomial) link(log)

When no family-link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, allows
for modeling of the structure of the residual errors; see [ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean 0 and ¢ X ¢
variance matrix . The random effects are not directly estimated (although they may be predicted),
but instead are characterized by the variance components, the elements of G = Var(u).

The general forms of the design matrices X and Z allow estimation for a broad class of generalized
mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical
designs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within
the same cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on a covariate, or both. The general specification of variance components also provides additional
flexibility—the random intercept and random slope could themselves be modeled as independent, or
correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and
McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and
Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).

The key to fitting mixed models lies in estimating the variance components, and for that there
exist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates
and Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model
parameters. The ML estimates are based on the usual application of likelihood theory, given the
distributional assumptions of the model.
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Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

9{E(y;)} = X8+ Zju; (2)

for j =1,..., M, with cluster j consisting of n; observations. The response y; comprises the rows
of y corresponding with the jth cluster, with X; defined analogously. The random effects u; can
now be thought of as M realizations of a ¢ X 1 vector that is normally distributed with mean O
and g X ¢ variance matrix X. The matrix Z; is the n; X ¢ design matrix for the jth cluster random
effects. Relating this to (1), note that

Z, 0 -~ 0 "
0 Z, - 0 1

S . . . . ;ou= ; G=Iy®X
0 0 0 Zy n

where I; is the M x M identity matrix and ® is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First,
it makes specifications of random-effects terms easier. If the clusters are schools, you can simply
specify a random effect at the school level, as opposed to thinking of what a school-level random
effect would mean when all the data are considered as a whole (if it helps, think Kronecker products).
Second, representing a mixed-model with (2) generalizes easily to more than one set of random
effects. For example, if classes are nested within schools, then (2) can be generalized to allow random
effects at both the school and the class-within-school levels.

Two-level models for continuous responses

We begin with a simple application of (2).

> Example 1: Two-level linear mixed model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weight,, = Bo + Biweek;; + u; + €

for i =1,...,9 weeks and j = 1,...,48 pigs. The fixed portion of the model, 3y + Biweek;;,
simply states that we want one overall regression line representing the population average. The random
effect u; serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)
. meglm weight week || id:
Fitting fixed-effects model:
Iteration 0: Log likelihood = -1251.2506
Iteration 1: Log likelihood = -1251.2506
Refining starting values:
Grid node 0: Log likelihood = -1150.6253
Fitting full model:
Iteration 0: Log likelihood = -1150.6253 (not concave)
Iteration 1: Log likelihood = -1036.1793
Iteration 2: Log likelihood = -1017.912
Iteration 3: Log likelihood = -1014.9537

4:

Iteration Log likelihood = -1014.9268
Iteration 5: Log likelihood = -1014.9268

Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: Identity
Group variable: id Number of groups = 48
Obs per group:
min = 9
avg = 9.0
max = 9
Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) =  25337.48
Log likelihood = -1014.9268 Prob > chi2 = 0.0000
weight | Coefficient Std. err. z P>|z| [95% conf. interval]
week 6.209896 .0390124  159.18  0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651
id
var (_cons) 14.81745  3.124202 9.801687 22.39989
var (e.weight) 4.383264 .3163349 3.805112 5.049261
LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

L.

By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

. When we added | | id:, we specified random effects at the level identified by the group variable

id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these

are Newton—Raphson iterations, but other methods are available by specifying the appropriate
maximize_options; see [R] Maximize.

. The header describes the model, presents a summary of the random-effects group, reports the

integration method used to fit the model, and reports a Wald test against the null hypothesis that all
the coefficients on the independent variables in the mean equation are 0. Here the null hypothesis
is rejected at all conventional levels. You can suppress the group information with the nogroup
or the noheader option, which will suppress the rest of the header as well.
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5. The estimation table reports the fixed effects, followed by the random effects, followed by the
overall error term.

a. For the fixed-effects part, we estimate 5y = 19.36 and 3; = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id
(pig) level. We have only one random effect at this level, the random intercept. The variance
of the level-two errors, 03, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term:
862 = 4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and
is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for
a discussion of likelihood-ratio testing of variance components.

4

See Remarks and examples in [ME] mixed for further analysis of these data including a random-slope
model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses

By specifying different family—link combinations, we can fit a variety of mixed-effects models for
nonlinear responses. Here we replicate one of the models from example 2 of melogit.

> Example 2: Two-level logistic regression model

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women
sampled were from 60 districts, identified by the variable district. Each district contained either
urban or rural areas (variable urban) or both. The variable c_use is the binary response, with a value
of 1 indicating contraceptive use. Other covariates include mean-centered age and a factor variable
for the number of children.

We fit a standard logistic regression model, amended to have a random intercept for each district
and a random slope on the urban factor variable. We fit the model by typing
. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use i.urban age i.children
> || district: i.urban, family(bernoulli) link(logit) nofvlabel

Fitting fixed-effects model:
Iteration 0: Log likelihood = -1229.5485

Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:
Grid node 0: Log likelihood = -1215.8592
Fitting full model:

Iteration 0: Log likelihood = -1215.8592 (not concave)

Iteration 1: Log likelihood = -1209.6285
Iteration 2: Log likelihood = -1205.7903
Iteration 3: Log likelihood = -1205.1337
Iteration 4: Log likelihood = -1205.0034
Iteration 5: Log likelihood = -1205.0025
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Iteration 6: Log likelihood = -1205.0025

Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit

Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.30
Log likelihood = -1205.0025 Prob > chi2 = 0.0000
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
1.urban . 7143927 .1513595 4.72 0.000 .4177335 1.011052
age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138
children

1 1.128973 .1599347 7.06 0.000 .815507 1.442439
2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
3 1.352238 .1815608 7.45 0.000 .9963853 1.708091
_cons -1.698137 .1505019  -11.28  0.000 -1.993115  -1.403159

district
var (1.urban) .2741013 .2131525 .059701 1.258463
var (_cons) .2390807 .0857012 .1184191 .4826891
LR test vs. logistic model: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we did not specify a covariance structure for the random effects (u1;, uo;)’, meglm used the
default independent structure:

EVar[ulJ}[ail 2 }

U, 0 7.0

with 52; = 0.27 and 52, = 0.24. You can request a different covariance structure by specifying the
covariance() option. See examples 1-3 in melogit for further analysis of these data, and see

[ME] me and [ME] mixed for further examples of covariance structures.

4

Three-level models for nonlinear responses

Two-level models extend naturally to models with three or more levels with nested random effects.
Here we replicate the model from example 2 of [ME] meologit.

> Example 3: Three-level ordered logistic regression model

We use the data from the Television, School, and Family Smoking Prevention and Cessation
Project (Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly
assigned into one of four groups defined by two treatment variables. Students within each school are
nested in classes, and classes are nested in schools. The dependent variable is the tobacco and health
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knowledge (THK) scale score collapsed into four ordered categories. We regress the outcome on the
treatment variables, social resistance classroom curriculum and TV intervention, and their interaction
and control for the pretreatment score.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)
Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775

Iteration 1: Log likelihood = -2125.509

Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032

Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:

Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881

Mixed-effects GLM Number of obs = 1,600
Family: Ordinal
Link: Logit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
thk | Coefficient Std. err. z P>|z| [95% conf. intervall
prethk .4085273 .039616 10.31  0.000 .3308814 .4861731
1l.cc . 8844369 .2099124 4.21  0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15  0.249 -.1651614 .6380575
ccH#tv
11 -.3717699 .2958887 -1.26  0.209 -.951701 .2081612
/cutl -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865
school
var (_cons) .0448735 .0425387 .0069997 .2876749
school>class
var (_cons) .1482157 .0637521 .063792 .3443674
LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by | |. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for
a substantive interpretation of the results.

N

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by | |. The order of nesting goes from left to right as the groups go from
biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed models contain nested levels of random effects. In this section, we consider a
crossed-effects model, that is, a mixed-effects model in which the levels of random effects are not
nested; see [ME| me for more information on crossed-effects models.

> Example 4: Crossed-effects logistic regression model

We use the salamander cross-breeding data from Karim and Zeger (1992) as analyzed in Rabe-
Hesketh and Skrondal (2022, sec. 16.8). The salamanders come from two populations—whiteside
and roughbutt—and are labeled whiteside males (wsm), whiteside females (wsf), roughbutt males
(rbm), and roughbutt females (rbf). Male identifiers are recorded in the variable male, and female
identifiers are recorded in the variable female. The salamanders were divided into groups such that
each group contained 60 male—female pairs, with each salamander having three potential partners
from the same population and three potential partners from the other population. The outcome (y) is
coded 1 if there was a successful mating and is coded O otherwise; see the references for a detailed
description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same
value of his random intercept across all females, and each female has the same value of her random
intercept across all males.

To fit a crossed-effects model in Stata, we use the _all: R.varname syntax. We treat the entire
dataset as one super cluster, denoted —_all, and we nest each gender within the super cluster by using
the R.varname notation. R.male requests a random intercept for each level of male and imposes an
identity covariance structure on the random effects; that is, the variances of the random intercepts
are restricted to be equal for all male salamanders. R.female accomplishes the same for the female
salamanders. In Stata, we type
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. use https://www.stata-press.com/data/r18/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)

> link(logit) or

note: crossed random-effects model specified; option intmethod(laplace)
implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -223.13998

Iteration 1: Log likelihood = -222.78752

Iteration 2: Log likelihood = -222.78735

Iteration 3: Log likelihood = -222.78735

Refining starting values:

Grid node 0: Log likelihood = -211.58149

Fitting full model:

Iteration 0: Log likelihood = -211.58149

Iteration 1: Log likelihood = -209.33737 (not concave)
Iteration 2: Log likelihood = -209.30822
Iteration 3: Log likelihood = -209.27666
Iteration 4: Log likelihood = -209.27659
Iteration 5: Log likelihood = -209.27659
Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Logit
Group variable: _all Number of groups = 1
Obs per group:
min = 360
avg = 360.0
max = 360
Integration method: laplace
Wald chi2(3) = 42.55
Log likelihood = -209.27659 Prob > chi2 = 0.0000
y | Odds ratio  Std. err. z P>|z| [95% conf. intervall
1.wsm .4956232 .221259 -1.57 0.116 .2066109 1.188913
1.wsf .0547959 .0287997 -5.563 0.000 .0195602 .1535053
wsm#wsf
11 36.17442  21.75035 5.97 0.000 11.13283 117.5432
_cons 2.74053 1.050653 2.63 0.009 1.29272 5.809847
_all>male
var (_cons) 1.040939 .4983886 .4072683 2.660541
_all>female
var (_cons) 1.174381 .5404486 .476527 2.894215

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 27.02 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we specified a crossed-effects model, meglm defaulted to the method of Laplacian approxi-
mation to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me
for a discussion of computational complexity of mixed-effects models, and see Methods and formulas
below for the formulas used by the Laplacian approximation method.

The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,
1.17, is larger than the heterogeneity among the male salamanders, 1.04.
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Setting both random intercepts to 0, the odds of successful mating for a roughbutt male—female
pair are given by the estimate of _cons, 2.74. Rabe-Hesketh and Skrondal (2022, sec. 16.8) show
how to calculate the odds ratios for the other three salamander pairings.

4

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you specify R.varname, meglm handles the
calculations internally rather than creating the indicators in the data. Because the set of indicators is
overparameterized, R.varname implies noconstant.

Q Technical note
We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female ...

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders
as nested within the _all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female:

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME] me,
the latter specification, organized at the cluster (female) level with random-effects dimension one (a
random intercept) is, in general, much more computationally efficient.

a

Obtaining better starting values

Given the flexibility of mixed-effects models, you will find that some models “fail to converge”
when used with your data; see Diagnosing convergence problems in [ME] me for details. What we
say below applies regardless of how the convergence problem revealed itself. You might have seen
the error message “initial values not feasible” or some other error message, or you might have an
infinite iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and
startgrid().

startvalues (svmethod) allows you to specify one of four starting-value calculation methods:
zero, constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly).
Evidently, that did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a
simplified model to get them—you can combine the options startvalues() and from():

. meglm ..., ... // simplified model
. matrix b = e(b)
. meglm ..., ... from(b) startvalues(iv) // full model

The other special option meglm provides is startgrid(), which can be used with or without
startvalues (). startgrid() is a brute-force approach that tries various values for variances and
covariances and chooses the ones that work best.
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1. You may already be using a default form of startgrid() without knowing it. If you see
meglm displaying Grid node 1, Grid node 2, ... following Grid node O in the iteration log,
that is meglm doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,
for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. Variances and covariances are specified in the usual way.
startgrid(_cons[id] x[id] _cons[id]l*x[id]) specifies that 0.1, 1, and 10 be tried
for each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()
multiple times so that you can search the different ranges for different variances and
covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, ..., then
specify startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with
some other error. In this case, we know that meglm did not run startgrid() on its own
because it did not report Grid node 1, Grid node 2, etc. Your problem is poor starting values,
not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run
a long time because it runs all possible combinations. If you have 10 random effects, that
means 10 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option
iterate(#) and look at the results. Identify the problematic variances and search across
them only. Do not just look for variances going to 0. Variances getting really big can be
a problem, too, and even reasonable values can be a problem. Use your knowledge and
intuition about the model.

Perhaps you will try to fit your model by specifying startgrid(.1 1 10 _cons[id] x[id]
_cons[id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying
startgrid(.1 1 10 _cons[id] x[id] _cons[id]*x[id]) is
startgrid(_cons[id] x[id] _cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is
positive, then try negative starting values for the covariance by specifying startgrid(-.1
-1 -10 _cons[id]*x[id]).

Remember that you can specify startgrid () multiple times. Thus you might specify both
startgrid(_cons[id] x[id]) and startgrid(-.1 -1 -10 _cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried
the default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the
variances of random effects. You may need to try different values or try the same values on
covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.
If, looking at the results, you have an idea of which variance or covariance is a problem, or if
you have few variances and covariances, we would recommend running startgrid() first.
On the other hand, if you have no idea as to which variance or covariance is the problem
and you have many of them, you will be better off if you first simplify the model. After
doing that, if your simplified model does not include all the variances and covariances, you
can specify a combination of from() and startgrid().

Survey data

Multilevel modeling of survey data is a little different from standard modeling in that weighted
sampling can take place at multiple levels in the model, resulting in multiple sampling weights. Most
survey datasets, regardless of the design, contain one overall inclusion weight for each observation in
the data. This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we
mean that it factors in all levels of clustered sampling, corrections for noninclusion and oversampling,
poststratification, etc.

For simplicity, in what follows, assume a simple two-stage sampling design where groups are
randomly sampled and then individuals within groups are sampled. Also assume that no additional
weight corrections are performed; that is, sampling weights are simply the inverse of the probability
of selection. The sampling weight for observation ¢ in cluster j in our two-level sample is then
w;; = 1/m;;, where 7;; is the probability that observation ¢, j is selected. If you were performing a
standard analysis such as OLS regression with regress, you would simply use a variable holding w;;
as your pweight variable, and the fact that it came from two levels of sampling would not concern
you. Perhaps you would type vce (cluster groupvar) where groupvar identifies the top-level groups
to get standard errors that control for correlation within these groups, but you would still use only
one weight variable.

Now take these same data and fit a two-level model with meglm. As seen in (5) in Methods and
formulas later in this entry, it is not sufficient to use the single sampling weight w;;, because weights
enter the log likelihood at both the group level and the individual level. Instead, what is required
for a two-level model under this sampling design is w;, the inverse of the probability that group j
is selected in the first stage, and wy|;, the inverse of the probability that individual ¢ from group j
is selected at the second stage conditional on group j already being selected. You cannot use wj;
without making any assumptions about w;.

Given the rules of conditional probability, w;; = wjw; ;. If your dataset has only w;;, then you
will need to either assume equal probability sampling at the first stage (w; = 1 for all j) or find
some way to recover w; from other variables in your data; see Rabe-Hesketh and Skrondal (2006)
and the references therein for some suggestions on how to do this, but realize that there is little yet
known about how well these approximations perform in practice.

What you really need to fit your two-level model are data that contain w; in addition to either
wi; or wy;. If you have w;;j—that is, the unconditional inclusion weight for observation 7, j—then
you need to divide w;; by w; to obtain w;;.
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> Example 5: Two-level logistic regression model with weights

Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International
Student Assessment (PISA) study on reading proficiency among 15-year-old American students, as
performed by the Organisation for Economic Co-operation and Development (OECD). The original
study was a three-stage cluster sample, where geographic areas were sampled at the first stage, schools
at the second, and students at the third. Our version of the data does not contain the geographic-areas
variable, so we treat this as a two-stage sample where schools are sampled at the first stage and
students at the second.

. use https://www.stata-press.com/data/r18/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)

. describe
Contains data from https://www.stata-press.com/data/r18/pisa2000.dta
Observations: 2,069 Programme for International
Student Assessment (PISA) 2000
data
Variables: 11 12 Jun 2022 10:08

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female

isei byte %8.0g International socioeconomic index

w_fstuwt float  %9.0g Student-level weight

wnrschbw float  %9.0g School-level weight

high_school byte %8.0g 1 if highest level by either
parent is high school

college byte %8.0g 1 if highest level by either
parent is college

one_for byte %8.0g 1 if one parent foreign born

both_for byte %8.0g 1 if both parents are foreign
born

test_lang byte %8.0g 1 if English (the test language)
is spoken at home

pass_read byte %8.0g 1 if passed reading proficiency
threshold

id_school int %8.0g School ID

Sorted by:

For student ¢ in school j, where the variable id_school identifies the schools, the variable
w_fstuwt is a student-level overall inclusion weight (w;;, not w;|;) adjusted for noninclusion and
nonparticipation of students, and the variable wnrschbw is the school-level weight w; adjusted for
oversampling of schools with more minority students. The weight adjustments do not interfere with
the methods prescribed above, and thus we can treat the weight variables simply as w;; and wyj,
respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency
threshold. We will do the same using meglm, but first we must reproduce the “method 1" adjusted
weight variables that were used. The “method 1” adjustment scales the first-level weights so that they
sum to the effective sample size of their corresponding second-level cluster.

. sort id_school

. generate sqw = w_fstuwt * w_fstuwt

. by id_school: egen sumw = sum(w_fstuwt)
. by id_school: egen sumsqw = sum(sqw)

. generate pstlsl = w_fstuwt*sumw/sumsqw
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The new variable pst1s1 holds the adjusted first-level weights. Rabe-Hesketh and Skrondal (2006)

also included the school mean socioeconomic index as a covariate in their analysis. We reproduce
this variable using egen.

. by id_school: egen mn_isei = mean(isei)

Here is the fitted model:

. meglm pass_read female isei mn_isei high_school college test_lang one_for
> both_for [pw=pstisl], family(bernoulli) link(logit)
> || id_school:, pweight(wnrschbw)
(output omitted )
Mixed-effects GLM Number of obs = 2,069
Family: Bernoulli
Link: Logit

Group variable: id_school Number of groups = 148
Obs per group:
min = 1
avg = 14.0
max = 28
Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 88.30
Log pseudolikelihood = -197395.98 Prob > chi2 = 0.0000
(Std. err. adjusted for 148 clusters in id_school)
Robust

pass_read Coefficient std. err. z P>|z]| [95% conf. intervall
female .6221369 .1540088 4.04 0.000 .3202852 .9239887
isei .018215 .0048057 3.79 0.000 .0087959 .027634
mn_isei .0682472 .0164337 4.15 0.000 .0360378 .1004566
high_school .1028108 L477141 0.22 0.829 -.8323683 1.03799
college .4531688 .5053447 0.90 0.370 -.5372885 1.443626
test_lang .6251822 .3821182 1.64 0.102 -.1237557 1.37412
one_for -.1089314 .2739724 -0.40 0.691 -.6459075 .4280447
both_for -.2804038 .3264681 -0.86 0.390 -.9202696 .359462
_cons -5.877565 .954525 -6.16 0.000 -7.7484 -4.006731

id_school
var (_cons) .2955769 .1243375 .1295996 .6741201

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is,
[pw=pstis1].

2. We specified the level-two weights via the pweight (wnrschbw) option as part of the random-
effects specification for the id_school level. As such, it is treated as a school-level weight.
Accordingly, wnrschbw needs to be constant within schools, and meglm did check for that before
estimating.

3. As is the case with other estimation commands in Stata, standard errors in the presence of sampling
weights are robust.

4. Robust standard errors are clustered at the top level of the model, and this will always be true unless

you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.
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> Example 6: Two-level logistic regression model with survey weights

meglm also supports the svy prefix (see [SVY] svy) for the linearized variance estimator. Here we

refit the model from the previous example using the svy prefix after we svyset (see [SVY] svyset)
the survey design variables.

. svyset id_school, weight(wnrschbw) || _n, weight(pstisl)
note: stage 1 is sampled with replacement; further stages will be ignored for
variance estimation.
Sampling weights: <none>
VCE: linearized
Single unit: missing
Strata 1: <one>
Sampling unit 1: id_school
FPC 1: <zero>
Weight 1: wnrschbw
Strata 2: <one>
Sampling unit 2: <observations>
FPC 2: <zero>
Weight 2: pstisi

. svy: meglm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, family(bernoulli) link(logit) || id_school:
(running meglm on estimation sample)

Survey: Mixed-effects GLM

Number of strata = 1 Number of obs = 2,069
Number of PSUs = 148 Population size = 346,373.74
Design df = 147
F(8, 140) = 10.51
Prob > F = 0.0000
Linearized

pass_read | Coefficient std. err. t P>t [95% conf. intervall]
female .6221369 .1540088 4.04 0.000 .3177796 .9264943
isei .018215 .0048057 3.79 0.000 .0087177 .0277122
mn_isei .0682472 .0164337 4.15 0.000 .0357704 .100724
high_school .1028108 L477141 0.22 0.830 -.8401311 1.045753
college .4531688 .5053447 0.90 0.371 -.5455101 1.451848
test_lang .6251822 .3821182 1.64 0.104 -.1299725 1.380337
one_for -.1089314 .2739724 -0.40 0.692 -.6503648 .432502
both_for -.2804038 .3264681 -0.86 0.392 -.925581 .3647734
_cons -5.877565 . 954525 -6.16 0.000 -7.763929 -3.991201

id_school
var (_cons) .2955769 .1243375 .1287156 .6787495

Notes:
1. We svyset the design variables: id_school is the PSU variable, wnrschbw contains weights

at the PSU level, _n specifies that the students are identified by the individual observations, and
pstlsl contains our adjusted student-level conditional weights.

. svyset notes the lack of a finite population correction in the first stage and informs us that only

the first-stage unit information will be used in the linearized variance estimator. However, the svy
prefix will still pass the stage-two weights to meglm.

. svy produces a different header, giving us an estimate of the population size, the design degrees

of freedom, and the number of first-stage sampling units.

N
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Video example
Tour of multilevel GLMs

Stored results

meglm stores the following in e():

e(binomial)
e(dispersion)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_cat) number of categories (with ordinal outcomes)
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(chi2) x2
e(p) p-value for model test
e(ll_c) log likelihood, comparison model
e(chi2_c) x?, comparison test
e(df_c) degrees of freedom, comparison test
e(p—c) p-value for comparison test
e(N_clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) gsem
e(cmd2) meglm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e (wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e (model) name of marginal model
e(title) title in estimation output
e(link) link
e(family) family
e(clustvar) name of cluster variable
e(offset) offset

binomial number of trials (with binomial models)
mean or constant (with negative binomial models)

e(intmethod) integration method

e(n_quad) number of integration points

e(chi2type) Wald; type of model x?

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program


https://www.youtube.com/watch?v=SbwApki_BnI&feature=youtu.be
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e(technique)
e(datasignature)

e(datasignaturevars)

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)
e(marginswtype)
e(marginswexp)
e(asbalanced)
e(asobserved)

maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
weight type for margins

weight expression for margins

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(cat) category values (with ordinal outcomes)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g-_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums
e (V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

Methods and formulas are presented under the following headings:

Introduction

Gauss—Hermite quadrature
Adaptive Gauss—Hermite quadrature
Laplacian approximation

Survey data

Introduction

Without a loss of generality, consider a two-level generalized mixed-effects model

E(y;|X;,w) =g ' (X;8+Zw;), y~F

for j = 1,..., M clusters, with the jth cluster consisting of n; observations, where, for the jth
cluster, y; is the m; X 1 response vector, Xj is the n; X p matrix of fixed predictors, Zj is the
n;j X g matrix of random predictors, u; is the ¢ X 1 vector of random effects, 3 is the p x 1 vector of
regression coefficients on the fixed predictors, and we use % to denote the unknown g X g variance
matrix of the random effects. For simplicity, we consider a model with no auxiliary parameters.
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Let n; be the linear predictor, n; = X;8 + Zjuy;, that also includes the offset or the exposure
variable when offset () or exposure() is specified. Let y;; and 7);; be the ¢th individual elements
of yjand m;, ¢ =1,...,n;. Let f(yijlni;) be the conditional density function for the response at
observation 2. Because the observations are assumed to be conditionally independent, we can overload
the definition of f(-) with vector inputs to mean

logf (y;|n;) Z log f (i;17is)
7j=1

The random effects u; are assumed to be multivariate normal with mean O and variance X. The
likelihood function for cluster j is given by

1
L£;(8,3) = (27r)—‘1/2|2|—1/2/% f(yiln;) exp (—2“32_1“9‘) du;
! (3)
~ ~ 1
= (2m)"92|3| 1/2/%e exp{logf(yjlnj) 5 w3z ug} du;

where R denotes the set of values on the real line and R is the analog in ¢-dimensional space.

The multivariate integral in (3) is generally not tractable, so we must use numerical methods to
approximate the integral. We can use a change-of-variables technique to transform this multivariate
integral into a set of nested univariate integrals. Each univariate integral can then be evaluated
using a form of Gaussian quadrature. meglm supports three types of Gauss—Hermite quadratures:
mean—variance adaptive Gauss—Hermite quadrature (MVAGH), mode-curvature adaptive Gauss—Hermite
quadrature (MCAGH), and nonadaptive Gauss—Hermite quadrature (GHQ). meglm also offers the
Laplacian-approximation method, which is used as a default method for crossed mixed-effects models.
Below we describe the four methods. The methods described below are based on Skrondal and
Rabe-Hesketh (2004, chap. 6.3).

Gauss—Hermite quadrature

Let u; = Lv;, where v; is a ¢ x 1 random vector whose elements are independently standard
normal variables and L is the Cholesky decomposition of ¥, ¥ = LL’. Then n; = X8+ Z;Lvy,
and the likelihood in (3) becomes

£5(6.%) = ()% [ exp {toesvs1ny) - i b av

(4)
(2m) q/2/ / exp{logf(meg) Z } dvji,...,dvjq

Consider a g-dimensional quadrature grid containing r quadrature points in each dimension. Let
ax = (ag,,...,ar,)’ be a point on this grid, and let wx = (wg,,...,ws,)" be the vector of
corresponding weights. The GHQ approximation to the likelihood is
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T(cD> Z Z leXP{logf yilnu)} Hwk 1

ki=1 kq=1

n;
Z Z [exp {Z log f (yi5(mijx) } H wkp‘|
ki=1 kq=1 =t

where

njk = X],@ —|— ZjLak

and 7k is the ith element of 7.

Adaptive Gauss—Hermite quadrature

This section sets the stage for MVAGH quadrature and MCAGH quadrature.

Let’s reconsider the likelihood in (4). We use ¢(v;) to denote a multivariate standard normal with
mean O. and variance I, and we use @(v;|p;, A;) to denote a multivariate normal with mean g,
and variance A;.

For fixed model parameters, the posterior density for v; is proportional to

o(vi) f(y;iln;)
where
T]J = Xj,B + ZjLVj
It is reasonable to assume that this posterior density can be approximated by a multivariate normal

density with mean vector p; and variance matrix A;. Instead of using the prior density of v; as the
weighting distribution in the integral, we can use our approximation for the posterior density,

f(yiln;)é(v;)

L;(B,X)= e OVl Ay) o(vilpj, Aj)dv;

Then the MVAGH approximation to the likelihood is
LYVACH (B, % Z Z [exp{logf Vil }H
ki=1  kg=1
where

N = X0+ Z;Lajy

and ajk and wjkp are the abscissas and weights after an orthogonalizing transformation of a;) and
wjg,,, respectively, which eliminates posterior covariances between the random effects.
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Estimates of p; and A; are computed using one of two different methods. The mean g; and
variance A ; are computed iteratively by updating the posterior moments with the MVAGH approximation,
starting with a 0 mean vector and identity variance matrix. For the MCAGH approximation, p; and A;
are computed by optimizing the integrand with respect to v, where p; is the optimal value and A;
is the curvature at ;.

Laplacian approximation

Consider the likelihood in (3) and denote the argument in the exponential function by

1 _
h(B,%,u;) = logf(y;|X;8+ Z;u;) — fug-E luj

2

The Laplacian approximation is based on a second-order Taylor expansion of h(3, %, u;) about the
value of u; that maximizes it. The first and second partial derivatives with respect to u; are

ah(/g727uj) Z/-M

! )= — = — -1 .
h(B,%,u;) o, f o, Y7y,
9*h(B, 3, u;) d*10gf(y;In;) ~
" N — ke DA 1 J L 1
WBE ) =g o L oo, L E

The maximizer of h(83, X, u;) is U, such that h’'(3,X,u;) = 0. The integral in (3) is proportional
to the posterior density of u; given the data, so U, is also the posterior mode.

Pinheiro and Chao (2006) show that the posterior mode, U;, and curvature, " (3, X, ﬁj)fl, can be
efficiently computed as the iterative solution to a least-squares problem by using matrix decomposition
methods similar to those used in fitting linear mixed-effects models (Bates and Pinheiro 1998; Pinheiro
and Bates 2000).

Let

p; = X;B+ Z;u,

S, — dlogf(y;|p;)
1=
Pj
081 9%logf(y, ;)

T 0B, op,0m,

Sa

H; = 1"(8,%,1;) = Z;S,Z; - 3"

then

0="1'(8%,1;) =28 -2 'y,
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Given the above, the second-order Taylor approximation takes the form

. 1 - .
h(B,%,u;) = h(B,%,u;) + 5(113‘ —u;)'H;(u; — u)

because the first-order derivative term is 0. The integral is approximated by

/ exp{h(B, 5, u;)} du; ~ (2m)9/2 |~H;| "2 exp{h(6. 5, ;)}
Ra

Thus the Laplacian approximated log likelihood is

. 1 1 ~
logﬁ?dp(f)’, 3) = ~3 log|%| — B log [-H;| + h(B, %, 1;)

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, £(3,X) = ZJM:l L;(B,%).

2

Maximization of £(3,X) is performed with respect to (3, o), where o is a vector comprising

the unique elements of ¥. Parameter estimates are stored in e(b) as (3, 32), with the corresponding
variance—covariance matrix stored in e (V). In the presence of auxiliary parameters, their estimates
and standard errors are included in e(b) and e(V), respectively.

Survey data

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

M o n;
LB,Z) =Y w; 1og/ exp QY wij;logf (yijlmij) ¢ 6(vi1) dvi (5)
=1 —oc

=1

where w; is the inverse of the probability of selection for the jth cluster; w;; is the inverse of the
conditional probability of selection of individual 4, given the selection of cluster j, f(-) is as defined
previously; and ¢(-) is the standard multivariate normal density.

Weighted estimation is achieved through the direct application of w; and wj); into the likelihood
calculations as detailed above to reflect replicated clusters for w; and replicated observations within
clusters for wy;);. Because this estimation is based on replicated clusters and observations, frequency
weights are handled similarly.

Weights are not allowed with crossed models or the Laplacian approximation.
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Postestimation commands

The following postestimation command is of special interest after meglm:

Command

Description

estat group
estat icc
estat sd

summarize the composition of the nested groups
estimate intraclass correlations

display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

estat summarize

estat vce

estat (svy)

estimates

etable
*hausman

lincom

*1rtest

margins

marginsplot

nlcom

predict
predictnl

pwcompare
test
testnl

information criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data
cataloging estimation results
table of estimation results
Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients
likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combi-
nations of coefficients
means, probabilities, densities, REs, residuals, etc.

point estimates, standard errors, testing, and inference for generalized pre-
dictions
pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and raw, Pearson, deviance, and Anscombe
residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [Iype] {stub*|newvar[ist} [zf} [in] [, statistic ()pti()ns}

Syntax for obtaining estimated random effects and their standard errors

predict [type] {stub*|newvarlist} [lf} [in], reffects [re_()ptions]

Syntax for obtaining ML scores

predict [type] {stub*|newvarlist} [lf} [in], scores

statistic Description

Main
mu mean response; the default
pr synonym for mu for ordinal and binary response models
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
residuals raw residuals; available only with the Gaussian family
pearson Pearson residuals
&iance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main

conditional (ctype) compute statistic conditional on estimated random effects; default is

conditional (ebmeans)

marginal compute statistic marginally with respect to the random effects

nooffset make calculation ignoring offset or exposure

outcome (outcome) outcome category for predicted probabilities for ordinal models
Integration

int_options integration options

pearson, deviance, anscombe may not be combined with marginal.

For ordinal outcomes, you specify one or k new variables in newvarlist with mu and pr, where k is the number of
outcomes. If you do not specify outcome(), these options assume outcome (#1).

ctype Description
ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only
re_options Description

Main
ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects

reses (stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int_options integration options

int_options Description

intpoints (#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Options for predict
Main

mu, the default, calculates the expected value of the outcome.

pr calculates predicted probabilities and is a synonym for mu. This option is available only for ordinal
and binary response models.

eta calculates the fitted linear prediction.
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xb calculates the linear prediction x3 using the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of 0.

stdp calculates the standard error of the fixed-effects linear predictor x3.

density calculates the density function. This prediction is computed using the current values of the
observed variables, including the dependent variable.

distribution calculates the distribution function. This prediction is computed using the current
values of the observed variables, including the dependent variable.

residuals calculates raw residuals, that is, responses minus the fitted values. This option is available
only for the Gaussian family.

pearson calculates Pearson residuals. Pearson residuals that are large in absolute value may indicate
a lack of fit.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They can be plotted against
the fitted values or against a covariate to inspect the model fit.

anscombe calculates Anscombe residuals, which are designed to closely follow a normal distribution.
conditional (ctype) and marginal specify how random effects are handled in computing statistic.

conditional () specifies that statistic will be computed conditional on specified or estimated
random effects.

conditional (ebmeans), the default, specifies that empirical Bayes means be used as the
estimates of the random effects. These estimates are also known as posterior mean estimates
of the random effects.

conditional (ebmodes) specifies that empirical Bayes modes be used as the estimates of the
random effects. These estimates are also known as posterior mode estimates of the random
effects.

conditional (fixedonly) specifies that all random effects be set to zero, equivalent to using
only the fixed portion of the model.

marginal specifies that the predicted statistic be computed marginally with respect to the random
effects, which means that statistic is calculated by integrating the prediction function with
respect to all the random effects over their entire support.

Although this is not the default, marginal predictions are often very useful in applied analysis.
They produce what are commonly called population-averaged estimates. They are also required
by margins.

nooffset is relevant only if you specified of fset (varname,) or exposure (varname.) with meglm.
It modifies the calculations made by predict so that they ignore the offset or the exposure variable;
the linear prediction is treated as X S+ Zu rather than X 5+Zu+offset, or X f+Zu+ In(exposure),
whichever is relevant.

outcome (outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome () should contain either one value of the dependent variable or one of #1, #2, ..., with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.
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reffects calculates estimates of the random effects using empirical Bayes predictions. By default,
or if the ebmeans option is specified, empirical Bayes means are computed. With the ebmodes
option, empirical Bayes modes are computed. You must specify ¢ new variables, where q is the
number of random-effects terms in the model. However, it is much easier to just specify stub*
and let Stata name the variables stub1, stub2, ..., stubq for you.

ebmeans specifies that empirical Bayes means be used to predict the random effects.
ebmodes specifies that empirical Bayes modes be used to predict the random effects.

reses (stub* | newvarlist) calculates standard errors of the empirical Bayes estimators and stores the
result in newvarlist. This option requires the reffects option. You must specify ¢ new variables,
where ¢ is the number of random-effects terms in the model. However, it is much easier to just
specify stub* and let Stata name the variables stubl, stub2, ..., stubq for you. The new variables
will have the same storage type as the corresponding random-effects variables.

The reffects and reses() options often generate multiple new variables at once. When this
occurs, the random effects (and standard errors) contained in the generated variables correspond
to the order in which the variance components are listed in the output of meglm. The generated
variables are also labeled to identify their associated random effect.

scores calculates the scores for each coefficient in e (b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* syntax to have predict
generate enumerated variables with prefix stub.

Integration

intpoints(#) specifies the number of quadrature points used to compute marginal predictions and
the empirical Bayes means; the default is the value from estimation.

iterate (#) specifies the maximum number of iterations when computing statistics involving empirical
Bayes estimators; the default is the value from estimation.

tolerance(#) specifies convergence tolerance when computing statistics involving empirical Bayes
estimators; the default is the value from estimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
mu mean response; the default
pr synonym for mu for ordinal and binary response models
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
residuals not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional (ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.
Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
model using meglm. For the most part, calculation centers around obtaining predictions of the random
effects. Random effects are not estimated when the model is fit but instead need to be predicted after
estimation.



meglm postestimation — Postestimation tools for megim 123

> Example 1: Obtaining estimates of random effects

In example 2 of [ME] meglm, we modeled the probability of contraceptive use among Bangladeshi
women by fitting a mixed-effects logistic regression model. To facilitate a more direct comparison
between urban and rural women, we specify no base level for the urban factor variable and eliminate
the constant from both the fixed-effects part and the random-effects part.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use ibn.urban age i.children, nocons nolog
> || district: ibn.urban, nocons family(bernoulli) link(logit) nofvlabel

Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit

Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.59
Log likelihood = -1199.3268 Prob > chi2 = 0.0000
(1) [c_use]l_cons =0
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
urban
0 -1.712549 .1603689 -10.68  0.000 -2.026866  -1.398232
1 -.9004495 .1674683 -5.38 0.000 -1.228681  -.5722176
age -.0264472 .0080196 -3.30 0.001 -.0421652 -.0107291
children
1 1.132291 .1603052 7.06 0.000 .8180983 1.446483
2 1.358692 .1769369 7.68 0.000 1.011902 1.705482
3 1.354788 .1827459 7.41 0.000 .9966122 1.712963
_cons 0 (omitted)
district
var (0.urban) .3882825 .1284858 .2029918 . 7427064
var (1.urban) .239777 .1403374 .0761401 . 7550947
LR test vs. logistic model: chi2(2) = 58.40 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

This particular model allows for district random effects that are specific to the rural and urban
areas of that district and that can be interpreted as such. We can obtain predictions of posterior means
of the random effects and their standard errors by typing

. predict re_rural re_urban, reffects reses(se_rural se_urban)

(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in meglm output. If in doubt, a simple describe will show how these
newly generated variables are labeled just to be sure.
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Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:

. by district, sort: generate tag = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tag,

> sep(0)
district re_rural se_rural re_urban se_urban
1. 1 -.9523374 .316291 -.5619418 .2329456
118. 2 -.0425217 .3819309 -5.01e-18 .4896702
138. 3 8.57e-18 .6231232 .2229486 .4658747
140. 4 -.2703357 .3980832 .574464 .3962131
170. 5 .0691029 .3101591 .0074569 .4650451
209. 6 -.3939819 .2759802 .2622263 .4177785
274. 7 -.1904756 .4043461 -6.86e-18 .4896702
292. 8 .0382993 .3177392 .2250237 .4654329
329. 9 -.3715211 .3919996 .0628076 .453568
352. 10 -.5624707 .4763545 -1.90e-17 .4896702

The estimated standard errors are conditional on the values of the estimated model parameters:
3 and the components of ¥. Their interpretation is therefore not one of standard sample-to-sample
variability but instead one that does not incorporate uncertainty in the estimated model parameters;
see Methods and formulas. That stated, conditional standard errors can still be used as a measure of
relative precision, provided that you keep this caveat in mind.

You can also obtain predictions of posterior modes and compare them with the posterior means:

. predict mod_rural mod_urban, reffects ebmodes
(calculatin osterior modes of random effects)
g P

. list district re_rural mod_rural re_urban mod_urban if district <= 10 & tag,

> sep(0)
district re_rural mod_rural re_urban mod_urban
1. 1 -.9523374 -.9295366 -.5619418 -.5584528
118. 2 -.0425217 -.0306312 -5.01e-18 0
138. 3 8.57e-18 0 .2229486 .2223551
140. 4 -.2703357 -.2529507 .574464 .5644512
170. 5 .0691029 .0789803 .0074569 .0077525
209. 6 -.3939819 -.3803784 .2622263 .2595116
274. 7 -.1904756 -.1737696 -6.86e-18 0
292. 8 .0382993 .0488528 .2250237 .2244676
329. 9 -.3715211 -.3540084 .0628076 .0605462
352. 10 -.5624707 -.535444 -1.90e-17 0

The two sets of predictions are fairly close.

Because not all districts contain both urban and rural areas, some of the posterior modes are 0 and
some of the posterior means are practically 0. A closer examination of the data reveals that district
3 has no rural areas, and districts 2, 7, and 10 have no urban areas.

Had we imposed an unstructured covariance structure in our model, the estimated posterior modes
and posterior means in the cases in question would not be exactly 0 because of the correlation between
urban and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero
(albeit small) random-effects estimate for a nonexistent urban area because of the correlation with its
rural counterpart; see example 2 of [ME] melogit postestimation for details.

4
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> Example 2: Calculating predicted probabilities

Continuing with the model from example 1, we can obtain predicted probabilities, and unless
we specify the fixedonly option, these predictions will incorporate the estimated subject-specific
random effects 1;.

. predict pr, pr
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

The predicted probabilities for observation ¢ in cluster j are obtained by applying the inverse link
function to the linear predictor, p;; = ¢~ '(x;;8 + zi;U;); see Methods and formulas for details.

By default or with the conditional (ebmeans) option, the calculation uses posterior means for 1.
You can use the conditional (ebmodes) option to obtain predictions based on the posterior modes
for u;.

. predict prm, pr conditional (ebmodes)

(predictions based on fixed effects and posterior modes of random effects)

We can list the two sets of predicted probabilities together with the actual outcome for some
district, let’s say district 38:

. list c_use pr prm if district == 38
c_use pr prm
1228. Yes .5783408  .5780864
1229. No .5326623  .5324027
1230. Yes  .6411679 .6409279
1231. Yes .5326623  .5324027
1232. Yes  .5718783  .5716228
1233. No . 3447686 .344533
1234. No  .4507973  .4505391
1235. No  .1940524  .1976133
1236. No .2846738  .2893007
1237. No  .1264883  .1290078
1238. No .206763  .2104961
1239. No .202459 .2061346
1240. No .206763  .2104961
1241. No .1179788  .1203522

The two sets of predicted probabilities are fairly close.

For mixed-effects models with many levels or many random effects, the calculation of the posterior
means of random effects or any quantities that are based on the posterior means of random effects
may take a long time. This is because we must resort to numerical integration to obtain the posterior
means. In contrast, the calculation of the posterior modes of random effects is usually orders of
magnitude faster because there is no numerical integration involved. For this reason, empirical modes
are often used in practice as an approximation to empirical means. Note that for linear mixed-effects
models, the two predictors are the same.
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We can compare the observed values with the predicted values by constructing a classification table.
Defining success as y;; = 1 if p;; > 0.5 and defining ¥;; = O otherwise, we obtain the following
table.

. generate p_use = pr > .5
. label var p_use "Predicted outcome"
. tab2 c_use p_use, row

-> tabulation of c_use by p_use

Key

frequency
row percentage

Use
contracept Predicted outcome
ion 0 1 Total
No 991 184 1,175
84.34 15.66 100.00
Yes 423 336 759
55.73 44.27 100.00
Total 1,414 520 1,934
73.11 26.89 100.00

The model correctly classified 84% of women who did not use contraceptives but only 44% of
women who did. In the next example, we will look at some residual diagnostics.

d
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> Example 3: A look at residual diagnostics

Continuing our discussion from example 2, here we look at residual diagnostics. meglm offers
three kinds of predicted residuals for nonlinear responses—Pearson, Anscombe, and deviance. Of the
three, Anscombe residuals are designed to be approximately normally distributed; thus we can check
for outliers by plotting Anscombe residuals against observation numbers and seeing which residuals
are greater than 2 in absolute value.

. predict anscombe, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. generate n = _n

. label var n

"observation number"

. twoway (scatter anscombe n if c_use) (scatter anscombe n if !c_use),
> yline(-2 2) legend(off) text(2.5 1400 "contraceptive use")
> text(-.1 500 "no contraceptive use")

Anscombe residuals

° contraceptive use LY
.

07 no contraceptive use
q o
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observation number

There seem to be some outliers among residuals that identify women who use contraceptives. We
could examine the observations corresponding to the outliers, or we could try fitting a model with
perhaps a different covariance structure, which we leave as an exercise.

4



128 meglm postestimation — Postestimation tools for megim

> Example 4: Using predicted random effects for ranking purposes

In example 3 of [ME] meglm, we estimated the effects of two treatments on the tobacco and health
knowledge (THK) scale score of students in 28 schools. The dependent variable was collapsed into
four ordered categories, and we fit a three-level ordinal logistic regression.

. use https://www.stata-press.com/data/r18/tvsfpors, clear
(Television, School, and Family Project)

. meologit thk prethk i.cc##i.tv || school: || class:
Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775

Iteration 1: Log likelihood = -2125.509

Iteration 2: Log likelihood = -2125.1034

Iteration 3: Log likelihood = -2125.1032
Refining starting values:
Grid node 0: Log likelihood = -2152.1514
Fitting full model:
(output omitted )
Mixed-effects ologit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
school 28 18 57.1 137
class 135 1 11.9 28
Integration method: mvaghermite Integration pts. = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
thk | Coefficient Std. err. p P>|z| [95% conf. intervall
prethk .4085273 .039616 10.31  0.000 .3308814 .4861731
1l.cc . 8844369 .2099124 4.21  0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15  0.249 -.1651614 .6380575
ccH#tv
11 -.3717699 .2958887 -1.26  0.209 -.951701 .2081612
/cutl -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865
school
var (_cons) .0448735 .0425387 .0069997 .2876749
school>class
var (_cons) .1482157 .0637521 .063792 .3443674
LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Not surprisingly, the level of knowledge before the intervention is a good predictor of the level of
knowledge after the intervention. The social resistance classroom curriculum is effective in raising
the knowledge score, but the TV intervention and the interaction term are not.

We can rank schools by their institutional effectiveness by plotting the random effects at the school
level.
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. predict re_school re_class, reffects reses(se_school se_class)
(calculating posterior means of random effects)
(using 7 quadrature points)

. generate lower = re_school - 1.96*se_school

. generate upper = re_school + 1.96*se_school

. egen tag = tag(school)

. gsort +re_school -tag

. generate rank = sum(tag)

. generate labpos = re_school + 1.96*se_school + .1

. twoway (rcap lower upper rank) (scatter re_school rank)
> (scatter labpos rank, mlabel(school) msymbol(none) mlabpos(0)),
> xtitle(rank) ytitle(Predicted posterior mean) legend(off)
> xscale(range(0 28)) xlabel(1/28) ysize(2)

14

407 415
4or 106 403 411 508

T

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
rank

o
1

Predicted posterior mean
o
I

Although there is some variability in the predicted posterior means, we cannot see significant differences
among the schools in this example. q

Methods and formulas

Continuing the discussion in Methods and formulas of [ME] meglm and using the definitions and
formulas defined there, we begin by considering the prediction of the random effects u; for the jth
cluster in a two-level model. Prediction of random effects in multilevel generalized linear models
involves assigning values to random effects, and there are many methods for doing so; see Skrondal
and Rabe-Hesketh (2009) and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive
review. Stata offers two methods of predicting random effects: empirical Bayes means (also known
as posterior means) and empirical Bayes modes (also known as posterior modes). Below we provide
more details about the two methods.

Let O denote the estimated model parameters comprising ,@ and the unique elements of 3.
Empirical Bayes (EB) predictors of the random effects are the means or modes of the empirical
posterior distribution with the parameter estimates @ replaced with their estimates 6. The method is

called “empirical” because 6 is treated as known. EB combines the prior information about the random
effects with the likelihood to obtain the conditional posterior distribution of random effects. Using
Bayes’s theorem, the empirical conditional posterior distribution of random effects for cluster j is



130 meglm postestimation — Postestimation tools for megim

Pr(yj7uj|Xj,Zj;5)
Pr(y;|X;, Z;; 6)
_ 1w, X5, 255 8) ¢(uy; B)
[ f(yilug) ¢(u;) du;
_ 1w, X5, 255 8) ¢(uy; B)
L;(6)

The denominator is just the likelihood contribution of the jth cluster.

w(uslyj, X;,Z5;0) =

EB mean predictions of random effects, 1, also known as posterior means, are calculated as

u= / w; w(uyly;, Xy, Zs; 0) du;
Ra

e S 5195, X5, 255 B) 6(u;: B du
Ja F(vil0;) ¢(u;) du,

where we use the notation U rather than U to distinguish predicted values from estimates. This
multivariate integral is approximated by the mean—variance adaptive Gaussian quadrature; see Methods
and formulas of [ME] meglm for details about the quadrature. If you have multiple random effects
within a level or random effects across levels, the calculation involves orthogonalizing transformations
using the Cholesky transformation because the random effects are no longer independent under the
posterior distribution.

In a linear mixed-effects model, the posterior density is multivariate normal, and EB means are also
best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227). In generalized
mixed-effects models, the posterior density tends to multivariate normal as cluster size increases.

EB modal predictions can be approximated by solving for the mode 1:1j in

0 ~ ~
o logw(u,y;, X;,%;;60) =0

Because the denominator in w(-) does not depend on u, we can omit it from the calculation to obtain

0 ~ -
—— log {f(Yj|uj7Xj7 Z;;8) o(uy; E)}

8uj

= (fljlogf (yj\uj,Xj7Zj;,§) + (fljloqu (uj;ﬁ) =0

The calculation of EB modes does not require numerical integration, and for that reason they are
often used in place of EB means. As the posterior density gets closer to being multivariate normal,
EB modes get closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there exist many methods
of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)
for a comprehensive review.
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Stata uses the posterior standard deviation as the standard error of the posterior means predictor
of random effects. The EB posterior covariance matrix of the random effects is given by

cov(u;ly;, X, Z;;6) = /% (0 — ) (w; — u5) w(ujly;, Xy, Zj; 0) duy
q

The posterior covariance matrix and the integrals are approximated by the mean—variance adaptive
Gaussian quadrature; see Methods and formulas of [ME] meglm for details about the quadrature.

Conditional standard errors for the estimated posterior modes are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of U; is the negative inverse
of the Hessian, ¢” (3, X, u;).

In what follows, we show formulas using the posterior means estimates of random effects 1,
which are used by default or if the means option is specified. If the modes option is specified, 1,

are simply replaced with the posterior modes 0; in these formulas.

For any ¢th observation in the jth cluster in a two-level model, define the linear predictor as
Mij = XijB + 2ij0;
The linear predictor includes the offset or exposure variable if one was specified during estimation,

unless the nooffset option is specified. If the fixedonly option is specified, 7 contains the linear
predictor for only the fixed portion of the model, 7;; = x;;/3.

The predicted mean, conditional on the random effects ﬁj, is
~ 1/~
Hij =g~ (Miz)

where g~!(+) is the inverse link function for j;; = g~'(1;;) defined as follows for the available
links in 1ink (link):

link Inverse link
identity Nij

logit 1/{1 + exp(—mi;)}
probit ®(ni5)

log exp(1ij)

cloglog 1 — exp{—exp(ni;)}

By default, random effects and any statistic based on them—mu, fitted, pearson, deviance,
anscombe—are calculated using posterior means of random effects unless option modes is specified,
in which case the calculations are based on posterior modes of random effects.

Raw residuals are calculated as the difference between the observed and fitted outcomes,
Vij = Yij — ﬁij

and are only defined for the Gaussian family.

Let 7;; be the number of Bernoulli trials in a binomial model, « be the conditional overdispersion
parameter under the mean parameterization of the negative binomial model, and ¢ be the conditional
overdispersion parameter under the constant parameterization of the negative binomial model.
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Pearson residuals are raw residuals divided by the square root of the variance function

Vi
A

where V(fi;;) is the family-specific variance function defined as follows for the available families in
family (family):

Samily Variance function V' (fi;;)
bernoulli Lij (1 — fi5)

binomial Hij (1 — i /7i5)

ganma i,

gaussian 1

nbinomial mean Lij (1 + afiiy)
nbinomial constant  [i;;(1 +9)

ordinal not defined

poisson Lij

Deviance residuals are calculated as

1/5 = sign(vi;)y/d;



meglm postestimation — Postestimation tools for megim 133

where the squared deviance residual c?fj is defined as follows:

Sfamily Squared deviance c/l?]
bernoulli —2log(1 —1y5)  if yi; =0
—2log(fij) if yiy =1
binomial 2rj log (T”A> if yij =0
Tij — i

1) /’Llj

i Tij — Yij .
QQij log (%) + Q(Tij — yij) log (T”ﬁ_yf—]) if 0 < Yij < Tij

2r;; log (J

gamma -2 { log <yf]> — K”}
ij Hij

gaussian l//?j
nbinomial mean 2log (1 + afizj) o if ;5 =0

Yii | _ 2 3 1+ oy ~
2y;; log (M i’ ) =(1+ ayi;) log (1 T aﬁi]) otherwise

nbinomial constant not defined
ordinal not defined
poisson 2L, ify;,; =0

2y;; log (/ZZJJ ) —2U;;  otherwise
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Anscombe residuals, denoted V{]‘», are calculated as follows:

family Anscombe residual 1/{;‘»

3 {uil M) - 12 H(iiy) |

bernoulli
~ ~2\1/6
2 (1iij — 1)
2/3 ~2/34, 1~
. 3{%]/ H(yis/rij) — i H(Mij/rij)}
binomial — e 176
2 (Riij — fiij/ri5)
1/3  ~1/3
3(y2j/ _p’ij/ )
gamma 173
Hij
gaussian Vij

H(—ayiy) — H(—ofiy) + 15" — i)

i i

nbinomial mean
~ ~2\1/6
(Nz‘j + aﬂij) /

nbinomial constant not defined
ordinal not defined
2/3  ~2/3
. S(yij — M )
poisson By a—
2#2’;‘

where H(t) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 2003, 780),
defined here as H(t) = 2 F1(2/3,1/3,5/3,¢).

For a discussion of the general properties of the various residuals, see Hardin and Hilbe (2018,
chap. 4).
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meintreg — Multilevel mixed-effects interval regression

Description Quick start Menu Syntax
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Description

meintreg fits mixed-effects models for continuous responses where the dependent variable may
be measured as point data, interval-censored data, left-censored data, or right-censored data. Thus,
it is a generalization of the models fit by metobit. The dependent variable must be specified using
two variables that indicate how it was measured.

Quick start

Two-level interval regression on x with random intercepts by 1lev2 of the interval-measured dependent
variable with lower endpoint y_lower and upper endpoint y_upper

meintreg y_lower y_upper x || lev2:

Same as above, but with random coefficients for x
meintreg y_lower y_upper x || lev2: x

Three-level random-intercept model with 1ev2 nested within lev3
meintreg y_lower y_upper x || lev3: || lev2:

Crossed-effects model with two-way crossed random effects by factors a and b
meintreg y_lower y_upper x || _all:R.a || b:

Menu

Statistics > Multilevel mixed-effects models > Interval regression

135
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Syntax

meintreg depvarigwer depvarypper fe—equation [ I re-equation] [ || re_equation . .. ]

[ , options ]

where the syntax of fe_equation is
[indepvam] [zf] [in] [weighl] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [Varlist} [ s re_options}
for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

The values in depvariower and depvar,pper should have the following form:

Type of data depvarioyer depvarypper
point data a=a,a]

interval data [a,b]

left-censored data (—00,b]

right-censored data  [a, +00) a

missing

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe—_options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight (varname) frequency weights at higher levels

iweight (varname) importance weights at higher levels

pweight (varname) sampling weights at higher levels
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options

Description

Model
constraints (constraints)

SE/Robust
vce (veetype)

Reporting

level (#)
nocnsreport
notable
noheader
nogroup
display_options

Integration
intmethod (intmethod)
intpoints(#)

Maximization

maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

apply specified linear constraints

vcetype may be oim, opg, robust, or cluster clustvar

set confidence level; default is 1level (95)
do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean—variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvariower, depvarupper, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see
[BAYES] bayes: meintreg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.
Weights are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog
box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ [Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,7) is constrained to equal the
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value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

fweight (varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvarl]. varname can be any valid Stata variable name, and you can specify
fweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wtl] || school: ... , fweight(wt2) ...
the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight (varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvarl]. varname can be any valid Stata variable name, and you can specify
iweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight (varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvarl]. varname can be any valid Stata variable name, and you can specify
pweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wtl] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints (constraints) ; see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#), nocnsreport; see [R] Estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fmt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.
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Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean—variance adaptive Gauss—Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive Gauss—
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. Those that require
special mention for meintreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meintreg but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Mixed-effects interval regression is regression for censored data containing both fixed effects and
random effects. meintreg fits mixed-effects regression models that account for left-, right-, and
interval-censoring. Thus, it is a generalization of the models fit by metobit. In longitudinal data and
panel data, random effects are useful for modeling intracluster correlation; that is, observations in the
same cluster are correlated because they share common cluster-level random effects.

Interval data arise naturally in many contexts, such as wage data where often you know only that a
person’s salary is between two values. If one of the interval’s endpoints is unknown, the observation
is censored. Interval data and right-censored data also arise in the area of survival analysis. meintreg
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can fit models for data where each observation represents interval data, left-censored data, right-
censored data, or point data. Regardless of the type of observation, the data should be stored in the
dataset as interval data; see Syntax.

Regardless of the type of censoring, the expected value of the underlying dependent variable—say,
y*—is modeled using the following linear prediction:

E(y*|X,u) = X8+ Zu (1)

X is an n X p design/covariate matrix, analogous to the covariates you would find in a standard linear
regression model, with regression coefficients (fixed effects) 3. Z is the n X g design/covariate matrix
for the random effects u. This linear prediction also contains the offset when offset () is specified.

The columns of matrix Z are the covariates corresponding to the random effects and can be used
to represent both random intercepts and random coefficients. For example, in a random-intercepts
model, Z is simply the scalar 1. The random effects u are realizations from a multivariate normal
distribution with mean O and ¢ X ¢ variance matrix Y. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known as
variance components. One special case of (1) places Z = X so that all covariate effects are essentially
random and distributed as multivariate normal with mean 3 and variance X.

Below we present a short example of mixed-effects censored regression; refer to [ME] me and
[ME] meglm for additional examples of random-effects models. A two-level interval regression model
can also be fit using xtintreg; see [XT] xtintreg. In the absence of random effects, mixed-effects
censored regression reduces to standard censored regression; see [R] intreg.

> Example 1: Three-level random-intercept model

Mastitis is a disease affecting dairy cows, consisting of an inflammatory reaction of the udder
tissue. Our fictional study was performed on 10 farms using a sample of 10 dairy cows taken from
each farm, and time to infection was recorded for each udder quarter for each cow in the sample. The
four udder quarters are clustered within the cow, and cows are nested within farms. This is loosely
based on nonfictional studies by Goethals et al. (2009) and Elghafghuf et al. (2014).

Cows were examined periodically. Thus, if a cow developed an infection, we do not know the exact
day the infection occurred; we only know that it occurred between the last infection-free examination
and the first examination where the infection was present. Some udder quarters did not develop an
infection by the end of the study, so these observations are right-censored. We include a binary
covariate, multiparous, which is equal to 1 for cows that have experienced more than one calving,
and 0 for cows with only one calving.

To fit a log-normal model to the data, which assumes that the outcome is always positive, we take
the log of our dependent variables and then use meintreg to apply a multilevel Gaussian model for
interval- and right-censored data.

. use https://www.stata-press.com/data/ri18/mastitis
(Simulated data on udder infection of dairy cows)

. generate lnleft = 1n(left)
(5 missing values generated)

. generate lnright = ln(right)
(82 missing values generated)



142 meintreg — Multilevel mixed-effects interval regression

. meintreg lnleft lnright i.multiparous || farm: || cow:
Fitting fixed-effects model:

Iteration 0: Log likelihood = -912.93005
Iteration 1: Log likelihood = -901.90184
Iteration 2: Log likelihood = -901.48206
Iteration 3: Log likelihood = -901.48176
Iteration 4: Log likelihood = -901.48176

Refining starting values:

Grid node 0: Log likelihood = -897.92167

Fitting full model:

Iteration 0: Log likelihood = -897.92167 (not concave)

Iteration 1: Log likelihood = -863.2033 (not concave)
Iteration 2: Log likelihood = -857.45304 (not concave)
Iteration 3: Log likelihood = -855.18135
Iteration 4: Log likelihood = -850.84325
Iteration 5: Log likelihood = -846.31976
Iteration 6: Log likelihood = -846.24446
Iteration 7: Log likelihood = -846.24426
Iteration 8: Log likelihood = -846.24426
Mixed-effects interval regression Number of obs = 400
Uncensored = 0
Left-censored = 5
Right-censored = 82
Interval-cens. = 313
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
farm 10 40 40.0 40
cow 100 4 4.0 4
Integration method: mvaghermite Integration pts. = 7
Wald chi2(1) = 8.75
Log likelihood = -846.24426 Prob > chi2 = 0.0031
Coefficient Std. err. z P>|z| [95% conf. interval]
1.multiparous -.5689113 .1923729 -2.96 0.003 -.9459552  -.1918674
_cons 5.644119 .1896383 29.76  0.000 5.272435 6.015803
farm
var (_cons) .0246795 .0258621 .0031648 .1924544
farm>cow
var (_cons) .2481394 .0497735 .1674773 .367651
var(e.lnleft) .2626232 .0257671 .2166796 .3183084
LR test vs. interval model: chi2(2) = 110.47 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We see that infection was observed in 318 udder quarters, the 5 observations that are left-censored
and the 313 that are interval censored. The coefficient for multiparous is negative, which means
that the time to infection will be about 56.9% shorter for cows that experienced multiple calvings.

The within-cow variance is 0.248, and the residual variance is 0.263, while the within-farm variance
is smaller, about 0.025. A likelihood-ratio test comparing the model to an interval regression model
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without random effects is provided under the table and indicates that the three-level interval regression

model is preferred.

Stored results

meintreg stores the following in e ():

Scalars
e(N) number of observations
e(N_unc) number of uncensored observations
e(N_1c) number of left-censored observations
e(N_rc) number of right-censored observations
e(N_int) number of interval-censored observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) p-value for model test
e(ll_c) log likelihood, comparison model
e(chi2_c) x?, comparison test
e(df_c) degrees of freedom, comparison test
e(p_c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) meglm
e(cmd2) meintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e (wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e (pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e (model) interval
e(title) title in estimation output
e(link) identity
e(family) gaussian
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n_quad) number of integration points
e(chi2type) Wald; type of model x?
e(vce) veetype specified in vece ()
e(vcetype) title used to label Std. err.

e(opt)

type of optimization

N
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e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e (marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

Without a loss of generality, consider a two-level regression model
E(y;1X;,u;) = X8+ Zjuy, y* ~ normal

for j = 1,..., M clusters, with the jth cluster consisting of n; observations, where, for the jth
cluster, y7 is the n; X 1 response vector, X; is the n; X p matrix of fixed predictors, Z; is the
nj X g matrix of random predictors, u; is the ¢ X 1 vector of random effects, and 3 is the p x 1
vector of regression coefficients on the fixed predictors. The random effects, u;, are assumed to be
multivariate normal with mean 0 and variance X.

Let m; be the linear predictor, n; = X;3 + Z;uy, that also includes the offset variable when
offset () is specified. Let yl*] and 7;; be the ¢th individual elements of yj* and n;, i =1,...,n;.

The dependent variable, y;;, is a possibly left-, right-, or interval-censored version of yi*j, and it
is recorded using two variables.
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The conditional density function for the response at observation 75 is then,
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Yij—Mis '
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where C' is the set of uncensored observations (yiLj = yg and both nonmissing), L is the set of
left-censored observations (yiLj missing and yg nonmissing), R is the set of right-censored observations
(yiLj nonmissing and yg missing), I is the set of interval-censored observations (yiLj < yg and both
nonmissing), and ®(-) is the cumulative normal distribution.

Because the observations are assumed to be conditionally independent, the conditional log density
function for cluster j is

logf(y;ln;) Z log f (yi;1mij)

and the likelihood function for cluster j is given by

_ _ 1 _
£5(8,%) = (m) 251 [ ftysiny)exp (—Qu;»E 'y ) du,
e (2)
:(QW)_Q/2|2|_1/2/§R exp{logf(yjmj) 3 JE uj} du;

where R denotes the set of values on the real line and R is the analog in g-dimensional space.

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

meintreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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Also see
[ME] meintreg postestimation — Postestimation tools for meintreg
[ME] metobit — Multilevel mixed-effects tobit regression
[ME] me — Introduction to multilevel mixed-effects models
[BAYES] bayes: meintreg — Bayesian multilevel interval regression
[R] intreg — Interval regression
[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)
[ST] stintreg — Parametric models for interval-censored survival-time data
[SVY] svy estimation — Estimation commands for survey data
[XT] xtintreg — Random-effects interval-data regression models

[U] 20 Estimation and postestimation commands
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meintreg postestimation — Postestimation tools for meintreg

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands

The following postestimation commands are of special interest after meintreg:

Command

Description

estat group
estat icc

estat sd

summarize the composition of the nested groups
estimate intraclass correlations

display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

estat summarize

estat vce

estat (svy)

estimates

etable
*hausman

lincom

*1rtest

margins

marginsplot

nlcom

predict
predictnl

pwcompare
test
testnl

information criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data

cataloging estimation results

table of estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients
likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combi-
nations of coefficients
means, probabilities, densities, REs, residuals, etc.

point estimates, standard errors, testing, and inference for generalized pre-
dictions
pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

* hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors,
probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [type] {stub*|newvarlist} [lf} [m] [, statistic oplions}

Syntax for obtaining estimated random effects and their standard errors

predict [type] {stub*|newvarlist} [zf} [in], reffects [re_options]

Syntax for obtaining ML scores

predict [type] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pr(a,b) Pr(a <y < b)
e(a,b) Elyla<y<b)
ystar(a,b) E(y*), y* = max{a, min(y, b)}
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

where @ and b may be numbers or variables; a missing (¢ > .) means —oo, and b missing (b > .)
means +00; see [U] 12.2.1 Missing values.
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options Description
Main
conditional (ctype) compute statistic conditional on estimated random effects; default is
conditional (ebmeans)
marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
Integration

int_options

integration options

ctype Description
ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only
re_options Description

Main
ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects

reses (stub* | newvarlist)

Integration
int_options

calculate standard errors of empirical Bayes estimates

integration options

int_options

Description

intpoints (#)
iterate(#)

tolerance (#)

use # quadrature points to compute marginal predictions and empirical
Bayes means

set maximum number of iterations in computing statistics involving
empirical Bayes estimators

set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict
Main

Is

eta, the default, calculates the fitted linear prediction.

pr(a,b) calculates estimates of Pr(a < y < b), which is the probability that y would be observed

in the interval (a,b).

a and b may be specified as numbers or variable names; /b and ub are variable names;
pr(20,30) calculates Pr(20 < y < 30);

pr(lb,ub) calculates Pr(lb < y < ub); and

pr(20,ub) calculates Pr(20 < y < ub).

a missing (a > .) means —o0; pr(.,30) calculates Pr(—oo < y < 30);
pr(lh,30) calculates Pr(—oco < y < 30) in observations for which Ib > .
(and calculates Pr(lb < y < 30) elsewhere).
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b missing (b > .) means +00; pr(20,.) calculates Pr(+o0 > y > 20);
pr(20,ub) calculates Pr(+o0o > y > 20) in observations for which ub > .
(and calculates Pr(20 < y < ub) elsewhere).

e(a,b) calculates estimates of E(y|a < y < b), which is the expected value of y conditional on
y being in the interval (a,b), meaning that y is truncated. a and b are specified as they are for

pr(Q).

ystar(a,b) calculates estimates of F(y*), where y* = a if y < a, y* =bify > b, and y* =y
otherwise, meaning that y* is the censored version of y. a and b are specified as they are for

pr(Q).
xb, stdp, scores, conditional (), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

Integration

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
prla,b) Pr(a <y < b)
e(a,b) Elyla<y<b)
ystar(a,b) E(y*), y* = max{a, min(y, b)}
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
interval regression model with meintreg.

The predict command allows us to compute marginal and conditional predictions. Unless stated
differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions
of the random effects”. The default prediction is the linear prediction, eta, which is the expected
value of the unobserved censored variable. Predictions of expected values for censored and truncated
versions of the response are also available.

> Example 1: Obtaining conditional and marginal probabilities

In example 1 of [ME] meintreg, we fit a three-level mixed-effects interval regression to model log
time to udder tissue infection in dairy cows.

. use https://www.stata-press.com/data/ri18/mastitis
(Simulated data on udder infection of dairy cows)

. generate lnleft = 1n(left)
(5 missing values generated)

. generate lnright = ln(right)
(82 missing values generated)

. meintreg lnleft lnright i.multiparous || farm: || cow:

(output omitted )

Let’s assume that we want to predict the probability of infection within the first 90 days. Because
our dependent variable is log(y), we need to compute

Pr(0 <y < 90) = Pr{—o0 < log(y) < log(90)}

We can use the pr() option for predict to compute the probability that our dependent variable lies
in the interval [—oo, log(90)].

We first compute the probability conditional on the random effects. Because the lower level on
which we are conditioning on is cow, and we have only cow-level covariates, these predictions will
be constant within cow. We can see that all the predicted probabilities for farm 3 are below 0.21,
while the probabilities for farms 2 and 6 reach above 0.70 in some cases.
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. predict pr_cond, pr(.,log(90))
(predictions based on fixed effects and posterior means of random effects)

. twoway scatter pr_cond farm, ylabel(0(.1).8) xlabel(1(1)10)
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Now, we compute the marginal probabilities of infection within the first 90 days.

. predict pr_marg, pr(.,log(90)) marginal

. tabulate pr_marg multiparous

=1 if cows
experienced more than
Marginal one calving, O

Pr(y<log(9 otherwise
0)) 0 1 Total
.0589298 40 0 40
.2158333 0 360 360
Total 40 360 400

Marginal predictions depend only on the covariate pattern (including covariates in the random-
effects part, if present in the model). Because we included only a binary covariate in the model, there
are only two predicted values, one for each value of the covariate. We see that the probability of
developing an infection in the first 90 days is higher for multiparous cows.

Alternatively, we can use margins to calculate the marginal probabilities. One advantage of using
margins is that we can obtain confidence intervals for the probabilities and the difference between
them.
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. margins multiparous, predict(pr(.,log(90)))

Adjusted predictions Number of obs = 400
Model VCE: 0IM
Expression: Pr(y<log(90)), predict(pr(.,log(90)))
Delta-method
Margin std. err. z P>|z| [95% conf. intervall
multiparous
0 .0589298 .0305541 1.93 0.054 -.0009551 .1188147
1 .2158333 .0314158 6.87 0.000 .1542595 .2774071
. margins, dydx(multiparous) predict(pr(.,log(90)))
Conditional marginal effects Number of obs = 400
Model VCE: 0IM
Expression: Pr(y<log(90)), predict(pr(.,1og(90)))
dy/dx wrt: 1.multiparous
Delta-method
dy/dx  std. err. z P>|z| [95% conf. intervall
1.multipar~s .1569036 .0396889 3.95 0.000 .0791148 .2346923

Note: dy/dx for factor levels is the discrete change from the base level.

The default option for predict, eta, computes the fitted linear prediction; we can use this option
to perform predictions for the uncensored unobserved response. We compute the conditional and
marginal predictions for the log time to infection.

. predict eta_cond
(option eta assumed)

(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. predict eta_marg, marginal

(option eta assumed)

. sort cow

. list cow multiparous eta_cond eta_marg in 1/8, sepby(cow)

cow multip~s eta_cond eta_marg
1. 1 0 5.486386 5.644119
2. 1 0 5.486386 5.644119
3. 1 0 5.486386 5.644119
4. 1 0 5.486386 5.644119
5. 2 1 5.101668 5.075207
6. 2 1 5.101668 5.075207
7. 2 1 5.101668 5.075207
8. 2 1 5.101668 5.075207

Comparing the conditional and marginal predictions, we see that the predicted log time to infection
for the first cow is slightly shorter than the one expected for a cow with this covariate pattern, and

the log time to infection for the second cow is slightly longer.

4
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> Example 2: Calculating transformed predictions

Because our dependent variable is log transformed, we might want to compute predictions on the
original scale. To do that, we need to obtain predictions for the exponentiated dependent variable.

This exercise is helpful to understand the distribution of the different statistics. If we want to
predict the individual conditional time to infection, we need to obtain the conditional mean for
exp(y). Because the conditional distribution of exp(y) is lognormal with location parameter equal to
7 and scale parameter equal to o, (residual variance), then its (conditional) expected value is equal
to exp(7] + 02/2). Here we calculate the conditional time to infection and plot kernel densities for

multiparous and uniparous cows.

. generate time_cond = exp(eta_cond + _b[/var(e.lnleft)]/2)

. kdensity time_cond if multiparous

. kdensity time_cond if multiparous =

. graph combine grl gr2

Kernel density estimate
.004+

.003+

Density

.002+

.001+

0

[y

, x1abel(0(200)800) name(gril)
, x1abel(0(200)800) name(gr2)

Kernel density estimate

004+

003+

Density

002

0014

T T T T

0 200 400 600
time_cond

kernel = epanechnikov, bandwidth = 41.7446

T T T T T
800 0 200 400 600 800

time_cond
kernel = epanechnikov, bandwidth = 25.6319

The density estimator of the time to infection shows that multiparous cows tend to have shorter

times to infection than uniparous cows.

The marginal distribution of y is lognormal with location parameter x3 and the scale parameter
equal to the marginal variance; see Methods and formulas of [ME] metobit postestimation for the
description of the marginal variance. Thus the marginal expected value of the time to infection is

calculated as

. predict xb, xb

. generate time_marg = exp( xb + (_b[/var(_cons[farm])] +
> _bl[/var(_cons[farm>cow])] + _b[/var(e.lnleft)])/2)

. tabulate time_marg multiparous

=1 if cows
experienced more than
one calving, O

otherwise
time_marg 0 1 Total
209.1242 0 360 360
369.3851 40 0 40
Total 40 360 400
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As before, we see that the unconditional expected value for the time to infection is shorter for
multiparous cows.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] metobit postestimation.

Also see

[ME] meintreg — Multilevel mixed-effects interval regression

[U] 20 Estimation and postestimation commands
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melogit — Multilevel mixed-effects logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

melogit fits mixed-effects models for binary and binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the logistic cumulative distribution function.

Quick start
Without weights

Two-level logistic regression of y on x with random intercepts by lev2
melogit y x || lev2:

Mixed-effects model adding random coefficients for x
melogit y x || lev2: x

Same as above, but allow the random effects to be correlated
melogit y x || lev2: x, covariance(unstructured)

Three-level random-intercept model of y on x with 1ev2 nested within lev3
melogit y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b
melogit y x || _all:R.a || b:

With weights

Two-level logistic regression of y on x with random intercepts by 1ev2 and observation-level frequency
weights wvaril

melogit y x [fweight=wvarl] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1l, respectively

melogit y x [pweight=wvarl] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

melogit y x [pw=wvarl] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first

svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvarl)
svy: melogit y x || psu: || ssu:

156
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Menu

Statistics > Multilevel mixed-effects models > Logistic regression

Syntax

melogit depvar fe_equation [ I re_equation] [ | | re_equation . .. } [ , ()pti()ns}

where the syntax of fe_equation is
[indepvars] [zf] [zn] [weighz] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ , re_options}
for random effects among the values of a factor variable in a crossed-effects model
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
re_options Description

Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight (varname) frequency weights at higher levels

iweight (varname) importance weights at higher levels

pweight (varname) sampling weights at higher levels
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options

Description

Model
binomial (varname | #)
constraints (constraints)

SE/Robust
vce (veetype)

Reporting

level (#)
or

nocnsreport
notable
noheader
nogroup
K‘play_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

set binomial trials if data are in binomial form
apply specified linear constraints

vcetype may be oim, opg, robust, or cluster clustvar

set confidence level; default is 1level (95)
report fixed-effects coefficients as odds ratios
do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method
set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances O; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted




melogit — Multilevel mixed-effects logistic regression 159

intmethod Description

mvaghermite mean—variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

pcaghermite Pinheiro—Chao mode-curvature adaptive Gauss—Hermite
quadrature

ghermite nonadaptive Gauss—Hermite quadrature

ﬂplace Laplacian approximation; the default for crossed random-effects
models

pclaplace Pinheiro—Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mel-
ogit.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.
Weights are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog
box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ [Model

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset (varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern(matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance (fixed (matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,j) is constrained to equal the
value specified in the ¢, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (7, ) and (k,!) are constrained to be equal if matnameli, j| = matnamel[k,1].

fweight (varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvarl]. varname can be any valid Stata variable name, and you can specify
fweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wtl] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight (varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvarl]. varname can be any valid Stata variable name, and you can specify
iweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: ... , iweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight (varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvarl]. varname can be any valid Stata variable name, and you can specify
pweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial (varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial () is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints (constraints) ; see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

Reporting

level (#); see [R] Estimation options.
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or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(/3) rather than .
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fimt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean—variance adaptive Gauss—Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss—Hermite quadrature; ghermite performs
nonadaptive Gauss—Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace obtain the random-effects mode and curvature
using the efficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For
hierarchical models, this algorithm takes advantage of the design structure to minimize memory use
and utilizes a series of orthogonal triangulations to compute the factored random-effects Hessian
indirectly, avoiding the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky
factorization on the full Hessian. For four- and higher-level hierarchical designs, there can be
dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. Those that require
special mention for melogit are listed below.
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from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with melogit but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)], noestimate, and dnumerical; see [ME]
meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction

Two-level models

Other covariance structures
Three-level models
Crossed-etfects models

Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

melogit allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of random
effects u;,

Pr(y;; = 1|xij,u;) = H(xi;8 + ziju;) (1)

for j = 1,..., M clusters, with cluster j consisting of 7 = 1,...,n; observations. The responses are
the binary-valued y;;, and we follow the standard Stata convention of treating y;; = 1 if depvar; ; #0
and treating y;; = O otherwise. The 1 X p row vector x;; are the covariates for the fixed effects,
analogous to the covariates you would find in a standard logistic regression model, with regression
coefficients (fixed effects) 3. For notational convenience here and throughout this manual entry, we
suppress the dependence of y;; on X;;.

The 1 X g vector z;; are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
z;; is simply the scalar 1. The random effects u; are M realizations from a multivariate normal
distribution with mean 0 and ¢ X ¢ variance matrix ¥. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of ¥, known
as variance components. One special case of (1) places z;; = X;; so that all covariate effects are
essentially random and distributed as multivariate normal with mean 3 and variance X.

Finally, because this is logistic regression, H (-) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (y;; = 1), with H (v) = exp(v)/{1+ exp(v)}.
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Model (1) may also be stated in terms of a latent linear response, where only y;; = I (y;“] > 0)
is observed for the latent
Yi; = XijB+ ziju; + €

The errors €;; are distributed as logistic with mean 0 and variance 72 /3 and are independent of u;.

A two-level logistic model can also be fit using xtlogit with the re option; see [XT] xtlogit. In
the absence of random effects, mixed-effects logistic regression reduces to standard logistic regression;
see [R] logit.

Two-level models

> Example 1: Two-level random-intercept model

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.
. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)
. describe

Contains data from https://www.stata-press.com/data/r18/bangladesh.dta

Observations: 1,934 Bangladesh Fertility Survey,
1989
Variables: 8 28 May 2022 20:27
(_dta has notes)

Variable Storage Display Value

name type format label Variable label
district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float  %6.2f Age, mean centered
childl byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children
children byte %18.0g childlbl  Number of children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district
contained either urban or rural areas (variable urban) or both. The variable c_use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and a factor variable for the number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining 7;; = Pr(c_use;; = 1), we have

logit(m;;) = Bo + Bil.urban,; + Boage;; + f31.children;; + S42.children;; +
Bs3.children;; + u;

(2)

for 7 =1,...,60 districts, with ¢ = 1,...,n; women in district j.
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. melogit c_use i.urban age i.children, nofvlabel|| district:
Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485

Iteration 1: Log likelihood = -1228.5268

Iteration 2: Log likelihood = -1228.5263

Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1219.2681

Fitting full model:

Iteration 0: Log likelihood = -1219.2681 (not concave)
Iteration 1: Log likelihood = -1207.5978

Iteration 2: Log likelihood = -1206.8428

Iteration 3: Log likelihood = -1206.8322
Iteration 4: Log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 109.60
Log likelihood = -1206.8322 Prob > chi2 = 0.0000
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
1.urban . 7322765 .1194857 6.13 0.000 .4980888 .9664641
age -.0264981 .0078916 -3.36 0.001 -.0419654 -.0110309
children

1 1.116001 .1580921 7.06 0.000 .8061465 1.425856
2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
3 1.344031 .1796549 7.48 0.000 .9919139 1.696148
_cons -1.68929 .1477591  -11.43  0.000 -1.978892  -1.399687

district
var (_cons) .215618 .0733222 .1107208 .4198954
LR test vs. logistic model: chibar2(01) = 43.39 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects and the estimated variance components. The fixed
effects can be interpreted just as you would the output from logit. You can also specify the or option
at estimation or on replay to display the fixed effects as odds ratios instead. If you did display results
as odds ratios, you would find urban women to have roughly double the odds of using contraception
as that of their rural counterparts. Having any number of children will increase the odds from three-
to fourfold when compared with the base category of no children. Contraceptive use also decreases
with age. The nofvlabel option requested the values of factor variables urban and children be
displayed instead of the value labels.

Underneath the fixed effect, the table shows the estimated variance components. The random-effects
equation is labeled district, meaning that these are random effects at the district level. Because
we have only one random effect at this level, the table shows only one variance component. The
estimate of o2 is 0.22 with standard error 0.07.

A likelihood-ratio test comparing the model with ordinary logistic regression is provided and is
highly significant for these data.
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We now store our estimates for later use.

. estimates store r_int

N

In what follows, we will be extending (2), focusing on the variable urban. Before we begin, to
keep things short we restate (2) as

logit(m;;) = Bo + Bil.urban;; + Fi; + u;

where F;; is merely shorthand for the portion of the fixed-effects specification having to do with age
and children.

> Example 2: Two-level random-slope model

Extending (2) to allow for a random slope on the indicator variable 1.urban yields the model
logit(m;;) = Bo + f11l.urban;; + F;; + u; + v;1.urban,; (3)

which we can fit by typing

. melogit c_use i.urban age i.children, nofvlabel || district: i.urban
(output omitted )

. estimates store r_urban

Extending the model was as simple as adding i.urban to the random-effects specification so that
the model now includes a random intercept and a random coefficient on 1.urban. We dispense with
the output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban

Likelihood-ratio test
Assumption: r_int nested within r_urban
LR chi2(1) = 3.66
Prob > chi2 = 0.0558

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is comnservative.

we find the default covariance structure for (uj,v;), covariance (independent),

A 2
v 0 o

v

to be inadequate. We state that the random-coefficient model is an “improvement” over the random-
intercept model because the null hypothesis of the likelihood-ratio comparison test (Hg: o2 = 0) is
on the boundary of the parameter test. This makes the reported p-value, 5.6%, an upper bound on
the actual p-value, which is actually half of that; see Distribution theory for likelihood-ratio test in
[ME] me.

We see below that we can reject this model in favor of one that allows correlation between u;
and v;.
J
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. melogit c_use i.urban age i.children, nofvlabel

> || district: i.urban, covariance(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:
Grid node 0: Log likelihood = -1215.8592
Fitting full model:

Iteration 0: Log likelihood = -1215.8592 (not
Iteration 1: Log likelihood = -1201.0652
Iteration 2: Log likelihood = -1199.6394
Iteration 3: Log likelihood = -1199.3157
Iteration 4: Log likelihood = -1199.315
Iteration 5: Log likelihood = -1199.315

Mixed-effects logistic regression

concave)

Number of obs = 1,934

Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265
_cons -1.71165 .1605618 -10.66  0.000 -2.026345 -1.396954
district
var (1.urban) .6663237 .3224689 .258074 1.720387
var (_cons) .3897448 .1292463 .203473 . 7465413
district
cov(l.urban,
_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42
Note: LR test is conservative and provided only
. estimates store r_urban_corr

. 1lrtest r_urban r_urban_corr

Likelihood-ratio test

Assumption: r_urban nested within r_urban_corr

LR chi2(1) 11.38
Prob > chi2 = 0.0007

Prob > chi2 = 0.0000

for reference.
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By specifying covariance(unstructured) above, we told melogit to allow correlation between
random effects at the district level; that is,

S var || = | 70w
vj Ouw 02

v

> Example 3: Alternative parameterization of random slopes

The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow
for separate random effects, within each district, for the urban and rural areas of that district. Hence,
if we turn off base levels for factor variable i.urban via ibn.urban, then we can reformulate (3)
as

logit(m;;) = Bo0.urban;; + (8o + B1)1.urban;; + F;; + u;0.urban;; + (u; +v;)1.urban;; (3a)

where we have translated both the fixed portion and the random portion to be in terms of 0.urban
rather than a random intercept. Translating the fixed portion is not necessary to make the point we
make below, but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate
for (3a), we get Var(u;) = 52 = 0.39,
Var(u; 4+ vj) = G2 + 02 + 20,

=0.39 + 0.67 — 2(0.41) = 0.24

and Cov(uj, uj + v;) = 02 4 Oy = 0.39 — 0.41 = —0.02.

An alternative that does not require remembering how to calculate variances and covariances
involving sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1208.3922

Fitting full model:

Iteration 0: Log likelihood = -1208.3922 (not concave)

Iteration 1: Log likelihood = -1203.556 (not concave)
Iteration 2: Log likelihood = -1200.5896
Iteration 3: Log likelihood = -1199.7288
Iteration 4: Log likelihood = -1199.3373
Iteration 5: Log likelihood = -1199.3151
Iteration 6: Log likelihood = -1199.315
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
(1) [c_usel_cons =0
c_use Coefficient Std. err. z P>|z| [95% conf. intervall
urban
0 -1.711652 .1605617 -10.66  0.000 -2.026347 -1.396956
1 -.89568623 .1704954 -5.25  0.000 -1.230027 -.5616974
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903
children
1 1.13252 .1603285 7.06  0.000 .8182819 1.446758
2 1.357739 .1770522 7.67  0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265
_cons 0 (omitted)
district
var (0.urban) .3897485 .1292403 .2034823 . 7465212
var(1.urban) .2442899 .1450625 .0762871 . 7822759
district
cov(0.urban,
1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177
LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3), with the added
benefit of a more direct comparison of the parameters for rural and urban areas.

4
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Q Technical note

Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the
random effects for both. Had we used the default independent covariance structure, we would be
fitting different models; in (3) we would be making the restriction that Cov(uj, vj) = 0, whereas in
(3a) we would be assuming that Cov(uj, u; + vj) =0.

The moral here is that although melogit will do this by default, one should be cautious when
imposing an independent covariance structure, because the correlation between random effects is not
invariant to model translations that would otherwise yield equivalent results in standard regression
models. In our example, we remapped an intercept and binary coefficient to two complementary
binary coefficients, something we could do in standard logistic regression without consequence but
that here required more consideration.

Rabe-Hesketh and Skrondal (2022, sec. 11.4) provide a nice discussion of this phenomenon in the
related case of recentering a continuous covariate.
a

Other covariance structures

In the above examples, we demonstrated the independent and unstructured covariance struc-
tures. Also available are identity (seen previously in output but not directly specified), which
restricts random effects to be uncorrelated and share a common variance, and exchangeable, which
assumes a common variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above
four covariance types can be combined to form more complex blocked-diagonal covariance structures.
This could be used, for example, to impose an equality constraint on a subset of variance components
or to otherwise group together a set of related random effects.

Continuing the previous example, typing
. melogit c_use i.urban age i.children,

> || district: i.children, cov(exchangeable)
> || district:

would fit a model with the same fixed effects as (3) but with random-effects structure
logit(m;;) = Bo + - - - + u1;1.children;; + ug;2.children;; + uz;3.children;; + v,
That is, we have random coefficients on the children factor levels (the first district: specification)

and an overall district random intercept (the second district: specification). The above syntax fits
a model with overall covariance structure

Uy o: o, oo O
U, o. 02 o 0
¥ = Var Tl=1"° "» "3
us; o. o. o O
i 2
U; 0 0 0 o2

reflecting the relationship among the random coefficients for children. We did not have to specify
noconstant on the first district: specification. melogit automatically avoids collinearity by
including an intercept on only the final specification among repeated-level equations.
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Of course, if we fit the above model, we would heed our own advice from the previous technical
note and make sure that not only our data but also our specification characterization of the random
effects permitted the above structure. That is, we would check the above against a model that had
an unstructured covariance for all four random effects and then perhaps against a model that
assumed an unstructured covariance among the three random coefficients on children, coupled
with independence with the random intercept. All comparisons can be made by storing estimates
(command estimates store) and then using lrtest, as demonstrated previously.

Three-level models

> Example 4: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level). Because patients’ relatives were also tested, a family identifier, family,
was also recorded.

. use https://www.stata-press.com/data/r18/towerlondon, clear

(Tower of London data)

. describe

Contains data from https://www.stata-press.com/data/r18/towerlondon.dta
Observations: 677 Tower of London data

Variables: 5 31 May 2022 10:41
(_dta has notes)

Variable Storage Display Value
name type format label Variable label
family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We allow for random effects due to families and due to subjects within families, and we
request to see odds ratios.
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. melogit dtlm difficulty i.group || family: || subject: , or
Fitting fixed-effects model:

Iteration 0: Log likelihood = -317.35042
Iteration 1: Log likelihood = -313.90007
Iteration 2: Log likelihood = -313.89079
Iteration 3: Log likelihood = -313.89079

Refining starting values:
Grid node 0: Log likelihood = -310.28429
Fitting full model:

Iteration 0: Log likelihood = -310.28429
Iteration 1: Log likelihood = -307.36653
Iteration 2: Log likelihood = -305.19357
Iteration 3: Log likelihood = -305.12073
Iteration 4: Log likelihood = -305.12041
Iteration 5: Log likelihood = -305.12041

Mixed-effects logistic regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000
dtlm | Odds ratio  Std. err. z P>|z| [95% conf. intervall
difficulty .1923372 .037161 -8.53  0.000 .1317057 .2808806
group
2 . 7798263 .2763763 -0.70  0.483 .3893369 1.561961
3 .3491318 .13965 -2.63 0.009 .15941 . 764651
_cons .226307 .0644625 -5.22  0.000 .1294902 .3955112
family
var (_cons) .5692105 .5215654 .0944757 3.429459
family>
subject
var (_cons) 1.137917 .6854853 .3494165 3.705762
Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002
Note: LR test is comnservative and provided only for reference.
This is a three-level model with two random-effects equations, separated by ||. The first is a

random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—melogit
assumes that subject is nested within family.

The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families.
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After adjusting for the random-effects structure, the odds of successful completion of the Tower of
London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course, we would make similar conclusions
from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

d

Q Technical note

In the previous example, the subjects are coded with unique values between 1 and 251 (with
some gaps), but such coding is not necessary to produce nesting within families. Once we specified
the nesting structure to melogit, all that was important was the relative coding of subject within
each unique value of family. We could have coded subjects as the numbers 1, 2, 3, and so on,
restarting at 1 with each new family, and melogit would have produced the same results.

Group identifiers may also be coded using string variables.
a

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by | |. The order of nesting goes from left to right as the groups go from
biggest (highest level) to smallest (lowest level).

Crossed-effects models

> Example 5: Crossed-effects model

Rabe-Hesketh and Skrondal (2022, 493-512) perform an analysis on school data from Fife,
Scotland. The data, originally from Paterson (1991), are from a study measuring students’ attainment
as an integer score from 1 to 10, based on the Scottish school exit examination taken at age 16. The
study comprises 3,435 students who first attended any one of 148 primary schools and then any one
of 19 secondary schools.

. use https://www.stata-press.com/data/r18/fifeschool
(School data from Fife, Scotland)

. describe
Contains data from https://www.stata-press.com/data/r18/fifeschool.dta
Observations: 3,435 School data from Fife, Scotland
Variables: 5 28 May 2022 10:08
(_dta has notes)
Variable Storage Display Value
name type format label Variable label
pid int %9.0g Primary school ID
sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final
year of primary school
sex byte %9.0g 1: female; 0: male
Sorted by:

. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself
but instead on whether the score is greater than 6. We wish to model this indicator as a function of
the fixed effect sex and of random effects due to primary and secondary schools.
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For this analysis, it would make sense to assume that the random effects are not nested, but instead
crossed, meaning that the effect due to primary school is the same regardless of the secondary school
attended. Our model is thus

logit{Pr(attain;j; > 6)} = fo + Bisex;ji + u; + vg 4)

for student %, ¢ = 1,...,n;, who attended primary school j, j = 1,...,148, and then secondary
school k, k=1,...,19.

Because there is no evident nesting, one solution would be to consider the data as a whole and
fit a two-level, one-cluster model with random-effects structure

Ui
’ 2
| u14s ) | oilss 0
u= | "~ N, 3); 2_[ 0 05119}

L V19 U

We can fit such a model by using the group designation _all:, which tells melogit to treat the
whole dataset as one cluster, and the R.varname notation, which mimics the creation of indicator
variables identifying schools:

. melogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or

But we do not recommend fitting the model this way because of high total dimension (148419 = 167)
of the random effects. This would require working with matrices of column dimension 167, which is
probably not a problem for most current hardware, but would be a problem if this number got much
larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by
primary schools as nested within all the data, that is, as nested within the _all group.
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. melogit attain_gt_6 sex || _all:R.sid || pid:, or
note: crossed random-effects model specified; option intmethod(laplace)
implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2320.2374
Iteration 1: Log likelihood = -2317.9062
Iteration 2: Log likelihood = -2317.9059
Iteration 3: Log likelihood = -2317.9059

Refining starting values:
Grid node 0: Log likelihood = -2234.6403
Fitting full model:

Iteration 0: Log likelihood = -2234.6403 (not concave)
Iteration 1: Log likelihood = -2227.9507 (not concave)
Iteration 2: Log likelihood = -2227.9287 (not concave)
Iteration 3: Log likelihood = -2227.9265 (not concave)
Iteration 4: Log likelihood = -2227.9263

Iteration 5: Log likelihood = -2221.6884 (not concave)
Iteration 6: Log likelihood = -2221.1707 (not concave)
Iteration 7: Log likelihood = -2221.1232

Iteration 8: Log likelihood = -2220.1709 (not concave)

Iteration 9: Log likelihood = -2220.1556
Iteration 10: Log likelihood = -2220.0176
Iteration 11: Log likelihood = -2220.0038
Iteration 12: Log likelihood = -2220.0035
Iteration 13: Log likelihood = -2220.0035

Mixed-effects logistic regression Number of obs = 3,435

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
_all 1 3,435 3,435.0 3,435
pid 148 1 23.2 72
Integration method: laplace
Wald chi2(1) = 14.43
Log likelihood = -2220.0035 Prob > chi2 = 0.0001
attain_gt_6 | Odds ratio Std. err. z P>|z| [95% conf. intervall
sex 1.325123 .0981968 3.80 0.000 1.145984 1.532264
_cons .531146 .0617951 -5.44  0.000 .4228463 .6671835
_all>sid
var (_cons) .1239764 .0693708 .0414048 .3712168
pid
var (_cons) .4520522 .0953939 .2989266 .6836167

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

Choosing the primary schools as those to nest was no accident; because there are far fewer secondary
schools than primary schools, the above required only 19 random coefficients for the secondary
schools and one random intercept at the primary school level, for a total dimension of 20. Our data
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also include a measurement of verbal reasoning, the variable vrq. Adding a fixed effect due to vrq in
(4) would negate the effect due to secondary school, a fact we leave to you to verify as an exercise.

N

See [ME] mixed for a similar discussion of crossed effects in the context of linear mixed models.
Also see Rabe-Hesketh and Skrondal (2022) for more examples of crossed-effects models, including
models with random interactions, and for more techniques on how to avoid high-dimensional estimation.

Q Technical note

The estimation in the previous example was performed using a Laplacian approximation, even
though we did not specify this. Whenever the R. notation is used in random-effects specifications,
estimation reverts to the Laplacian method because of the high dimension induced by having the R.
variables.

In the above example, through some creative nesting, we reduced the dimension of the random
effects to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see
Computation time and the Laplacian approximation in [ME] me. Even with two quadrature points,
our rough formula for computation time would contain within it a factor of 220 — 1,048,576.

The intmethod(laplace) option is therefore assumed when you use R. notation. If the number
of distinct levels of your R. variables is small enough (say, five or fewer) to permit estimation via
quadrature, you can override the imposition of laplace by specifying a different integration method
in the intmethod () option.

a

Stored results

melogit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) x2
e(p) p-value for model test
e(1l_c) log likelihood, comparison model
e(chi2_c) X2, comparison test
e(df_c) degrees of freedom, comparison test
e(p-c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) meglm

e(cmd2) melogit



176 melogit — Multilevel mixed-effects logistic regression

e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type

e (wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e (pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e (model) logistic

e(title) title in estimation output

e(link) logit

e(family) bernoulli or binomial

e(clustvar) name of cluster variable

e(offset) offset

e(binomial) binomial number of trials

e(intmethod) integration method

e(n_quad) number of integration points

e(chi2type) Wald; type of model x?

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum
e(properties) bV

e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimators

e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by melogit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response y;; as the number of successes from a

series of 7;; Bernoulli trials (replications). For cluster j, j = 1,..., M, the conditional distribution
of y; = (Yj1,---,¥Yjn;) > given a set of cluster-level random effects u, is
n;
sty =TT [(12) ()} 1 r6a )
i=1 .
= exp (Z [yijmj — rijlog {1+ exp(n;;)} + long)D
i=1
for m;; = X;;8 + ziju; + offset;; and H(v) = exp(v)/{1 + exp(v)}.
Defining r; = (7j1,...,7jn,;) and
n;
c(yjr;) =) log (T”)
Yij

i=1

where c(y;,r;) does not depend on the model parameters, we can express the above compactly in
matrix notation,

flyjlug) = exp [yjm; —rjlog {1+ exp(n;)} +c(y;,15)]
where 7; is formed by stacking the row vectors 7,;. We extend the definitions of the functions log(-)

and exp(-) to be vector functions where necessary.

Because the prior distribution of u; is multivariate normal with mean 0 and g X g variance matrix
3, the likelihood contribution for the jth cluster is obtained by integrating u; out of the joint density

f(yj,u5),

L;(8,%) (27T)*q/2|2|_1/2/f(yj'luj)exp (—uj2 " u;/2) du

= eXP{C(Yjarj)}(%)*q/Q\Elflﬂ/eXp{h(ﬂ,E,ua‘)}dug‘

where
h(B,2,u;) = yym; —rjlog {1+ exp(n;)} — uj= ™ u;/2
and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(), 15, X, Z;).
The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

melogit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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Also see
[ME] melogit postestimation — Postestimation tools for melogit
[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[ME] meprobit — Multilevel mixed-effects probit regression
[ME] me — Introduction to multilevel mixed-effects models
[BAYES] bayes: melogit — Bayesian multilevel logistic regression
[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)
[SVY] svy estimation — Estimation commands for survey data
[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands
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Postestimation commands

The following postestimation commands are of special interest after melogit:

Command

Description

estat group
estat icc
estat sd

summarize the composition of the nested groups
estimate intraclass correlations

display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

estat summarize

estat vce

estat (svy)

estimates

etable
*hausman

lincom

*1rtest

margins

marginsplot

nlcom

predict
predictnl

pwcompare
test
testnl

information criteria (AIC, CAIC, AICc, and BIC)
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data
cataloging estimation results
table of estimation results
Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients
likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combi-
nations of coefficients
means, probabilities, densities, REs, residuals, etc.

point estimates, standard errors, testing, and inference for generalized pre-
dictions
pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [type] {stub*|newvarlist} [lf} [m] [, statistic opli(ms}

Syntax for obtaining estimated random effects and their standard errors

predict [type] {stub*|newvarlist} [lf} [in], reffects [re_options]

Syntax for obtaining ML scores

predict [Iype] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
&iance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main
conditional (ctype) compute statistic conditional on estimated random effects; default is
conditional (ebmeans)
marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
Integration
int_options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description
ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only
re_options Description

Main
ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects

reses (stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int_options integration options

int_options Description

intpoints (#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Options for predict
Main

r

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

Integration

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlisz} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional (ebmeans) and conditional(ebmodes) are not allowed with margins.

Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-
effects model with melogit. For the most part, calculation centers around obtaining estimates of
the subject/group-specific random effects. Random effects are not provided as estimates when the
model is fit but instead need to be predicted after estimation. Calculation of intraclass correlations,
estimating the dependence between latent linear responses for different levels of nesting, may also
be of interest.

~> Example 1: Estimating the intraclass correlation

Following Rabe-Hesketh and Skrondal (2022, chap. 10), we consider a two-level mixed-effects model
for onycholysis (separation of toenail plate from nail bed) among those who contract toenail fungus. The
data are obtained from De Backer et al. (1998) and were also studied by Lesaffre and Spiessens (2001).
The onycholysis outcome is dichotomously coded as 1 (moderate or severe onycholysis) or 0 (none
or mild onycholysis). Fixed-effects covariates include treatment (0: itraconazole; 1: terbinafine), the
month of measurement, and their interaction.

We fit the two-level model with melogit:

. use https://www.stata-press.com/data/r18/toenail
(Onycholysis severity)
. melogit outcome treatment month trt_month || patient:, intpoints(30)

(iteration log omitted)

Mixed-effects logistic regression Number of obs = 1,908

Group variable: patient Number of groups = 294
Obs per group:

min = 1

avg = 6.5

max = 7

Integration method: mvaghermite Integration pts. = 30

Wald chi2(3) = 150.61

Log likelihood = -625.38557 Prob > chi2 = 0.0000

outcome | Coefficient Std. err. z P>|z| [95% conf. intervall

treatment -.1608934 .5802058 -0.28 0.782 -1.298076 .9762891

month -.3911056 .0443906 -8.81  0.000 -.4781097  -.3041016

trt_month -.1368286 .0680213 -2.01 0.044 -.2701479  -.0035093

_cons -1.620355 .4322382 -3.75 0.000 -2.467526 -.7731834

patient
var (_cons) 16.0841  3.062625 11.07431 23.36021
LR test vs. logistic model: chibar2(01) = 565.24 Prob >= chibar2 = 0.0000

It is of interest to determine the dependence among responses for the same subject (between-subject
heterogeneity). Under the latent-linear-response formulation, this dependence can be obtained with
the intraclass correlation. Formally, in a two-level random-effects model, the intraclass correlation
corresponds to the correlation of latent responses within the same individual and also to the proportion
of variance explained by the individual random effect.
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We use estat icc to estimate the residual intraclass correlation:

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. intervall]

patient .8301913 .0268433 .7709672 .8765531

In the presence of fixed-effects covariates, estat icc reports the residual intraclass correlation,
which is the correlation between latent linear responses conditional on the fixed-effects covariates.

Conditional on treatment and month of treatment, we estimate that latent responses within the
same patient have a large correlation of approximately 0.83. Further, 83% of the variance of a latent
response is explained by the between-patient variability.

N

> Example 2: Predicting random effects
In example 3 of [ME] melogit, we represented the probability of contraceptive use among Bangladeshi
women by using the model (stated with slightly different notation here)
logit(m;;) = Bo0.urban;;+3;1.urban;; + ﬁgageij—i—
Bsl.children;; 4+ $42.children;; 4+ B53.children;;+
a;0.urban;; + bj1.urban;;

where 7;; is the probability of contraceptive use, j = 1,..., 60 districts, i = 1,...,n; women within
each district, and a; and b; are normally distributed with mean 0 and variance—covariance matrix

, 2
Y =Var| Y| = |7 Uagb
b; Oab O}
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. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)

Fitting fixed-effects model:

(iteration log omitted)

Mixed-effects logistic regression Number of obs 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
(1) [c_usel_cons = 0
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
urban
0 -1.711652 .1605617 -10.66  0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.26  0.000 -1.230027 -.5616974
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903
children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265
_cons 0 (omitted)
district
var (0.urban) .3897485 .1292403 .2034823 . 7465212
var (1.urban) .2442899 .1450625 .0762871 . 7822759
district
cov(0.urban,
1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42

Note: LR test is comnservative and provided only for reference.

The purpose of using this particular model was to allow for district random effects that were
specific to the rural and urban areas of that district and that could be interpreted as such. We can

Prob > chi2 = 0.0000

obtain predictions of these random effects and their corresponding standard errors,

. predict re_rural re_urban, reffects reses(se_rural se_urban)

(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in melogit output. If in doubt, a simple describe will show how

these newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first

10 districts:
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. by district, sort: generate tolist = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tolist,

> sep(0)
district re_rural se_rural re_urban se_urban
1. 1 -.9432691 .3156852 -.558359 .2332665
118. 2 -.0427011 .3822029 .0017684 .493834
138. 3 -.0149571 .6242161 .2263715 .4698407
140. 4 -.2864846 .3990107 .5869046 .3988538
170. 5 .0688648 .3102899 .0046016 .4685461
209. 6 -.3979315 .2762392 .2761181 .4204175
274. 7 -.1910399 .4046772 .0079117 .4938647
292. 8 .034071 .3180097 .2266263 .4689558
329. 9 -.3737992 .3923573 .0764026 .4569863
352. 10 -.5640147 .4769353 .0233582 .4939753

Q Technical note

When these data were first introduced in [ME] melogit, we noted that not all districts contained
both urban and rural areas. This fact is somewhat demonstrated by the random effects that are nearly
0 in the above. A closer examination of the data would reveal that district 3 has no rural areas, and
districts 2, 7, and 10 have no urban areas.

The estimated random effects are not exactly O in these cases because of the correlation between
urban and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero
(albeit small) random-effects estimate for a nonexistent urban area because of the correlation with its
rural counterpart.

Had we imposed an independent covariance structure in our model, the estimated random effects
in the cases in question would be exactly 0. o

Q Technical note

The estimated standard errors produced above with the reses() option are conditional on the
values of the estimated model parameters: 3 and the components of X. Their interpretation is therefore
not one of standard sample-to-sample variability but instead one that does not incorporate uncertainty
in the estimated model parameters; see Methods and formulas.

That stated, conditional standard errors can still be used as a measure of relative precision, provided
that you keep this caveat in mind. a

~> Example 3: Obtaining predicted probabilities

Continuing with example 2, we can obtain predicted probabilities, the default prediction:

. predict p

(option mu assumed)

(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
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These predictions are based on a linear predictor that includes both the fixed effects and the random
effects due to district. Specifying the conditional(fixedonly) option gives predictions that set
the random effects to their prior mean of 0. Below we compare both over the first 20 observations:
. predict p_fixed, conditional(fixedonly)
(option mu assumed)

. list c_use p p_fixed age children in 1/20

c_use P p_fixed age children

1. No .3572114 .4927182 18.44 3 or more children

2. No .21293 .3210403 -5.56 No children

3. No .4664207 .6044016 1.44 2 children

4. No .4198625 .5584863 8.44 3 or more children

5. No .2504834 .3687281 -13.56 No children

6. No .2406963 .3565185 -11.56 No children

7. No .3572114 .4927182 18.44 3 or more children

8. No .4984106 .6345998 -3.56 3 or more children

9. No .4564025 .594723 -5.56 1 child

10. No .465447 .6034657 1.44 3 or more children
11. Yes .2406963 .3565185 -11.56 No children
12. No .1999512 .3040173 -2.56 No children
13. No .4498569 .5883406 -4.56 1 child
14. No .439278 .5779263 5.44 3 or more children
15. No .4786124 .6160359 -0.56 3 or more children
16. Yes . 4457945 .584356 4.44 3 or more children
17. No .21293 .3210403 -5.56 No children
18. Yes .4786124 .6160359 -0.56 3 or more children
19. Yes .4629632 .6010735 -6.56 1 child
20. No .4993888 .6355067 -3.56 2 children

> Example 4: Intraclass correlations for higher-level models

Continuing with example 2, we can also compute intraclass correlations for the model using estat
icc; see [ME] estat icc.

In the presence of random-effects covariates, the intraclass correlation is no longer constant and
depends on the values of the random-effects covariates. In this case, estat icc reports conditional
intraclass correlations assuming O values for all random-effects covariates. For example, in a two-
level model, this conditional correlation represents the correlation of the latent responses for two
measurements on the same subject, both of which have random-effects covariates equal to 0. Similarly
to the interpretation of intercept variances in random-coefficients models (Rabe-Hesketh and Skrondal
2022, chap. 16), interpretation of this conditional intraclass correlation relies on the usefulness of
the 0 baseline values of random-effects covariates. For example, mean centering of the covariates is
often used to make a O value a useful reference.

Estimation of the conditional intraclass correlation in the Bangladeshi contraceptive study setting
of example 2 is of interest. In example 2, the random-effects covariates 0.urban and 1.urban for the
random level district are mutually exclusive indicator variables and can never be simultaneously
0. Thus we could not use estat icc to estimate the conditional intraclass correlation for this model,
because estat icc requires that the random intercept is included in all random-effects specifications.
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Instead, we consider an alternative model for the Bangladeshi contraceptive study. In example 2
of [ME] melogit, we represented the probability of contraceptive use among Bangladeshi women with
fixed-effects for urban residence (urban), age (age), and the number of children (children). The
random effects for urban and rural residence are represented as a random slope for urban residence
and a random intercept at the district level.

We fit the model with melogit:
. use https://www.stata-press.com/data/r18/bangladesh, clear
(Bangladesh Fertility Survey, 1989)

. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)

(iteration log omitted)

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60
Obs per group:
min = 2
avg = 32.2
max = 118
Integration method: mvaghermite Integration pts. = 7
Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000
c_use | Coefficient Std. err. z P>|z| [95% conf. intervall
1.urban .8157875 .1715519 4.76  0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902
children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265
_cons -1.71165 .1605618 -10.66  0.000 -2.026345 -1.396954
district
var (1.urban) .6663237 .3224689 .258074 1.720387
var (_cons) .3897448 .1292463 .203473 .7465413
district
cov(1l.urban,
_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313
LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is comnservative and provided only for reference.

We use estat icc to estimate the intraclass correlation conditional on urban being equal to O:

. estat icc

Conditional intraclass correlation

Level ICC Std. err. [95% conf. intervall

district .1059201 .0314045 .058246 .1849518

Note: ICC is conditional on zero values of random-effects covariates.

This estimate suggests that the latent responses are not strongly correlated for rural residents
(0.urban) within the same district, conditional on the fixed-effects covariates.

4



190 melogit postestimation — Postestimation tools for melogit

> Example 5: Estimating the residual intraclass correlation

In example 4 of [ME] melogit, we fit a three-level model for the cognitive ability of schizophrenia
patients as compared with their relatives and a control. Fixed-effects covariates include the difficulty
of the test, difficulty, and an individual’s category, group (control, family member of patient, or
patient). Family units (family) represent the third nesting level, and individual subjects (subject)
represent the second nesting level. Three measurements were taken on all but one subject, one for
each difficulty measure.

We fit the model with melogit:
. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)
. melogit dtlm difficulty i.group || family: || subject:

(iteration log omitted)

Mixed-effects logistic regression Number of obs = 677
Grouping information
No. of Observations per group
Group variable groups Minimum Average Maximum
family 118 2 5.7 27
subject 226 2 3.0 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000
dtlm | Coefficient Std. err. z P>|z| [95% conf. intervall
difficulty -1.648505 .1932075 -8.53  0.000 -2.027185 -1.269826
group
2 -.2486841 .3544076 -0.70 0.483 -.9433102 .445942
3 -1.052306 .3999921 -2.63 0.009 -1.836276  -.2683357
_cons -1.485863 .2848455 -5.22  0.000 -2.04415  -.9275762
family
var (_cons) .5692105 .5215654 .0944757 3.429459
family>
subject
var (_cons) 1.137917 .6854853 .3494165 3.705762
LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty
level and the individual’s category) between the latent responses of subjects within the same family
or between the latent responses of the same subject and family:

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. intervall]
family .1139105 .0997727 .0181851 .4715289
subject|family .3416307 .0889471 .192923 .5297291
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estat icc reports two intraclass correlations for this three-level nested model. The first is the
level-3 intraclass correlation at the family level, the correlation between latent measurements of the
cognitive ability in the same family. The second is the level-2 intraclass correlation at the subject-
within-family level, the correlation between the latent measurements of cognitive ability in the same
subject and family.

There is not a strong correlation between individual realizations of the latent response, even within
the same subject.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.
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menbreg — Multilevel mixed-effects negative binomial regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

menbreg fits mixed-effects negative binomial models to count data. The conditional distribution
of the response given random effects is assumed to follow a Poisson-like process, except that the
variation is greater than that of a true Poisson process.

Quick start

Mixed-effects negative binomial regression of y on x with random intercepts by v1
menbreg y x || vi:

Add evar measuring exposure
menbreg y x, exposure(evar) || vi:

Same as above, but report incidence-rate ratios instead of coefficients
menbreg y x, exposure(evar) || vi:, irr

Add random coefficients for x
menbreg y x, exposure(evar) || vi: x, irr

Three-level random-intercept model of y on x with v1 nested within v2
menbreg y x || v2: || vi:

Menu

Statistics > Multilevel mixed-effects models > Negative binomial regression

192
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Syntax

menbreg depvar fe_equation [ | re_equation] [ || re_equation . .. } [ , options}

where the syntax of fe_equation is
[indepvars] [lf] [ln] [weighl] [ , fe_options]
and the syntax of re_equation is one of the following:
for random coefficients and intercepts
levelvar: [varlist} [ s re_options}
for random effects among the values of a factor variable in a crossed-effects model
levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is _all
representing one group comprising all observations.

fe_options Description
Model
noconstant suppress the constant term from the fixed-effects equation
exposure (varname,) include In(varname.) in model with coefficient constrained to 1
offset (varname,) include varname, in model with coefficient constrained to 1
re_options Description
Model
covariance (vartype) variance—covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight (varname) frequency weights at higher levels
iweight (varname) importance weights at higher levels

pweight (varname) sampling weights at higher levels
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options

Description

Model
dispersion (dispersion)

constraints (constraints)

SE/Robust
vce (veetype)

Reporting

level (#)
irr

nocnsreport
notable
noheader
nogroup
display_options

Integration
intmethod (intmethod)
intpoints (#)

Maximization
maximize_options

startvalues (svmethod)
startgrid[ (gridspec) ]

parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

apply specified linear constraints

vcetype may be oim, opg, robust, or cluster clustvar

set confidence level; default is 1level (95)

report fixed-effects coefficients as incidence-rate ratios
do not display constraints

suppress coefficient table

suppress output header

suppress table summarizing groups

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method

set the number of integration (quadrature) points for all levels;
default is intpoints(7)

control the maximization process; seldom used

method for obtaining starting values
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead

dnumerical use numerical derivative techniques

collinear keep collinear variables

coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances O; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

fixed (matname) user-selected variances and covariances constrained to specified
values; the remaining variances and covariances unrestricted

pattern (matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean—variance adaptive Gauss—Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss—Hermite quadrature

ghermite nonadaptive Gauss—Hermite quadrature

laplace Laplacian approximation; the default for crossed random-effects
models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: men-
breg.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.
Weights are not supported under the Laplacian approximation or for crossed models.

startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog
box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure (varname,) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname,) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset (varname,) specifies that varname, be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance (vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed (matname), or pattern (matname).

covariance (independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance (exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance (unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
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Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(mamame) covariance structure, (co)variance (i,7) is constrained to equal the
value specified in the 7, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (4, 7) and (k,l) are constrained to be equal if mamameli, j| = matmamelk, ).

fweight (varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvarl]. varname can be any valid Stata variable name, and you can specify
fweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wtl] || school: ... , fweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight (varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvarl]. varname can be any valid Stata variable name, and you can specify
iweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wtl] || school: ... , iweight(wt2) ...

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight (varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvarl]. varname can be any valid Stata variable name, and you can specify
pweight () at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: ... , pweight(wt2) ...

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given
random effects. dispersion(mean), the default, yields a model where the conditional overdis-
persion is a function of the conditional mean given random effects. For example, in a two-level
model, the conditional overdispersion is equal to 1 +«FE(y;;|u;). dispersion(constant) yields
a model where the conditional overdispersion is constant and is equal to 1+ 6. « and ¢ are the
respective conditional overdispersion parameters.

constraints (constraints); see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce_option. If vce (robust) is
specified, robust variances are clustered at the highest level in the multilevel model.



menbreg — Multilevel mixed-effects negative binomial regression 197

Reporting

level (#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(/3)
rather than [. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] Estimation options.
notable suppresses the estimation table, either at estimation or upon replay.
noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fmt),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean—variance adaptive Gauss—Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss—Hermite quadrature; ghermite performs nonadaptive Gauss—
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs) ; see [R] Maximize. Those that require
special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with menbreg but are not shown in the dialog box:

startvalues (svmethod), startgrid[(gridspec)}, noestimate, and dnumerical; see [ME]
meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Mixed-effects negative binomial regression is negative binomial regression containing both fixed
effects and random effects. In longitudinal data and panel data, random effects are useful for modeling
intracluster correlation; that is, observations in the same cluster are correlated because they share
common cluster-level random effects.

menbreg allows for many levels of random effects. However, for simplicity, consider a two-level
model, where for a series of M independent clusters, and conditional on the latent variable (;; and
a set of random effects u;,

Yij|Cij ~ Poisson(Cy;)

and
Cij|uj ~ Gamma(rij,pij)
and
uj ~ N(O, Z)
where y;; is the count response of the ith observation, ¢ = 1,...,n;, from the jth cluster,
j=1,...,M, and r;; and p;; have two different parameterizations, (2) and (3) below. The random

effects u; are M realizations from a multivariate normal distribution with mean O and ¢ X ¢
variance matrix Y. The random effects are not directly estimated as model parameters but are instead
summarized according to the unique elements of ¥, known as variance components.

The probability that a random response y;; takes the value y is then given by

Pr(us = i) = F st ply (=) )

where for convenience we suppress the dependence of the observable data y;; on 7;; and p;;.

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate
normally distributed random effects at different hierarchical levels. (The negative binomial model
itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random
effect.) The standard negative binomial model is used to model overdispersed count data for which the
variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean,
and thus overdispersion is defined as the extra variability compared with the mean. According to this
definition, the negative binomial model presents two different parameterizations of the overdispersion:
the mean parameterization, where the overdispersion is a function of the mean, 1+ aE(Y |x), o > 0;
and the constant parameterization, where the overdispersion is a constant function, 1+ 4,5 > 0. We
refer to o and § as conditional overdispersion parameters.

Let pi; = E(yij]x, u;) = exp(x;;3+2;;u;), where x;; is the 1 x p row vector of the fixed-effects
covariates, analogous to the covariates you would find in a standard negative binomial regression
model, with regression coefficients (fixed effects) 3; z;; is the 1 x ¢ vector of the random-effects
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covariates and can be used to represent both random intercepts and random coefficients. For example,
in a random-intercept model, z;; is simply the scalar 1. One special case places z;; = X;;, so that
all covariate effects are essentially random and distributed as multivariate normal with mean 3 and
variance X.

Similarly to the standard negative binomial model, we can consider two parameterizations of
what we call the conditional overdispersion, the overdispersion conditional on random effects, in a
random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-
conditional-overdispersion) parameterization,

1
ri; =1/a and p;; = ——— 2
L) / ¥ 1 + a’uﬂ” ( )
and the conditional overdispersion is equal to 1 + ay;;. For the constant-overdispersion (or, more
technically, constant-conditional-overdispersion) parameterization,

1

155 3)

rij = pij/0 and pi; =
and the conditional overdispersion is equal to 1 4+ 4. In what follows, for brevity, we will use the
term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model
is used as a reference model for the definition of the overdispersion. For example, if we consider
a corresponding random-effects Poisson model as a comparison model, the parameters o and ¢ can
still be viewed as unconditional overdispersion parameters, as we show below, although the notion
of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson
process for which the variance is equal to the mean, we need to carefully distinguish between the
marginal (unconditional) mean with random effects integrated out and the conditional mean given
random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Contingent on random
effects, the (conditional) dispersion Var(y;;|u;) = (1 4 ;)5 for the mean parameterization and
Var(y;j|u;) = (14 0)p;; for the constant parameterization; the usual interpretation of the parameters
holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a
two-level random-intercept model, then

Var(y;;) = [1+ {exp(c®)(1+a) — 1}E(yi;)] E(yij)

for the mean parameterization and
Var(yi;) = [1+0 + {exp(0?) = 1}E(yi;)] E(vi;)

for the constant parameterization, where o2 is the variance component corresponding to the random
intercept.

A few things of interest compared with the standard negative binomial model. First, the random-
effects negative binomial model is not strictly an overdispersed model. The combination of values
of a and o2 can lead to an underdispersed model, a model with smaller variability than the Poisson
variability. Underdispersed models are not as common in practice, so we will concentrate on the
overdispersion in this entry. Second, « (or d) no longer solely determine the overdispersion and thus
cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of
both o (or &) and 2. Third, the notion of a constant overdispersion is not applicable.
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Two special cases are worth mentioning. When 2 = 0, the dispersion reduces to that of a standard
negative binomial model. When o = 0 (or 6 = 0), the dispersion reduces to that of a two-level
random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh
and Skrondal (2022, sec. 13.7) for more details. As such, « and ¢ retain the typical interpretation as
dispersion parameters relative to a random-intercept Poisson model.

Below we present two short examples of mixed-effects negative binomial regression; refer to
[ME] me and [ME] meglm for more examples including crossed-effects models.

> Example 1: Two-level random-intercept model

Rabe-Hesketh and Skrondal (2022, sec. 13.7) analyze the data from Winkelmann (2004) on the
impact of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers
was to reduce government expenditures on healthcare. We use a subsample of the data restricted to
1,158 women who were employed full time the year before or after the reform.

. use https://www.stata-press.com/data/r18/drvisits
(Doctor visits)
. describe

Contains data from https://www.stata-press.com/data/r18/drvisits.dta

Observations: 2,227 Doctor visits
Variables: 8 23 Jan 2022 18:39
Variable Storage Display Value
name type format label Variable label
id int %9.0g Person ID
numvisit byte %9.0g Number of doctor visits in the
last 3 months before interview
age byte %9.0g Age in years
educ float  %9.0g Education in years
married byte %9.0g 1 if married; O otherwise
badh byte %9.0g Self-reported health status; 1 if
bad
loginc float  %9.0g Log of household income
reform byte %9.0g 0 if interview before reform; 1

if interview after reform

Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy
variable, reform, which indicates whether a doctor visit took place before or after the reform. Other
covariates include a self-reported health status, age, education, marital status, and a log of household
income.
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We first fit a two-level random-intercept Poisson model. We specify the random intercept at the
id level, that is, an individual-person level.

. mepoisson numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:
Iteration 0: Log likelihood = -9326.8542
Iteration 1: Log likelihood = -5989.7308
Iteration 2: Log likelihood = -5942.7581
Iteration 3: Log likelihood = -5942.7243
Iteration 4: Log likelihood = -5942.7243
Refining starting values:
Grid node 0: Log likelihood = -4761.1257
Fitting full model:
Iteration 0: Log likelihood = -4761.1257
Iteration 1 Log likelihood = -4683.2239
Iteration 2: Log likelihood = -4646.9329
Iteration 3: Log likelihood = -4645.736
Iteration 4: Log likelihood = -4645.7371
Iteration 5: Log likelihood = -4645.7371
Mixed-effects Poisson regression Number of obs 2,227
Group variable: id Number of groups = 1,518
Obs per group:
min = 1
avg = 1.5
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 249.37
Log likelihood = -4645.7371 Prob > chi2 = 0.0000
numvisit IRR  Std. err. P P>|z]| [95% conf. interval]
reform .9517026 .0309352 -1.52  0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357
educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205503
badh 2.471857 .151841 14.73  0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32  0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27  0.203 .191413 1.421766
id
var (_cons) .8177932 .0503902 .724761 .9227673

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

_cons estimates baseline incidence rate (conditional on
effects).

LR test vs. Poisson model:

Note: zero random

chibar2(01) = 2593.97 Prob >= chibar2 = 0.0000

. estimates store mepoisson

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The
healthcare reform seems to reduce the expected number of visits by 5% but without statistical
significance.

Because we have only one random effect at the id level, the table shows only one variance
component. The estimate of o2 is 0.82 with standard error 0.05. The reported likelihood-ratio test
shows that there is enough variability between women to favor a mixed-effects Poisson regression
over a standard Poisson regression; see Distribution theory for likelihood-ratio test in [ME] me for a
discussion of likelihood-ratio testing of variance components.
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It is possible that after conditioning on the person-level random effect, the counts of doctor visits
are overdispersed. For example, medical problems occurring during the time period leading to the
survey can result in extra doctor visits. We thus reexamine the data with menbreg.

. menbreg numvisit reform age educ married badh loginc || id:, irr
Fitting fixed-effects model:

Iteration 0: Log likelihood = -4610.7165
Iteration 1: Log likelihood = -4563.4682
Iteration 2: Log likelihood = -4562.3241
Iteration 3: Log likelihood = -4562.3238

Refining starting values:
Grid node 0: Log likelihood = -4643.5216
Fitting full model:

Iteration 0: Log likelihood = -4643.5216 (not concave)
Iteration 1: Log likelihood = -4555.961
Iteration 2: Log likelihood = -4518.7353
Iteration 3: Log likelihood = -4513.1951
Iteration 4: Log likelihood = -4513.1853
Iteration 5: Log likelihood = -4513.1853

Mixed-effects nbinomial regression Number of obs = 2,227

Overdispersion: mean
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2
Integration method: mvaghermite Integration pts. = 7
Wald chi2(6) = 237.35
Log likelihood = -4513.1853 Prob > chi2 = 0.0000
numvisit IRR  Std. err. z P>|z| [95% conf. intervall
reform .9008536 .042022 -2.24 0.025 .8221449 .9870975
age 1.003593 .0028206 1.28 0.202 .9980799 1.009137
educ 1.007026 .012827 0.55 0.583 .9821969 1.032483
married 1.089597 .064213 1.46 0.145 .970738 1.223008
badh 3.043562 .2366182 14.32  0.000 2.613404 3.544523
loginc 1.136342 .0867148 1.67 0.094 .9784833 1.319668
_cons .5017199 .285146 -1.21 0.225 .1646994 1.528377
/1lnalpha -.7962692 .1190614 -1.029625  -.5629132
id

var (_cons) .4740088 .0582404 .3725642 .6030754

Note: Estimates are transformed only in the first equation to incidence-rate

ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. nbinomial model: chibar2(01) = 98.28 Prob >= chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of
doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant
at the 5% level.

The estimate of the variance component o2 drops down to 0.47 compared with mepoisson, which
is not surprising given that now we have an additional parameter that controls the variability of the
data.
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Because the conditional overdispersion « is assumed to be greater than 0, it is parameterized
on the log scale, and its log estimate is reported as /lnalpha in the output. In our model, & =
exp(—0.80) = 0.45. We can also compute the unconditional overdispersion in this model by using
exp(0.47) x (1 +045) — 1 =1.32.

The reported likelihood-ratio test shows that there is enough variability between women to favor a
mixed-effects negative binomial regression over negative binomial regression without random effects.

We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to
the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use
the force option with 1rtest. In general, there is no guarantee as to the validity or interpretability of
the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects
Poisson model is nested within the mixed-effects negative binomial model.

. lrtest mepoisson ., force

Likelihood-ratio test
Assumption: mepoisson nested within .
LR chi2(1) = 265.10
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is comnservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported
test is conservative because the test of Hp: o = 0 occurs on the boundary of the parameter space;
see Distribution theory for likelihood-ratio test in [ME] me for details.

N

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go
from biggest (highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit
example 3 from [ME] mepoisson.

> Example 2: Three-level random-intercept model

Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971-1980.
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. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from https://www.stata-press.com/data/r18/melanoma.dta

Observations: 354 Skin cancer (melanoma) data
Variables: 6 30 May 2022 17:10

(_dta has notes)

Variable Storage Display Value
name type format label Variable label
nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III
areas
deaths int %9.0g No. deaths during 1971-1980
expected float  %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered
Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The
variable uv is a measure of exposure to ultraviolet (UV) radiation.

In example 3 of [ME] mepoisson, we noted that because counties also identified the observations,
we could model overdispersion by using a four-level Poisson model with a random intercept at the
county level. Here we fit a three-level negative binomial model with the default mean-dispersion
parameterization.

. menbreg deaths uv, exposure(expected) || nation: || region:
Fitting fixed-effects model:

Iteration 0: Log likelihood = -1361.855
Iteration 1: Log likelihood = -1230.0211
Iteration 2: Log likelihood = -1211.049
Iteration 3: Log likelihood = -1202.5641
Iteration 4: Log likelihood = -1202.5329
Iteration 5: Log likelihood = -1202.5329
Refining starting values:

Grid node 0: Log likelihood = -1209.6951
Fitting full model:

(output omitted )

Mixed-effects nbinomial regression Number of obs = 354
Overdispersion: mean

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum
nation 9 3 39.3 95
region 78 1 4.5 13
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Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 8.73

Log likelihood = -1086.3902 Prob > chi2 = 0.0031

deaths | Coefficient Std. err. z P>|z| [95% conf. intervall]

uv -.0335933 .0113725 -2.95 0.003 -.0565883 -.0113035

_cons -.0790606 .1295931 -0.61 0.542 -.3330583 .1749372

1n(expected) 1 (exposure)

/1nalpha -4.182603 .3415036 -4.851937 -3.513268
nation

var (_cons) .1283614 .0678971 .0455187 .3619758
nation>
region

var (_cons) .0401818 .0104855 .0240938 .067012

LR test vs. nbinomial model: chi2(2) = 232.29 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates are very close to those of mepoisson. The conditional overdispersion in our model
is @ = exp(—4.18) = 0.0153. It is in agreement with the estimate of the random intercept at the
county level, 0.0147, in a four-level random-effects Poisson model reported by mepoisson. Because
the negative binomial is a three-level model, we gained some computational efficiency over the
four-level Poisson model.

N

Stored results

menbreg stores the following in e():

e(converged)

Macros

e(cmd)
e(cmd2)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_dv) number of dependent variables
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_f) number of fixed-effects parameters
e(k_r) number of random-effects parameters
e(k_rs) number of variances
e(k_rc) number of covariances
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) p-value for model test
e(1l_c) log likelihood, comparison model
e(chi2_c) x?, comparison test
e(df_c) degrees of freedom, comparison test
e(p—c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

1 if converged, O otherwise

meglm
menbreg
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type

e (wexp) weight expression (first-level weights)

e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e (pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates

e(ivars) grouping variables

e (model) nbreg

e(title) title in estimation output

e(link) log

e(family) nbinomial

name of cluster variable
mean Or constant

e(clustvar)
e(dispersion)

e(offset) offset

e(intmethod) integration method

e(n_quad) number of integration points

e(chi2type) Wald; type of model x?

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method

e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum
e(properties) bV

e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N_g) group counts
e(g_min) group-size minimums
e(g_avg) group-size averages
e(g_max) group-size maximums

e(V) variance—covariance matrix of the estimators

e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas

menbreg is a convenience command for meglm with a log link and an nbinomial family; see
[ME] meglm.

Without a loss of generality, consider a two-level negative binomial model. For cluster j, j =
1,..., M, the conditional distribution of y; = (y;1,...,¥jn,;) . given a set of cluster-level random
effects u; and the conditional overdispersion parameter « in a mean-overdispersion parameterization,

1S
]

D(yij +r r Yij
f(yj|uj7a)_H{IMpij(1pij) }

=1

n;
= exp [Z{logf(yij + 1) — logl'(ys; + 1) — logl'(r) + c(yij, )}
i=1

where ¢(y;;, @) is defined as

1
- log{1 + exp(n;; + loga)} — v;; log{1 + exp(—n;; — loga)}

and r = 1/0(, pij = 1/(1 =+ Oé/,[,ij), and nij = Xij,6—|— Ziju]‘.
For the constant-overdispersion parameterization with the conditional overdispersion parameter ¢,
the conditional distribution of y; is

o TT Dt
f(yjla;,0) E{F(yij—Fl)F(mj)p (I1-p) }

= exp [Z{logr(ym‘ +7ij) — logl'(yi; + 1) — logl'(ri;) + c(yi5,6)}

=1

where c¢(y;;,0) is defined as

- (M(;j + yij) log(1 + 6) + yi; logd
and 7;; = f1;;/0 and p = 1/(1 + ).

For conciseness, let v denote either conditional overdispersion parameter. Because the prior
distribution of u; is multivariate normal with mean 0 and g X ¢ variance matrix X, the likelihood
contribution for the jth cluster is obtained by integrating u; out of the joint density f(y;,u;,7),

L;(B,%,7) = (2m)" Y2 |2|_1/2/f(y3‘|uj,7) exp (—u;B 7 u;/2) duy
(4)
— (2m) /2 |51/ / exp {1 (8, 5. u;,7)} du,

where
h(B,%,u;,7) = f(y;lu;,7) — ;2 u;/2

and for convenience, in the arguments of h(-) we suppress the dependence on the observable data
(v, X, Zj)-
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The integration in (4) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

menbreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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menbreg postestimation — Postestimation tools for menbreg

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands

The following postestimation command is of special interest after menbreg:

Command Description
estat group summarize the composition of the nested groups
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian
information criteria (AIC, CAIC, AICc, and BIC)

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results

*hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
*lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal
effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combi-
nations of coefficients

predict means, probabilities, densities, REs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

*hausman and 1lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict
Syntax for obtaining predictions of the outcome and other statistics

predict [type] {stub*|newvarlist} [lf} [m] [, statistic opli(ms}

Syntax for obtaining estimated random effects and their standard errors

predict [type] {stub*|newvarlist} [lf} [in], reffects [re_options]

Syntax for obtaining ML scores

predict [Iype] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
&iance deviance residuals
anscombe Anscombe residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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options Description
Main
conditional (ctype) compute statistic conditional on estimated random effects; default is
conditional (ebmeans)
marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
Integration
int_options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description
ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only
re_options Description

Main
ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects

reses (stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int_options integration options

int_options Description

intpoints (#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance (#) set convergence tolerance for computing statistics involving empirical

Bayes estimators

Options for predict
Main

r

mu, the default, calculates the predicted mean, that is, the predicted number of events.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

Integration

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlisz} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins
density not allowed with margins
distribution not allowed with margins
pearson not allowed with margins
deviance not allowed with margins
anscombe not allowed with margins
reffects not allowed with margins
scores not allowed with margins

Options conditional (ebmeans) and conditional(ebmodes) are not allowed with margins.

Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
negative binomial model with menbreg. For the most part, calculation centers around obtaining
estimates of the subject/group-specific random effects. Random effects are not estimated when the
model is fit but instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME] meglm
postestimation for additional examples applicable to mixed-effects generalized linear models.
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> Example 1: Predicting counts and random effects

In example 2 of [ME] menbreg, we modeled the number of deaths among males in nine European
nations as a function of exposure to ultraviolet radiation (uv). We used a three-level negative binomial
model with random effects at the nation and region levels.

. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. menbreg deaths uv, exposure(expected) || nation: || region:

(output omitted )

We can use predict to obtain the predicted counts as well as the estimates of the random effects
at the nation and region levels.

. predict mu

(option mu assumed)

(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. predict re_nat re_reg, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Stata displays a note that the predicted values of mu are based on the posterior means of random
effects. You can use option modes to obtain predictions based on the posterior modes of random
effects.

Here we list the data for the first nation in the dataset, which happens to be Belgium:

. list nation region deaths mu re_nat re_reg if nation==1, sepby(region)
nation region deaths mu re_nat re_reg
1. Belgium 1 79 64.4892  -.0819939 .2937711
2. Belgium 2 80 77.64736 -.0819939 .024005
3. Belgium 2 51  44.56528 -.0819939 .024005
4. Belgium 2 43 53.10434 -.0819939 .024005
5. Belgium 2 89 65.35963 -.0819939 .024005
6. Belgium 2 19  35.18457  -.0819939 .024005
7. Belgium 3 19 8.770186  -.0819939  -.3434432
8. Belgium 3 15 43.95521  -.0819939  -.3434432
9. Belgium 3 33 34.17878 -.0819939  -.3434432
10. Belgium 3 9 7.332448 -.0819939  -.3434432
11. Belgium 3 12 12.93873  -.0819939  -.3434432

We can see that the predicted random effects at the nation level, re_nat, are the same for all the
observations. Similarly, the predicted random effects at the region level, re_reg, are the same within
each region.

N

Methods and formulas

Methods and formulas for predicting random effects and other statistics are given in Methods and
formulas of [ME] meglm postestimation.
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Also see
[ME] menbreg — Multilevel mixed-effects negative binomial regression
[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

menl — Nonlinear mixed-effects regression
Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see
Description

menl fits nonlinear mixed-effects models in which some or all fixed and random effects enter
nonlinearly. These models are also known as multilevel nonlinear models or hierarchical nonlinear
models. The overall error distribution of the nonlinear mixed-effects model is assumed to be Gaussian.
Different covariance structures are provided to model random effects and to model heteroskedasticity
and correlations within lowest-level groups.

Quick start

Nonlinear mixed-effects regression of y on x1 and x2 with random intercepts BO by id
menl y = {a}*(1-exp(-({b0}+{b1}*x1+{b2}*x2+{B0[id]})))

Same as above, but using the more efficient specification of the linear combination
menl y = {a}*(l-exp(-{xb: x1 x2 BO[id]l}))

Same as above, but using define () to specify the linear combination
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 BO[id])

Same as above, but perform restricted maximum-likelihood estimation instead of the default maximum-
likelihood estimation

menl y = {a}*(1-exp(-{xb:1})), define(xb: x1 x2 BO[id]) reml

Specify your own initial values for fixed effects, but use the default expectation-maximization (EM)
method to obtain initial values for random-effects parameters
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 BO[id]) 11/
initial({a} 1 {xb:x1} 1 {xb:x2} 0.5 {xb:_cons} 2, fixed)

Include random intercepts AO by id to allow parameter a to vary between levels of id, and specify
the xb suboption to indicate that a: contains a linear combination rather than a scalar parameter

menl y = {a:}*(1-exp(-{xb:3})), define(xb: x1 x2 BO[id]) 11/
define(a: AO[id], xb)

Include a random slope on continuous variable x2 in the linear combination, and allow correlation
between random slopes B1 and intercepts BO

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 BO[id] c.x2#B1[id]) ///
covariance(BO B1, unstructured)

Specify a heteroskedastic within-subject error variance that varies as a power of x2

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 BO[id] c.x2#B1[id]) ///
covariance(BO B1l, unstructured) resvariance(power x2)
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Display random-effects and within-group error parameters as standard deviations and correlations
menl, stddeviations

Fit a nonlinear marginal regression of y on variables x1, x2, and x3 with an exchangeable covariance
structure for the within-id errors
menl y = {phil}*(1-exp(-0.5*%(x1-{phi2: x2 i.x3}))), ///
rescovariance(exchangeable, group(id))

Three-level nonlinear regression of y on variable time and factor variable £ with random intercepts
SO by lev3 and WO by lev2 nested within lev3, using an AR(1) correlation structure for the
residuals

menl y = {phil:}+{phi2:}*exp(-{phi3}*time), ///
define(phil: i.f SO0[lev3]) define(phi2: i.f WO[lev3>lev2]) ///
rescorrelation(ar 1, t(time))

Three-level nonlinear regression of y on x1 with random intercepts WO and slopes W1 on continuous
x1 by lev3 and with random intercepts SO and slopes S1 on x1 by lev2 nested within lev3,
using unstructured covariance for WO and W1 and exchangeable covariance for SO and S1

menl y = {phil:}+{bl}*cos({b2}*x1), /1/
define(phil:x1 WO[lev3] SO[lev3>lev2] /17
c.x1#(W1[lev3] Si[lev3>lev2])) ///

covariance (WO W1, unstructured) ///

covariance(S0 S1, exchangeable)

Same as above, but assume that residuals are independent but have different variances for males and

females
menl y = {phil:}+{b1}*cos({b2}*x1), 11/
define(phil:x1 WO[lev3] SO[lev3>lev2] /17
c.x1#(Wi[lev3] Si[lev3>lev2])) /17
covariance (WO W1, unstructured) ///
covariance(SO S1, exchangeable) ///

rescovariance(identity, by(female))

Menu

Statistics > Multilevel mixed-effects models > Nonlinear regression
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Syntax
menl depvar = <menlexpr> [lf] [m] [, options}
<menlexpr> defines a nonlinear regression function as a substitutable expression that contains

model parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see
Random-effects substitutable expressions for details.

options Description

Model
mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood

define (name: <resubexpr>) define a function of model parameters; this option may be repeated
variance—covariance structure of the random effects; this

option may be repeated
initial values for parameters

covariance (covspec)

initial (initial_values)

Residuals
rescovariance (rescovspec) covariance structure for within-group errors
resvariance (resvarspec) heteroskedastic variance structure for within-group errors

rescorrelation(rescorrspec) correlation structure for within-group errors

Time series
tsorder (varname) specify time variable to determine the ordering for time-series
operators

tsinit ({name:}=<resubexpr>) specify initial conditions for lag operators used with named

expressions; this option may be repeated

tsmissing keep observations with missing values in depvar in computation
Reporting

level (#) set confidence level; default is 1level (95)

variance show random-effects and within-group error parameter

estimates as variances and covariances; the default

stddeviations show random-effects and within-group error parameter
estimates as standard deviations and correlations

noretable suppress random-effects table

nofetable suppress fixed-effects table

estmetric show parameter estimates as stored in e (b)

nolegend suppress table expression legend

noheader suppress output header

nogroup suppress table summarizing groups

nostderr do not estimate standard errors of random-effects parameters

1lrtest perform a likelihood-ratio test to compare the nonlinear
mixed-effects model with ordinary nonlinear regression

notsshow do not show ts setting information

display_options

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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EM options
emiterate (#)

emtolerance (#)

emlog

Maximization
menlmaxopts

coeflegend

number of EM iterations; default is emiterate (25)
EM convergence tolerance; default is emtolerance(1e-10)
show EM iteration log

control the maximization process

display legend instead of statistics

collect is allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

The syntax of covspec is

renamel rename2 [} , vartype

vartype Description

independent one unique variance parameter per random effect; all covariances
are 0; the default

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects; all covariances are O

unstructured all variances and covariances to be distinctly estimated

The syntax of rescovspec is

rescov [, rescovopts]

rescov Description

identity uncorrelated within-group errors with one common variance;
the default

independent uncorrelated within-group errors with distinct variances

exchangeable within-group errors with equal variances and one common
covariance

ar [#} within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma [#} within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

ctarl within-group errors with continuous-time AR(1) structure

toeplitz [#}

banded [#]

unstructured

within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

within-group errors with distinct variances and covariances
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The syntax of resvarspec is

resvarfunc [, resvaropts]

resvarfunc

Description

identity

linear varname

power varname | _yhat
exponential varname \ —yhat
distinct

equal within-group error variances; the default

within-group error variance varies linearly with varname
variance function is a power of varname or of predicted mean
variance function is exponential of varname or of predicted mean
distinct within-group error variances

The syntax of rescorrspec is

rescorr [, rescorropts}

rescorr Description

identity uncorrelated within-group errors; the default

exchangeable within-group errors with one common correlation

ar [#} within-group errors with AR(#) structure; ar 1 is implied by ar
ma [#} within-group errors with MA(#) structure; ma 1 is implied by ma
ctarl within-group errors with continuous-time AR(1) structure

toeplitz [#}

within-group errors have Toeplitz correlation structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

banded [#] within-group errors with distinct correlations within first #
off-diagonals; banded implies all matrix bands (unstructured)
unstructured within-group errors with distinct correlations
Options

Model

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as

residual maximum likelihood.

define (name: <resubexpr>) defines a function of model parameters, <resubexpr>, and labels it as
name. This option can be repeated to define multiple functions. The define () option is useful for
expressions that appear multiple times in the main nonlinear specification menlexpr: you define the
expression once and then simply refer to it by using {name:} in the nonlinear specification. This
option can also be used for notational convenience. See Random-effects substitutable expressions
for how to specify <resubexpr>. <resubexpr> within define() may not contain the lagged

predicted mean function.

covariance (renamel rename2

] , vartype) specifies the structure of the covariance matrix

for the random effects. renamel, rename2, and so on, are the names of the random effects
to be correlated (see Random effects), and vartype is one of the following: independent,
exchangeable, identity, or unstructured. Instead of renames, you can specify restub* to
refer to random effects that share the same restub in their names.



220 menl — Nonlinear mixed-effects regression

independent allows for a distinct variance for each random effect and assumes that all covariances
are 0; the default.

exchangeable specifies one common variance for all random effects and one common pairwise
covariance.

identity is short for “multiple of the identity”; that is, all variances are equal, and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If p random effects are
specified, the unstructured covariance matrix will have p(p + 1)/2 unique parameters.

initial (initial_values) specifies the initial values for model parameters. You can specify a 1 x k
matrix, where k is the total number of parameters in the model, or you can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to
initialize {alpha} to 1.23 and {delta} to 4.57, you would type

. menl ..., initial(alpha 1.23 delta 4.57) ...

To initialize multiple parameters that have the same group name, for example, {y:x1} and {y:x2},
with the same initial value, you can simply type

. menl ..., initial({y:} 1) ...

For the full specification, see Specifying initial values.

Residuals

menl provides two ways to model the within-group error covariance structure, sometimes also referred
to as residual covariance structure in the literature. You can model the covariance directly by using
the rescovariance () option or indirectly by using the resvariance() and rescorrelation()
options.

rescovariance (rescov [, rescovopts]) specifies the within-group errors covariance structure or
covariance structure of the residuals within the lowest-level group of the nonlinear mixed-effects
model. For example, if you are modeling random effects for classes nested within schools, then
rescovariance () refers to the residual variance—covariance structure of the observations within
classes, the lowest-level groups.

rescov is one of the following: identity, independent, exchangeable, ar [#], ma [#],

ctarl, toeplitz [#] banded [#] , or unstructured. Below, we describe each rescov with
its specific options rescovopts:

identity [ , by (byvar) ], the default, specifies that all within-group errors be independent
and identically distributed (i.i.d.) with one common error variance 062. When combined with
by (byvar), independence is still assumed, but you estimate a distinct variance for each
category of byvar.

independent, index(varname) [group(grpvar)] specifies that within-group errors are
independent with distinct variances for each value (index) of varname. index (varname) is
required. group (grpvar) is required if there are no random effects in the model.

exchangeable [ , by(byvar) group (grpvar) ] assumes that within-group errors have equal
variances and a common covariance.

ar [#] , t(timevar) [by(byvar) group (grpvar) ] assumes that within-group errors have an
AR(#) structure. If # is omitted, ar 1 is assumed. t (timevar) is required. For this structure,
# 4 1 parameters are estimated: # AR coefficients and one overall error variance, O’?.
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ma [#] , t(timevar) [by(byvar) group (grpvar) ] assumes that within-group errors have an
MA(#) structure. If # is omitted, ma 1 is assumed. t (timevar) is required. For this structure,
# 4 1 parameters are estimated: # MA coefficients and one overall error variance, 062.

ctarl, t(timevar) [by(byvar) group (grpvar)} assumes that within-group errors have a
continuous-time AR(1) structure. This is a generalization of the AR covariance structure that
allows for unequally spaced and noninteger time values. t (timevar) is required. For this
structure, two parameters are estimated: the correlation parameter, p, and one overall error
variance, o2. The correlation between two error terms is the parameter p raised to a power
equal to the absolute value of the difference between the t () values for those errors.

toeplitz [#] , t(timevar) [by(byvar) group (grpvar) ] assumes that within-group errors
have a Toeplitz structure of order #, for which correlations are constant with respect to time
lags less than or equal to # and are O for lags greater than #. # is an integer between 1 and
the maximum observed lag (the default). t (timevar) is required. For this structure, # 4 1

parameters are estimated: # correlations and one overall error variance, J?.

banded [#] , index (varname) [group (grpvar) ] is a special case of unstructured that
restricts estimation to the covariances within the first # off-diagonals and sets the covariances
outside this band to 0. index(varname) is required. # is an integer between 0 and L — 1,
where L is the number of levels of index (). By default, # is L — 1; that is, all elements
of the covariance matrix are estimated. When # is 0, only the diagonal elements of the
covariance matrix are estimated. group(grpvar) is required if there are no random effects
in the model.

unstructured, index(varname) [group (grpvar) ] assumes that within-group errors have
distinct variances and covariances. This is the most general covariance structure in that no
structure is imposed on the covariance parameters. index (varname) is required. When you
have L levels of index(), then L(L + 1)/2 parameters are estimated. group(grpvar) is
required if there are no random effects in the model.

rescovopts are index (varname), t(timevar), by (byvar), and group(grpvar).

index (varname) is used within the rescovariance() option with rescov independent,
banded, or unstructured. varname is a nonnegative-integer—valued variable that identifies
the observations within the lowest-level groups (for example, obsid). The groups may be
unbalanced in that different groups may have different index() values, but you may not
have repeated index() values within any particular group.

t (timevar) is used within the rescovariance() option to specify a time variable for the ar,
ma, ctarl, and toeplitz structures.

With rescov ar, ma, and toeplitz, timevar is an integer-valued time variable used to order
the observations within the lowest-level groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps.

With rescov ctarl, timevar is a real-valued time variable.

by (byvar) is for use within the rescovariance() option and specifies that a set of distinct
within-group error covariance parameters be estimated for each category of byvar. In other
words, you can use by () to model heteroskedasticity. byvar must be nonnegative-integer
valued and constant within the lowest-level groups.

group (grpvar) is used to identify the lowest-level groups (panels) when modeling within-
group error covariance structures. grpvar is a nonnegative-integer—valued group membership
variable. This option lets you model within-group error covariance structures at the lowest
level of your model hierarchy without having to include random effects at that level in your
model. This is useful, for instance, when fitting nonlinear marginal or population-averaged
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models that model the dependence between error terms directly, without introducing random
effects; see example 19. In the presence of random effects at other levels of hierarchy in
your model, grpvar is assumed to be nested within those levels.

resvariance (resvarfunc [, resvarapts]) specifies a heteroskedastic variance structure of the
within-group errors. It can be used with the rescorrelation() option to specify flexible
within-group error covariance structures. The heteroskedastic variance structure is modeled as
Var (€;;) = 02g* (8,v;;), where o is an unknown scale parameter, g(-) is a function that models
heteroskedasticity (also known as variance function in the literature), d is a vector of unknown
parameters of the variance function, and v;;’s are the values of a fixed covariate x;; or of the
predicted mean 7i;;.

resvarfunc, omitting the arguments, is one of the following: identity, linear, power, expo-
nential, or distinct, and resvaropts are options specific to each variance function.

identity, the default, specifies a homoskedastic variance structure for the within-group errors;
g (8,vij) =1, so that Var (¢;;) = 02 = o2,

linear varname specifies that the within-group error variance vary linearly with varname; that
is, g (8,vj) = \/varname;;, so that Var (€;;) = o*varname;j. varname must be positive.

power varname| _yhat [ , strata(stratavar) noconstant] specifies that the within-group
error variance, or more precisely the variance function, be expressed in terms of a power of
either varname or the predicted mean _yhat, plus a constant term; g (8, v;;) = |v;;]° + 6.
If noconstant is specified, the constant term do is suppressed. In general, three param-
eters are estimated: a scale parameter o, the power d1, and the constant term 2. When
strata(stratavar) is specified, the power and constant parameters (but not the scale) are
distinctly estimated for each stratum. A total number of 2L + 1 parameters are estimated
(L power parameters, L constant parameters, and scale o), where L is the number of strata
defined by variable stratavar.

exponential varname| _yhat [ , strata(stratavar) ] specifies that the within-group error
variance vary exponentially with varname or with the predicted mean _yhat; g (7, v;;) =
exp(yv;;). Two parameters are estimated: a scale parameter o and an exponential parameter
7. When strata(stratavar) is specified, the exponential parameter v (but not scale o) is
distinctly estimated for each stratum. A total number of L + 1 parameters are estimated (L
exponential parameters and scale o), where L is the number of strata defined by variable
stratavar.

distinct, index(varname) [group (grpvar)] specifies that the within-group errors have
distinct variances, (TIQ, for each value (index), [, of varname, vi;; g (0,v;;) = 6,,; with
du;; = Ou;; /01 (01 = 1 for identifiability purposes) such that Var (¢;;) = o7 = 07d;, for
l=1,2,...,L and v;; € {1,2,...,L}. index(varname) is required. group(grpvar) is
required if there are no random effects in the model. resvariance(distinct) in combina-
tion with rescorrelation(identity) is equivalent to rescovariance(independent).

resvaropts are strata(stratavar), noconstant, index(), and group(grpvar).

strata(stratavar) is used within the resvariance() option with resvarfunc power and
exponential. strata() specifies that the parameters of the variance function g(-) be
distinctly estimated for each stratum. The scale parameter o remains constant across strata. In
contrast, rescovariance()’s by (byvar) suboption specifies that all covariance parameters,
including o (whenever applicable), be estimated distinctly for each category of byvar.
stratavar must be nonnegative-integer valued and constant within the lowest-level groups.
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noconstant is used within the resvariance () option with resvarfunc power. noconstant
specifies that the constant parameter be suppressed in the expression of the variance function
g().

index (varname) is used within the resvariance() option with resvarfunc distinct.
varname is a nonnegative-integer—valued variable that identifies the observations within the
lowest-level groups (for example, obsid). The groups may be unbalanced in that different
groups may have different index () values, but you may not have repeated index () values
within any particular group.

group(grpvar) is used within the resvariance() option with resvarfunc distinct. It
identifies the lowest-level groups (panels) when no random effects are included in the model
specification such as with nonlinear marginal models. grpvar is a nonnegative-integer—valued
group membership variable.

rescorrelation(rescorr [, rescormpts]) specifies a correlation structure of the within-group
errors. It can be used with the resvariance() option to specify flexible within-group error
covariance structures.

rescorr is one of the following: identity, exchangeable, ar [#], ma [#], ctarl, toeplitz
[#], banded [#], or unstructured.

identity, the default, specifies that all within-group error correlations be zeros.

exchangeable [, by (byvar) group(grpvar)] assumes that within-group errors have a
common correlation.

ar [#] , t(timevar) [by(byvar) group(grpvar)] assumes that within-group errors have
an AR(#) correlation structure. If # is omitted, ar 1 is assumed. The t (timevar) option is
required. For this structure, # AR coefficients are estimated.

ma [#] , t(timevar) [by(byvar) group (grpvar) ] assumes that within-group errors have an
MA(#) correlation structure. If # is omitted, ma 1 is assumed. The t (timevar) option is
required. For this structure, # MA coefficients are estimated.

ctarl, t(timevar) [by(byvar) group (grpvar)} assumes that within-group errors have a
continuous-time AR(1) correlation structure. The t (timevar) option is required. The corre-
lation between two errors is the parameter p raised to a power equal to the absolute value
of the difference between the t () values for those errors.

toeplitz [#] , t(timevar) [by(byvar) group (grpvar) ] assumes that within-group errors
have a Toeplitz correlation structure of order #, for which correlations are constant with
respect to time lags less than or equal to # and are O for lags greater than #. # is an integer
between 1 and the maximum observed lag (the default). t (timevar) is required. For this
structure, # correlation parameters are estimated.

banded [#] , index(varname) [group (grpvar) ] is a special case of unstructured that
restricts estimation to the correlations within the first # off-diagonals and sets the correlations
outside this band to 0. index(varname) is required. # is an integer between 0 and L — 1,
where L is the number of levels of index (). By default, # is L — 1; that is, all elements
of the correlation matrix are estimated. When # is 0, the correlation matrix is assumed to
be identity. group (grpvar) is required if there are no random effects in the model.

unstructured, index(varname) [group (grpvar) ] assumes that within-group errors have
distinct correlations. This is the most general correlation structure in that no structure is
imposed on the correlation parameters. index (varname) is required. group (grpvar) is
required if there are no random effects in the model.
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rescorropts are index (varname), t (timevar), by (byvar), and group (grpvar).

index(varname) is used within the rescorrelation() option with rescorr banded or
unstructured. varname is a nonnegative-integer—valued variable that identifies the obser-
vations within the lowest-level groups (for example, obsid). The groups may be unbalanced
in that different groups may have different index () values, but you may not have repeated
index () values within any particular group.

t (timevar) is used within the rescorrelation() option to specify a time variable for the
ar, ma, ctarl, and toeplitz structures.

With rescorr ar, ma, and toeplitz, timevar is an integer-valued time variable used to order
the observations within the lowest-level groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps.

With rescorr ctarl, timevar is a real-valued time variable.

by (byvar) is used within the rescorrelation() option and specifies that a set of distinct
within-group error correlation parameters be estimated for each category of byvar. byvar
must be nonnegative-integer valued and constant within the lowest-level groups.

group(grpvar) is used to identify the lowest-level groups (panels) when modeling within-
group error correlation structures. grpvar is a nonnegative-integer—valued group membership
variable. This option lets you model within-group error correlation structures at the lowest
level of your model hierarchy without having to include random effects at that level in your
model. This is useful, for instance, when fitting nonlinear marginal or population-averaged
models that model the dependence between error terms directly, without introducing random
effects; see example 19. In the presence of random effects at other levels of hierarchy in
your model, grpvar is assumed to be nested within those levels.

Time series

tsorder (varname) specifies the time variable that determines the time order for time-series operators
used in expressions; see Time-series operators. When you use time-series operators with menl,
you must either tsset your data prior to executing menl or specify option tsorder (). When you
specify tsorder (), menl uses the time variable varname to create a new temporary variable that
contains consecutive integers, which determine the sort order of observations within the lowest-level
group. menl also creates and uses the appropriate panel variable based on the hierarchy of your
model specification and the estimation sample; see example 17 and example 18.

tsinit ({name:}=<resubexpr>) specifies an initial condition for the named expression name used
with the one-period lag operator, L.{name:} or L1.{name:}, in the model specification. name
can be the depvar or the name of a function of model parameters previously defined in, for instance,
option define (). If you include the lagged predicted mean function L. {depvar:} or, equivalently,
L._yhat in your model, you must specify its initial condition in tsinit ({depvar:}=...). The
initial condition can be expressed as a random-effects substitutable expression, <resubexpr>.
Option tsinit () may be repeated. Also see Time-series operators, example 17, and example 18.

tsmissing specifies that observations containing system missing values (.) in depvar be retained
in the computation when a lagged named expression is used in the model specification. Extended
missing values in depvar are excluded. Both missing and nonmissing observations are used to
evaluate the predicted nonlinear mean function but only nonmissing observations are used to evaluate
the likelihood. Observations containing missing values in variables used in the model other than
the dependent variable are excluded. This option is often used when subjects have intermittent
depvar measurements and the lagged predicted mean function, L. {depvar:} or L._yhat, is used
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in the model specification. Such models are common in pharmacokinetics; see example 17 and
example 18.

Reporting

level (#); see [R] Estimation options.

variance, the default, displays the random-effects and within-group error parameter estimates as
variances and covariances.

stddeviations displays the random-effects and within-group error parameter estimates as standard
deviations and correlations.

noretable suppresses the random-effects table from the output.
nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored
in e(b). Random-effects parameter estimates are stored as log standard-deviations and hyperbolic
arctangents of correlations. Within-group error parameter estimates are stored as log standard-
deviations and, when applicable, as hyperbolic arctangents of correlations. Note that fixed-effects
estimates are always stored and displayed in the same metric.

nolegend suppresses the expression legend that appears before the fixed-effects estimation table when
functions of parameters or named substitutable expressions are specified in the main equation or
in the define () options.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents menl from calculating standard errors for the estimated random-effects parameters,
although standard errors are still provided for the fixed-effects parameters. Specifying this option
will speed up computation times.

1lrtest specifies to fit a reference nonlinear regression model and to use this model in calculating
a likelihood-ratio test, comparing the nonlinear mixed-effects model with ordinary nonlinear
regression.

notsshow prevents menl from showing the key ts variables; see [TS] tsset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fmt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

EM options

These options control the EM iterations that occur before estimation switches to the Lindstrom—Bates
method. EM is used to obtain starting values.

emiterate (#) specifies the number of EM iterations to perform. The default is emiterate(25).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1le-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to the Lindstrom—Bates
method.

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed by default.
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Maximization

menlmaxopts: iterate(#), tolerance(#), 1tolerance(#), nrtolerance(#), nonrtolerance,
pnlsopts(), lmeopts(), [no] log. The convergence is declared when either tolerance() or
ltolerance() is satisfied; see Stopping rules for details.

menlmaxopts control the maximization process of the Lindstrom—Bates, the generalized nonlinear
least-squares (GNLS), and the nonlinear least-squares (NLS) algorithms. The Lindstrom—Bates
algorithm is the main optimization algorithm used for nonlinear models containing random effects.
The GNLS algorithm is used for the models without random effects but with non-i.i.d. errors. The
NLS algorithm is used for the models without random effects and with i.i.d. errors. The Lindstrom—
Bates and GNLS algorithms are alternating algorithms—they alternate between two optimization
steps and thus support options to control the overall optimization as well as the optimization of
each step. The Lindstrom—Bates algorithm alternates between the penalized least-squares (PNLS)
and the linear mixed-effects (LME) optimization steps. The GNLS algorithm alternates between the
GNLS and ML or, if option reml is used, REML steps. Option pnlsopts() controls the PNLS and
GNLS steps, and option 1meopts() controls the LME and ML/REML steps. The other menlmaxopts
control the overall optimization of the alternating algorithms as well as the NLS optimization.

iterate(#) specifies the maximum number of iterations for the alternating algorithms and the
NLS algorithm. One alternating iteration of the Lindstrom—Bates algorithm involves #pn1s PNLS
iterations as specified in pnlsopts()’s iterate() suboption and #n. LME iterations as
specified in lmeopts()’s iterate() suboption. Similarly, one alternating iteration of the
GNLS algorithm involves #gn1s GNLS iterations and #,,1 ML/REML iterations. The default is
the number set using set maxiter, which is 300 by default.

tolerance (#) specifies the tolerance for the parameter vector in the alternating algorithms and the
NLS algorithm. When the relative change in the parameter vector from one (alternating) iteration
to the next is less than or equal to tolerance(), the parameter convergence is satisfied. The
default is tolerance(le-6).

ltolerance(#) specifies the tolerance for the linearization log likelihood of the Lindstrom—Bates
algorithm and for the log likelihood of the GNLS and NLS algorithms. The linearization log
likelihood is the log likelihood from the LME optimization step in the last iteration. When
the relative change in the log likelihood from one (alternating) iteration to the next is less
than or equal to ltolerance(), the log-likelihood convergence is satisfied. The default is
ltolerance(le-7).

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient.

nrtolerance (#) specifies the tolerance for the scaled gradient. Convergence is declared when
g(—=H™1)g" is less than nrtolerance (#), where g is the gradient row vector and H is the
approximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.
nrtolerance(#) and nonrtolerance are allowed only with the NLS algorithm.

pnlsopts (pnlsopts) controls the PNLS optimization step of the Lindstrom—Bates alternating
algorithm and the GNLS optimization step of the GNLS alternating algorithm. pnlsopts include
any of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance(#), and
maximize_options. The convergence of this step within each alternating iteration is declared
when nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option
is not allowed with the NLS algorithm.

iterate(#) specifies the maximum number of iterations for the PNLS and GNLS optimization
steps of the alternating algorithms. The default is iterate(5).
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ltolerance (#) specifies the tolerance for the objective function in the PNLS and GNLS
optimization steps. When the relative change in the objective function from one PNLS or
GNLS iteration to the next is less than or equal to 1tolerance(), the objective-function
convergence is satisfied. The default is 1tolerance(le-7).

tolerance (#) specifies the tolerance for the vector of fixed-effects parameters. When the
relative change in the coefficient vector from one PNLS or GNLS iteration to the next is less
than or equal to tolerance (), the parameter convergence criterion is satisfied. The default
is tolerance(le-6).

nrtolerance (#) specifies the tolerance for the scaled gradient in the PNLS and GNLS opti-
mization steps. Convergence is declared when g(—H ~1)g’ is less than nrtolerance (#),
where ¢ is the gradient row vector and H is the approximated Hessian matrix from the
current iteration. The default is nrtolerance(le-5).

maximize_options are [no] log, trace, showtolerance, nonrtolerance; see [R] Maximize.

lmeopts (Imeopts) controls the LME optimization step of the Lindstrom—Bates alternating algo-
rithm and the ML/REML optimization step of the GNLS alternating algorithm. /meopts include
any of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance (#), and
maximize_options. The convergence of this step within each alternating iteration is declared
when nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option
is not allowed with the NLS algorithm.

iterate (#) specifies the maximum number of iterations for the LME and ML/REML optimization
steps of the alternating algorithms. The default is iterate(5).

ltolerance(#) specifies the tolerance for the log likelihood in the LME and ML/REML
optimization steps. When the relative change in the log likelihood from one LME or ML/REML
iteration to the next is less than or equal to 1tolerance (), the log-likelihood convergence
is satisfied. The default is 1tolerance(le-7).

tolerance (#) specifies the tolerance for the random-effects and within-group error covariance
parameters. When the relative change in the vector of parameters from one LME or ML/REML
iteration to the next is less than or equal to tolerance(), the convergence criterion for
covariance parameters is satisfied. The default is tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the LME and ML/REML
optimization steps. Convergence is declared when g(—H ~1)g’ is less than nrtolerance (#),
where g is the gradient row vector and I is the approximated Hessian matrix from the
current iteration. The default is nrtolerance(le-5).

maximize_options are [no] log, trace, gradient, showstep, hessian, showtolerance,
nonrtolerance; see [R] Maximize.

[no} log; see [R] Maximize.

The following option is available with menl but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
Random-effects substitutable expressions
Substitutable expressions
Linear combinations
Linear forms versus linear combinations
Random effects
Multilevel specifications
Time-series operators
Summary
Specifying initial values
Two-level models
Testing variance components
Random-effects covariance structures
Heteroskedastic within-group errors
Restricted maximum likelihood
Pharmacokinetic modeling
Single-dose pharmacokinetic modeling
Multiple-dose pharmacokinetic modeling
Nonlinear marginal models
Three-level models
Obtaining initial values
Linearization approach to finding initial values
Graphical approach to finding initial values
Smart regressions approach to finding initial values
Examples of specifying initial values

Introduction

Nonlinear mixed-effects (NLME) models are models containing both fixed effects and random effects
where some of, or all, the fixed and random effects enter the model nonlinearly. They can be viewed
as a generalization of linear mixed-effects (LME) models (see [ME] mixed), in which the conditional
mean of the outcome given the random effects is a nonlinear function of the coefficients and random
effects. Alternatively, they can be considered as an extension of nonlinear regression models for
independent data (see [R] nl), in which coefficients may incorporate random effects, allowing them
to vary across different levels of hierarchy and thus inducing correlation within observations at the
same level.

Why use NLME models? Can’t we use higher-order polynomial LME models or generalized linear
mixed-effects (GLME) models instead?

In principle, any smooth nonlinear function can be approximated by a higher-order polynomial.
One may argue that we can use an LME (see [ME] mixed) polynomial model and increase the order
of the polynomial until we get an accurate approximation of the desired nonlinear model. There are
three problems with this approach. First, parameters in NLME models often have natural physical
interpretations such as half-life and limiting growth. This is not the case in LME polynomial models.
For example, what is the physical interpretation of the coefficient of time*? Second, NLME models
typically use fewer parameters than the corresponding LME polynomial model, which provides a
more parsimonious summarization of the data. Third, NLME models usually provide better predictions
outside the range of the observed data than predictions based on LME higher-order polynomial models.

GLME models (see [ME] meglm) are also nonlinear, but in the restricted sense that the conditional
mean response given random effects is a nonlinear function of the linear predictor that contains
both fixed and random effects, and only indirectly nonlinear in fixed and random effects themselves.
That is, the nonlinear function must be an invertible function of the linear predictor. However, many
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estimation methods for GLME and NLME models are similar because random effects enter both models
nonlinearly.

Population pharmacokinetics, bioassays, and studies of biological and agricultural growth processes
are just a few areas that use NLME models to analyze multilevel data such as longitudinal or repeated-
measures data. Comprehensive treatments of both methodology and history of NLME models may
be found in Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), Demidenko (2013), and
Pinheiro and Bates (2000). Davidian and Giltinan (2003) provide an excellent summary.

Consider a sample of M subjects from a population of interest, where n; measurements,
Yijs- -+ Yn;j> are observed on subject j at times tij,...,%,;;. By “subject”, we mean any dis-
tinct experimental unit, individual, panel, or cluster with two or more correlated observations. The
basic nonlinear two-level model can be written as follows (in our terminology, a one-level NLME is
just a nonlinear regression model for independent data),

yij:u(xgja/aauj)+eij iil,...,nj;jil,...,M (1)

where p(-) is a real-valued function that depends on a p X 1 vector of fixed effects 3, a ¢ X 1
vector of random effects u;, which are distributed as multivariate normal with mean 0 and variance—

covariance matrix X, and a covariate vector X;; that contains both within-subject covariates qu; and

. . ’.
between-subject covariates X?" The n; X 1 vector of errors €; = (elj, ey Eny j) is assumed to be

multivariate normal with mean 0 and variance—covariance matrix 0'2Aj, where depending on A, o2

is either a within-group error variance o2 or a squared scale parameter o2.

Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, (1) can
be equivalently formulated as a two-stage hierarchical model as follows:

Stage 1: Individual-level model y;; = m (x;{;, ¢>j) + € 1=1,...,n;

d (x5, B, u;) j=1,....M @

Stage 2: Group-level model ¢;

In stage 1, we model the response by using a function m(-), which describes within-subject
behavior. This function depends on subject-specific parameters ¢;’s, which have a natural physical
interpretation, and a vector of within-subject covariates x;;. In stage 2, we use a known vector-valued
function d(-) to model between-subject behavior, that is, to model ¢;’s and to explain how they
vary across subjects. The d(-) function incorporates random effects and, optionally, a vector of
between-subject covariates x;. The general idea is to specify a common functional form for each

subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

To further illustrate (1) and (2), we consider the soybean plants data (Davidian and Giltinan 1995),
in which we model the average leaf weight per soybean plant, y;;, in plot j at £;; days after planting.
Let’s first use (1):

yi; = 1 (xi;, B, uj) + €
_ B1 + uyj
L+ exp [~ {tij — (B2 +uzj)} / (B3 + us;)]

Here 8 = (B1, 82, B3) 0 = (u1,uzj,us;)’, and x;; is simply ¢;;.

+ €5
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Equivalently, we can use (2) to define our model,

Stage 1: y;; =m (X;f;-, ¢j) + €5
D15
= + €5
L+ exp{— (tij — d2;) /d3;} 7
Stage 2: (151]‘ = 51 + u1;
¢oj = P + uz;j

¢35 = B3 + us;

where X% = 1;;, ¢; = (¢1ja¢2ja¢3j)/ =d (X?, 8, uj) = B+ u;. A key advantage of (2) is the
interpretability. ¢;’s are parameters that characterize features of the trajectory. For example, ¢1; can
be interpreted as the asymptotic average leaf weight per soybean plant in plot j when ¢;; — oo and
¢2; as the time at which half of ¢q; is reached; that is, if we set t;; = ¢o;, then E(y;;) = ¢1,/2.

menl provides both representations.

The random effects u; are not directly estimated (although they may be predicted) but instead
are characterized by the elements of X, known as variance components, which are estimated together
with the parameters of the within-group error variance—covariance matrix 0'2Aj. Correlation among
repeated measures is induced either indirectly through the subject-specific random effects u; or directly
through specification of the within-subject covariance matrix 02Aj. Several covariance structures are
available for X, similar to those allowed in mixed. In contrast to mixed, menl provides more flexible
modeling of the within-subject variance and correlation structures.

menl uses the following decomposition of the A; matrix,

Aj =8;C;8S; (3)
where S; is diagonal with positive elements such that Var (¢;;) = 0%[S;]?% and C; is a correlation
matrix such that corr (€;;, €xj) = [C,lix; [A]i; denotes the ijth element of matrix A. Decomposition
(3) of A; allows us to separately model the variance structure (heteroskedasticity) and the correlation
structure by using disjoint sets of parameters for C; and S;. This is different from how mixed handles
within-subject correlation, where heteroskedasticity and correlation are determined by the type of the
chosen residual covariance structure. For convenience, menl accommodates the behavior of the mixed
command for specifying residual covariance structures via the rescovariance() option. The more
flexible modeling of the residual structures according to (3) is available via the resvariance() and
rescorrelation() options.

For LME models, because the random effects u;’s are unobserved, inference about 3 and the
covariance parameters are based on the marginal likelihood obtained after integrating out the random
effects. Unlike LME models, no closed-form solution is available because the random effects enter the
model nonlinearly, making the integration analytically intractable in all but the simplest situations.
There are two principal methods proposed in the literature for fitting NLME models. One is to
use an adaptive Gauss—Hermite (AGH) quadrature to approximate the integral that appears in the
expression of the marginal likelihood. The other one is to use the linearization method of Lindstrom
and Bates (1990), also known as a conditional first-order linearization method, which is based on
a first-order Taylor-series approximation of the mean function and essentially linearizes the mean
function with respect to fixed and random effects. With the AGH method, the level of accuracy increases
as the number of quadrature points increases but at the expense of increasing computational burden.
The linearization method is computationally efficient because it avoids the intractable integration, but
the approximation cannot be made arbitrarily accurate. Despite its potential limiting accuracy, the
linearization method has proven the most popular in practice (Fitzmaurice et al. 2009, sec. 5.4.8). The
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linearization method of Lindstrom and Bates (1990), with extensions from Pinheiro and Bates (1995),
is the method of estimation in menl.

The linearization method uses a first-order Taylor-series expansion of the specified nonlinear mean
function to approximate it with a linear function of fixed and random effects. Thus an NLME model
is approximated by an LME model, in which the fixed-effects and random-effects design matrices
involve derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and
random effects, respectively. As such, inference after the linearization method uses the computational
machinery of the LME models. For example, estimates of random effects are computed as best linear
unbiased predictors (BLUPs) of random effects from the approximating LME model. The accuracy of
the inferential results will depend on the accuracy of the linearization method in approximating the
original NLME model. In general, asymptotic inference for the NLME models based on the linearization
method is only “approximately asymptotic”, making it less accurate than the corresponding asymptotic
inference for true LME models. In practice, however, the linearization method was found to perform
well in many situations (for example, Pinheiro and Bates [1995]; Wolfinger and Lin [1997]; Plan
et al. [2012]; and Harring and Liu [2016]).

Both ML and REML estimation are supported by menl. The ML estimates are based on the usual
application of likelihood theory, given the distributional assumptions of the model. In small samples,
ML estimation generally leads to small-sample bias in the estimated variance components. The REML
method (Thompson 1962) reduces this bias by forming a set of linear contrasts of the response that
do not depend on the fixed effects 3 but instead depend only on the variance components to be
estimated. The likelihood is then formed based on the distribution of the linear contrasts, and standard
ML methods are applied.

The next section describes how to specify nonlinear expressions containing random effects in men1.

Random-effects substitutable expressions

You define the nonlinear model to be fit by menl by using a random-effects substitutable ex-
pression, a substitutable expression that contains random effects. For example, exp ({b}+{U[id]}),
{b1}/ ({b2}+{b3}*x+{U[id]1}), and ({b1}+{U1[id]1})/ (1+{b2}*x+{c.x#U2[id]}) are a few
examples of such expressions. We describe them in more detail below.

Substitutable expressions

Let’s first consider substitutable expressions without random effects. Substitutable expressions are
just like any other mathematical expressions involving scalars and variables, such as those you would
use with Stata’s generate command, except that the parameters to be estimated are bound in braces.
See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For teaching purposes, we will start with simpler substitutable expressions that do not contain
random effects. Suppose that we wish to fit the model

s = (1 Ot 4

where «, [y, 51, and B2 are the parameters to be estimated and ¢; j is an error term. We could simply
type
. menl y = {a}*x(1 - exp(-({bO}+{b1}*x1+{b2}*x2)))

Because a, b0, b1, and b2 are enclosed in braces, menl knows that they are parameters in the model.
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You can group several parameters together by assigning a group name (or equation name) to them.
Parameters with the same group name, lc in the example below, will be grouped together in the
output table:

. menl y = {a}*x(1 - exp(-({lc:b0}+{lc:bi1}*x1+{lc:b2}*x2)))
That is, parameters b0, b1, and b2 will appear together in the output table in the equation labeled
lc. Parameters without equation names will appear at the bottom of the output table.

Sometimes, it may be convenient to define subexpressions within the main expression. This can
be done inside the expression itself or by using the define () option. For example,

. menl y = {a}*(1 - exp(-{xb:})), define(xb: {lc:bO}+{lc:bil*x1+{lc:b2}*x2)

defines the linear predictor of the exponent in the define() option with label xb and then refers
to it inside the exponent as {xb:}. You can define as many subexpressions as you like by using
the define () option repeatedly. Defining subexpressions is also useful for later predictions; see, for
instance, example 13.

The above is equivalent to

. menl y = {a}*x(1 - exp(-{xb: {lc:bO}+{lc:bi}*x1+{lc:b2}*x2}))

Parameters {a}, {1c:b0}, {1c:b1}, and {1c:b2} are what we call “free parameters”, meaning
that they are not defined by a linear form, which we describe in the next section. Free parameters
are displayed with a forward slash in front of their names or their group names.

The general syntax for a free parameter is

{[ eqname: ] name}

Linear combinations

Nonlinear functions will often contain linear combinations of variables. Recall our nonlinear
function from Substitutable expressions:

Yij = @ (1 _ e*(50+51I1i]‘+52I21‘j)) + €

Instead of explicitly specifying the linear combination that appears in the exponent, as we did in
the previous section, we can use menl’s shorthand notation

. menl y = {a}*x(1 - exp(-({lc: x1 x2})))

By specifying {1c:x1 x2}, you are telling menl that you are declaring a linear combination named 1lc
that is a function of two variables, x1 and x2. menl will create three parameters, named {1c: _cons},
{1lc:x1}, and {1c:x2}.

Although both specifications produce the same results, the shorthand specification is more convenient.

The general syntax for defining a linear combination is
{ eqname: varspec[ , Xb noconstant ] }

where varspec includes a list of variables (varlist), a list of random-effects terms, or both.
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The xb option is used to distinguish between the linear combination that contains one variable
and a free parameter that has the same name as the variable and the same group name as the linear
combination. For example, {1c: x1, xb} is equivalent to {lc:_cons} + {lc:x1}*x1, whereas
{1c:x1} refers to either a free parameter x1 with a group name 1c or the coefficient of the x1 variable,
if {1c:} has been previously defined in the expression as a linear combination that involves variable
x1; see examples below. Thus the xb option indicates that the specification is a linear combination
rather than a single parameter to be estimated.

When you define a linear combination, a constant term is included by default (a mathematician
would argue that “affine combination” is the correct terminology!). The noconstant option suppresses
the constant.

Having defined a linear combination such as {1c:x1 x23}, you can refer to its individual coefficients
by using {1c:x1} and {1c:x2} or, more generally, {eqname :varname}. For example, suppose that
we want to fit the following model, where the coefficient of x1, 31, appears in two places in the
expression:

1
1+ Brix1ij + Bozaij + P3x3i5)

Yij = ( exp {— (o + a12i5) / (1 + Braaij) } + €5

We use {1c1: x1 x2 x3, noconstant} to specify the first linear combination, which appears in
the denominator outside the exponentiated expression, and then use {1c1:x1} to refer to 3y in the
denominator inside the exponentiated expression. We also use the xb option, when we specify the
second linear combination that contains only one covariate z. Below is the full specification:

. menl y = 1/(1+{1lcl: x1 x2 x3, noconstant})*exp(-{1c2: z, xb}/(1+{lcl:x1}*x4))

You may also refer to a “subset” of a previously defined linear combination. For example, let’s
modify our previous expression by substituting 8124;; in the denominator in the exponent with the
subset 312145 + B335 of the first linear combination:

1
1+ Br21ij + Boxaij + B3T345)

Yis = | exp{— (a0 + a12i5) / (1 + Br21ij + Bazaiz)} + €ij

The coefficients for variables x1 and x3 are the same in the denominators inside and outside the
exponent. We fit this model by typing

. menl y = 1/(1+{1lcl: x1 x2 x3, nocons})* ///
exp(-{1c2: z, xb}/(1+{lcl: x1 x3, nocons}))

We used the same equation name, 1c1, to constrain the coefficients to be the same between the two
linear-combination specifications. If we used a different equation name, say, 1c3, in the last linear
combination, we would have specified 8415 + B5%34; instead of B1x15; + B3x3:; and estimated
two extra parameters, 34 named {1c3:x1} and 5 named {1c3:x3}.

To refer to the entire linear combination that was already defined, you can simply refer to its name.
For example, if both denominators included the same linear combination, 5121;; + B2%2:j + B3%345,
the corresponding menl specification would be

. menl y = 1/(1+{1lcl: x1 x2 x3, nocons})*exp(-{1c2: z, xb}/(1+{lcl:}))
Just like subexpressions, linear combinations can be defined in the define () option. For example,
the above is equivalent to

. menl y = 1/(1+{1lc1:})*exp(-{1c2:}/(1+{1lc1:})), define(lcl: x1 x2 x3, nocons) ///
define(1lc2: z, xb)
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Linear forms versus linear combinations

As we mentioned in Linear combinations, the linear-combination specification is syntactically
convenient. It can also be more computationally efficient when a linear combination is a linear form.

A linear combination is what we call a linear form as long as you do not refer to its coefficients
or any subset of the linear combination anywhere in the expression. Linear forms are beneficial for
some nonlinear commands such as nl because they make derivative computation faster and more
accurate. Although menl does not fully utilize the linear-form specification in its computations, it is
still important to learn to distinguish between linear forms and linear combinations.

For example, in Linear combinations, the first linear combination {1c:2}, the linear combination
{1c2:}, and the linear combination {1c1:} in the last example are all linear forms. The linear
combination {1c1:} in the examples where we referred to {1c1:x1} and {lc1:x1 x3} is not a
linear form.

In contrast to free parameters, parameters of a linear form are displayed without forward slashes
in the output. Rather, they are displayed as parameters within an equation whose name is the linear
combination name. Parameters of linear combinations that are not linear forms are considered free
parameters.

Random effects

So far, we have restricted our discussion to substitutable expressions that do not contain random
effects. Examples of random effects specified within the men1 syntax are {U1[id]}, {U2[id1>id2]},
{c.x1#U3[id]}, and {2.£1#U4[id]}. These represent a random intercept at the id level, a random
intercept at the id2-within-id1 level, a random slope for the continuous variable x1, and a random
slope associated with the second level of the factor variable f£1, respectively.

The general syntax for specifying random effects, respec, is provided below.

respec Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec
{c.varnamet#trename [levelspec] } Random coefficients rename for continuous variable varname

{#.fovarnamettrename [levelspec]} Random coefficients rename for the #th level of
factor variable fyvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines
the level of hierarchy and is described below.

levelspec Description
levelvar variable identifying the group structure for the random effect at that level
2> vl two-level nesting: levels of variable /v/ are nested within /v2
w3 > W2 > Ivl three-level nesting: levels of variable Iv] are nested within [v2,
which is nested within /v3
o> 3> 2> vl higher-level nesting

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, Ivi < Iv2
< [v3, but they will be displayed in the canonical order, from the highest level to the lowest.

Random effects can be specified within a linear-combination specification such as {lc_u: x1 x2
U1[id1] U2[id2>id1]1}. In this case, the curly braces around each random effect are not needed.
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Let us illustrate several random-effects specifications with menl. In this section, we concentrate
on two-level nonlinear models; see Multilevel specifications for higher-level models.

Suppose that we want to fit the following model:

_ Qzij + Uo;
1+ exp{—(Bo + Br1z1ij)}

Yij + €4

Compared with models we considered in previous sections, this model includes random effects or,
specifically, random intercepts uq;. Suppose that these random intercepts correspond to the levels of
the id variable. Then, we can include them in our model by using {U0[id]}, where UO will be their
name.

. menl y = ({a}*z+{U0[id]})/(1+exp(-({bO}+{b1}*x1)))

A more efficient specification is to use the linear-combination notation:
. menl y = {lcl: z UO[id], nocons}/(1+exp(-{1lc2: x1, xb}))
The curly braces around UO[id] are removed when it is specified within a linear-combination
specification.

If you need to refer to the random-effects term again in the expression, you can simply use its name.
For example, suppose that our model includes the same random intercepts in both the numerator and
the denominator.

_ Qzij + Uoj
1+ exp{— (Bo + Bix1ij + uoz)}

Yij + €ij

We include random intercepts ug;’s in the second linear combination by simply referring to their
name, UO:

. menl y = {lcl: z UO[id], nocons}/(1+exp(-{1c2: x1 UO}))
If instead of ug;’s, we had a different set of random intercepts, vg;’s, in the denominator, we
would need to specify a new set of random intercepts, say, VO[id], with menl:
. menl y = {lcl: z UO[id], nocons}/(1+exp(-{1lc2: x1 VO[idI}))
The shorthand notation for referring to random effects only by name, that is, without the brackets

and the levelspec, is also useful when specifying the covariance () option, especially for multilevel
random effects with long-level specifications; see Multilevel specifications.

Let’s now see how to include random slopes. Consider the following extension of the first, simpler
model in this subsection:

_ OZj +uoj + ULz
14 exp{—(Bo + Bix1i;)}

Yij + €ij

Here u1; is a random slope for a continuous variable z and is specified as {c.z#U1[id]} directly
or without curly braces within a linear-combination specification.

. menl y = {lcl: z UO[id] c.z#U1[id], nocons}/(1+exp(-{lc2: x1, xb}))
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We can also include random slopes for factor variables. To demonstrate this, let’s consider a
different nonlinear model for variety. Consider the model below, where binary variables x1;; and x2;;
correspond to the factor levels 1 and 2 of a factor variable x that takes on values 0, 1, and 2, with 0
being the base level.

Yij = Qo + Q12145 — \/ng + exp (Bo + B171i5 + Ba2ij + Uoj + wijT1i5 + U2;T2i5) + €3

There are three random-effects terms in this model: random intercepts ug;, random slopes w1; for
z14; (level 1 of x), and random slopes ug; for wg;; (level 2 of x). In Stata, for a factor variable
x, we can use the factor-variable notation ([U] 11.4.3 Factor variables) to refer to its levels, 1.x
for level 1 and 2.x for level 2. So, to include the three random-effects terms in menl, we will use
Uo[id], 1.x#U1[id], and 2.x#U2[id], respectively.

. menl y = {lcl: z1, xb} - sqrt(c.wi#c.w + ///
exp({1c2: i.x UO[id] 1.x#U1[id] 2.x#U2[id]}))

In the above specification, we used the factor-variable notations i.x to include fixed effects for all
levels of x, except the base level, and c.w#c.w to include a square of w; see [U] 11.4.3 Factor
variables for details. The factor-variable specification i. or any other specification that refers to
multiple levels of a factor variable is not allowed when specifying random coefficients, because
each level will typically require a different set of random effects. For example, if we had specified
i.x#U[id] in the above example, we would have received an error.

Multilevel specifications

In Random effects, we focused on specifying substitutable expressions containing random effects
for two-level nonlinear mixed-effects models. Here we will consider higher-level models.

Suppose that we want to fit the following three-level nonlinear mixed-effects model,

Yijk = Bo + ué‘? + ug)k + cos { (51 + u(l‘?) wlijk} + €ijk

where first-level observations, indexed by i, are nested within second-level groups, indexed by j,
which are nested within third-level groups, indexed by k.

There are three random-effects terms in this model: random intercepts, uéz;’c), and random slopes

for x1, ugz;;)’ at the third level (idk) and random intercepts u((f.)k at the second level (idj-nested-

within-idk). We specify random intercepts and random slopes for x; at the highest hierarchical level
just like we did in Random effects for two-level models. Specifically, we can use UO[idk] and
c.x1#U1[idk], respectively. To specify random intercepts uéi)k at the idj-nested-within-idk level,
we need to use one of the levelspec specifications for two nested levels. For example, we can use

UUO [idk>idj]. Below is the full specification:
. menl y = {lcl: UO[idk] UUO[idk>idj]} + cos({lc2: x1 c.x1#U1[idk], noconstant})
We can also include a random slope of the x1 variable at the idj-within-idk level in the cosine
function by specifying c.x1#UU1[idk>idj] inside the cos() function.
. menl y = {lci: UO[idk] UUO[idk>idjl} + ///
cos({lc2: x1 c.x1#U1[idk] c.x1#UU1[idk>idj], noconstant})
We can shorten the above specification by writing c.x1#U1[idk] c.x1#UU1[idk>idj] more
compactly as c.x1#(U1[idk] UU1[idk>idj]),

. menl y = {lcl: UO[idk] UUO[idk>idjl} + ///
cos({1c2: x1 c.x1#(U1[idk] UU1[idk>idj]), noconstant})
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Similarly, if we had a four-level model with, say, a random intercept at the idj-within-idk-within-
idl level, we could specify it as W[id1>idk>idj]; see levelspec for other specifications.

Time-series operators

You can use time-series operators in the specification of your nonlinear model (see [U] 11.4.4 Time-
series varlists) but with some exceptions described next. You can use time-series operators in the
main nonlinear specification <menlexpr> or any random-effects substitutable expression <resubexpr>.
The supported time-series operators include L. and L#., F. and F#., and D. and D#.. You cannot
combine time-series operators or use them with a list of variables. Also, you cannot combine time-series
operators with factor variables.

You can also include the lagged predicted mean function and lagged functions of model parameters
in your expressions. For brevity, we will refer to both types of lagged functions as lagged named
expressions. Lagged named expressions are useful, for instance, for fitting certain pharmacokinetic
models; see example 17 and example 18.

To include the lagged predicted mean function, you can use the specification L.{depvar:} or,
equivalently, L. _yhat. (Do not confuse this with the lagged dependent variable specification L. depvar.)
You can specify the lagged predicted mean function only in the main nonlinear specification menlexpr.
To include a lagged function of model parameters, you can use the specification L. {name:3}, where
name is the name of the previously defined function of model parameters. Such functions are typically
defined in the define() options. Only the one-period lag operator, L. or L1., is supported with
named expressions.

To use time-series operators, you must either tsset your data prior to executing menl or specify
the tsorder () option with menl. You must specify time and panel variables with tsset. When you
use the tsorder (varname) option, menl uses the time variable varname to determine the ordering
for time-series operators. menl creates a new temporary time variable that takes on values 1, 2, ...
in each panel for the estimation sample. menl also creates the appropriate panel variable and uses the
newly generated variables with tsset. For two-level models, menl uses the specified level variable
as the panel variable. With more than two levels, menl creates the panel variable as a variable that
takes on values 1, 2, ... for the groups formed by all level variables in the estimation sample. The
generated panel and time variables are labeled as <panel> and <time> in the output of tsset as
displayed by menl.

When you use time-series operators with variables in the dataset, some of the observations are used
to initialize the series for those variables. For example, if you include a lagged variable varname;_ 1
(L.varname) in your model, the value of varname in the first observation in each panel is used to
initialize the series; see [TS] tsset. But what happens when you include a lagged named expression for
which there is no existing variable in the dataset? If your named expression is a function of existing
variables, the values of those variables in the first observation (in each panel) will be used to compute
an initial value for the lagged named expression. For some models, a named expression can depend
on its own lag; see example 17 and example 18. In this case, you must specify the initial condition
for it in the tsinit () option. Note that you will always need to specify the tsinit () option for the
lagged predicted mean function. The tsinit () option may be repeated and may contain functions
of variables and model parameters. When you specify the tsinit () option, menl uses its value (or
values in the first observation of each panel) to initialize the corresponding lagged named expression.
Just like with regular time-series variables, the first observation in each panel will be excluded from
the estimation sample whenever you use lagged named expressions in the model.
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Summary

To summarize, here are a few rules to keep in mind when defining substitutable expressions.

1.

Model parameters and random effects are bound in braces if specified directly in the
expression: {b0}, {U0[id]}, etc.

. Model parameters can be assigned group names: {slopes:x1}, {slopes:x2}, etc.

3. Random-effects names must start with a capital letter as in {U0[id]}, {c.x#U1[id]},

10.

11.

12.

13.

14.

{vo[id2>id1]1}, {1.z#V1[id2>id1]}, etc.

. The factor-variable specification i., as in {i.z#V1[id2>id1]}, or any other specification

that refers to multiple levels of a factor variable, as in {i(1/4) .z#V1[id2>id1]}, is not
allowed when specifying random coefficients.

. Linear combinations of variables can be included using the specification

{eqname:varlist[ , Xb noconstant}}

For example, {price: mpg weight i.rep78} and {lc: x1 x2, noconstant}.

. Random effects can be specified within a linear combination, in which case they should be

included without curly braces, for example, {1c_u: x1 x2 U[id]}.

. To specify a linear combination that contains only one variable, use the xb option, for

example, {1c: x1, xb}.

. To refer to the previously defined linear combination again in the expression, simply use its

name {egname:}, for example, {1c:} and {1c_u:}.

. You can refer to individual parameters of the linear combination by using {egname: _cons}

and {egname:varname}, for example, {price:_cons} and {price:weight}.

You can refer to a “subset” of the previously defined linear combination by using
{egname: subset}, where subset is a subset of the variables from varlist used to define
eqname, as in {price: mpg weight}. To refer to the subset containing only one variable,
use the xb option, as in {price: weight, xb}. If a linear combination contains only one
random-effects term, the xb option is implied.

To refer to the previously defined random effects again in the expression or in the covari-
ance () option, simply use their names, such as {U0} and {U1}.

You can define subexpressions, including linear combinations, inside the main expression or
in the define () option, which can be repeated. For example,

. menl y = {numer:}/{denom:}, define(numer: z UO[idl) ///
define(denom:1+exp(-{lc: x1, xb}))

Specify linear forms whenever possible for faster and more accurate computation of derivatives;
see Linear forms versus linear combinations.

Model parameters that are not defined by linear forms are considered free parameters. They
are included in the output with a forward slash in front of their names or group names and
displayed after linear forms in the estimation table.

Specifying initial values

By default, menl uses the EM algorithm to obtain initial values, but you may often need to specify
your own. You specify your own initial values in the initial () option. For example, specifying the
initial(a 1.1 b -2) option with menl initializes parameter {a} to 1.1 and parameter {b} to —2.
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When you specify your own initial values, they are used for initialization, and the EM algorithm is
not performed. When you specify initial values for only a subset of model parameters, the remaining
parameters are initialized with some predetermined values such as zeros for fixed-effects parameters
and correlations and ones for variances. You can specify the iterate(0) option to see the initial
values that will be used by menl in the optimization.

Often, you may have good initial values for fixed-effects parameters but not for random-effects
parameters. In this case, you can specify initial()’s fixed suboption to supply your own fixed-
effects parameters, but use the EM algorithm to obtain initial values for the random-effects parameters.

There are three ways in which you can use the initial (initial_values) option: you can specify
a vector of values, a list of values, or values for individual parameters and groups of parameters.

Specifically, initial_values is one of the following:

vectorname [, skip copy fixed]

# [#] [], copy
paramlist[=]# [paramlist[=]# [H [, fixed]

skip specifies that any parameters found in the specified initialization vector, vectorname, that are
not also found in the model be ignored. The default action is to issue an error message.

copy specifies that the initial values be copied into the initialization vector without checking for valid
column names. copy must be specified when initial values are supplied as a list of numbers.

fixed specifies that initial estimates are being supplied for the fixed effects only and that menl should
still perform the EM algorithm to refine initial values for variance components. The specified initial
values are used for fixed-effects parameters during the EM algorithm. If you omit fixed, menl
presumes that you are specifying starting values for all parameters in e (b), and the EM algorithm
will not be performed.

Examples of paramlist are param, {param}, {paraml} {param2}, {paraml param2},
{grp:paraml} {grp:param2} {grp:param3}, {grp:paraml param2}, and {grp:}.

Let’s describe each specification in more detail. You can specify the name of a vector containing
the initial values, say, initial(b0). Vector bO should be properly labeled with labels found in
column names of e(b), unless you specify the copy option. A properly labeled vector can have
fewer elements than e (b) or, if skip is specified, even more elements. A vector without labels must
be of the same dimension as e(b).

Alternatively, you can supply a list of numbers to initial(), in which case copy must be
specified. The list of numbers should be of length equal to the dimension of e(b). For example, if
e(b) has four parameters and you type initial(1.1 0 3 -2, copy), then the four coefficients in
e(b) will be initialized to 1.1, 0, 3, and —2, respectively. If instead you specify, for example, only
three initial values in your list, an error will be issued.

Finally, you can initialize parameters by referring to their names. You can specify a parameter name,
its initial value, another parameter name, its initial value, and so on, for example, initial(a 1.1 b
-2). You can also assign the same initial value to a group of parameters. For example, initial ({a
b c} 1) will initialize parameters {a}, {b}, and {c} to 1 and initial({lc:x1 x2 _cons} 0)
will initialize {1c:x1}, {1c:x2}, and {1c:_cons} to 0. You can assign the same initial value to
all parameters with the same group name. For example, we can shorten the previous specification to
initial({1c:} 0).

Depending on the situation, it may also be beneficial to specify initial values for the NLS algorithm
used by menl to obtain starting values for the EM algorithm. These initial values can be specified in the
parameter definition such as {a=0.5}, in which case the NLS algorithm used during the initialization
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will use 0.5 as the starting value for parameter a instead of the default 0. Such initialization is
particularly useful for parameters used in the denominators for which zero values may lead to an
undefined value of the mean function.

See Examples of specitying initial values and Obtaining initial values for examples.

Two-level models

The sole purpose of this section and its examples is to highlight the syntax of menl and make
you familiar with how to specify substitutable expressions in menl and with its output. Also see an
introductory example in Nonlinear models in [ME] me.

We will use the data from the Longitudinal Study of Unicorn Health in Zootopia, which contain the
brain weight (weight) of 30 newborn male unicorns and 30 newborn female unicorns. Measurements
were collected at 13 occasions every 2 months over the first 2 years after birth (time). Based on
previous studies, a model for unicorn brain shrinkage is believed to be

weight,; = 1 + (B2 — B1) exp (—fBatime;;) + €5 i=1,2,...,13; j=1,2,...,60

Parameter (3, represents the average brain weight of unicorns as time;; increases to infinity.
Parameter 3 is the average brain weight at birth (at time;; = 0), and 3 is a scale parameter that
determines the rate at which the average brain weight of unicorns approaches the asymptotic weight
(1 (decay rate). This model can be fit with the n1 command; see [R] nl.

We will start with a simple two-level model in which we allow the asymptote parameter 31 to
vary between unicorns by replacing 3 in the above equation with 31 + ug;,

weightij = 61 + U0, + (52 — 61 — ’U,oj) exp (—Bgtimeij) + €ij (4)

where (31, B2, and 33 are fixed-effects parameters to be estimated and ug; is a random intercept at

the unicorn, id, level that follows a normal distribution with mean O and variance 05.

Equivalently, the model defined by (4) can be written as a two-stage model,
weight,; = ¢1; + (d2; — d15) exp (—¢s time;;) + €5 (5)

with the following stage 2 specification:

$15 = B1 + uo;
$oj = P2 (6)
¢35 = B3

Parameters ¢1;, ¢2;, and ¢3; now describe the behavior of the jth unicorn. For example, ¢1;
represents the brain weight of the jth unicorn as time;; increases to infinity.
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> Example 1: Simple two-level model

Let’s use menl to first fit a single-equation model defined by (4), described above.

. use https://www.stata-press.com/data/r18/unicorn
(Brain shrinkage of unicorns in the land of Zootopia)

. menl weight = {b1}+{U0[id]}+({b2}-{b1}-{U0[id]})*exp (-{b3}*time)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -56.97576
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60
Obs per group:
min = 13
avg = 13.0
max = 13
Linearization log likelihood = -56.97576
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
/b1 4.707954  .1414511 33.28 0.000 4.430715 4.985193
/b2 8.089432 .0260845 310.12  0.000 8.038307 8.140556
/b3 4.13201 .0697547 59.24  0.000 3.995293 4.268726
Random-effects parameters Estimate  Std. err. [95% conf. intervall
id: Identity
var (U0) 1.189809 .2180073 .8308307 1.703891
var (Residual) .0439199 .0023148 .0396095 .0486995

Notes:

L.

The response variable weight is specified on the left-hand side of the equality sign, and parameters
to be estimated are enclosed in curly braces {b1}, {b2}, and {b3} on the right-hand side.

. By typing {U0[id]}, we specified a random intercept at the level identified by the group variable
id, that is, the unicorn level (level two).

. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are

not displayed, but you can display them by using the emlog option. NLME models may often
have multiple solutions and converge to a local maximum. It is thus important to try different
initial values to investigate the existence of multiple solutions and the convergence to a global
maximum; see Obtaining initial values.

. A set of iterations displaying the value of the linearization log likelihood from the Lindstrom—

Bates algorithm or alternating algorithm. The term “linearization” reflects the fact that the
reported log likelihood corresponds to the linear mixed-effects model obtained after linearization
of the specified nonlinear mean function with respect to fixed and random effects. See Inference
based on linearization and Stopping rules for details about the algorithm.

. The message “Computing standard errors”. This is just to inform you that menl has finished

its iterative maximization and is now reparameterizing the variance components (see Methods
and formulas) to their natural metric and computing their standard errors. If you are interested
only in the fixed-effects estimates, you can use the nostderr option to bypass this step.
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4. The output title, “Mixed-effects ML nonlinear regression”, informs us that our model was fit using
ML, the default. For REML estimates, use the reml option.

5. The header information is similar to that of the mixed command, but unlike mixed, menl in
general does not report a model x? statistic in the header because a test of the joint significance of
all fixed-effects parameters (except the constant term) may not be relevant in a nonlinear model.

6. The first estimation table reports the fixed effects. We estimate 81 = 4.71, 82 = 8.09, and
B3 = 4.13. Although z tests against zeros are reported automatically for all fixed-effects parameters,
as part of standard estimation output, they may not always be of interest or even appropriate for
parameters of nonlinear models. You can use the test command ([R] test) to test hypotheses of
interest or reparameterize your model so that the tests of parameters against zeros are meaningful.

7. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity. In general, this means that our model includes random effects
at the id (unicorn) level and that their variance—covariance matrix, ¥, is the identity matrix (all
random effects have the same variance). In our example, because we have only one random effect,
ug;, the random-effect covariance structure is irrelevant, and the variance of the random intercept,
Ui, labeled as var (UO) in the output, is estimated as 1.19 with standard error 0.22.

8. The row labeled var (Residual) displays the estimated overall error variance or variance of the
error term; that is, Var (€;;) = 02 = 0.044.

N

> Example 2: Two-level model as a two-stage model, using the define() option

The model from example 1 can also be specified as a two-stage model, as defined by (5) and
(6), by using the define() option. The define() option is particularly useful when you have a
complicated nonlinear expression, and you would like to break it down into smaller pieces. Parameters
of interest that are functions of other parameters can be defined using the define() option. This
will make it easier to predict them for each subject after estimation; see [ME] menl postestimation.

Below we specify the asymptote parameter, ¢1;, by using define (). The colon (:) in {phil:}
instructs menl that phil will be specified as a substitutable expression within the define () option.
Parameters {phi2} and {phi3} are simple free parameters and thus do not need to be specified in
define().
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. menl weight = {phil:}+({phi2}-{phil:})*exp(-{phi3}*time),
> define(phil: {b1}+{U0[id]l})

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -56.97576

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60
Obs per group:
min = 13
avg = 13.0
max = 13
Linearization log likelihood = -56.97576
phil: {b1}+{U0[id]}
weight | Coefficient Std. err. z P>|z| [95% conf. intervall]
/bl 4.707954  .1414511 33.28 0.000 4.430715 4.985193
/phi2 8.089432 .0260845 310.12  0.000 8.038307 8.140556
/phi3 4.13201 .0697547 59.24  0.000 3.995293 4.268726
Random-effects parameters Estimate Std. err. [95% conf. interval]
id: Identity
var (U0) 1.189809 .2180059 .8308326 1.703888
var (Residual) .0439199 .0023148 .0396095 .0486995

The results are identical to those obtained in example 1, but the estimation table now has a legend
that lists the expression phil defined in the model. We can suppress this legend by specifying the
nolegend option.
We could have defined phil directly in the main expression instead of in the define () option,
. menl weight = {phil:{b1}+{U0[id]}}+({phi2}-{phil:})*exp(-{phi3}*time)
(output omitted )

but by using the define () option, we simplified the main expression.

> Example 3: Two-level model containing covariates

Reducing brain weight loss has been an active research area in Zootopia for the past two decades,
and scientists believe that consuming rainbow cupcakes right after birth may help slow down brain
shrinkage. Recall that the scale parameter ¢3; determines the rate at which the brain weight of the
jth unicorn decreases to its asymptotic value ¢;;. Hence, covariate cupcake, which represents the
number of rainbow cupcakes consumed right after birth, is added to the equation of ¢3;. Also, we
would like to investigate whether the asymptote, ¢1;, is gender specific, so we include the factor
variable female in the equation for ¢,;. female; is 1 if the jth unicorn is a female and 0 otherwise.

The stage 2 specification of the model defined by (5) becomes
$1j = B1o + Br1female; + ug;
P25 = P2 (7)
¢3; = B30 + Ps1cupcake;
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The define() option can be repeated, so we specify a separate define () option for ¢1;, ¢2j,
and ¢3;. We could have left ¢o; as a free parameter {phi2} in our specification, but we wanted to
closely match the stage 2 specification (7).

. menl weight = {phil:}+({phi2:}-{phil:})*exp(-{phi3:}*time),
> define(phil: {b10}+{b11}*1.female+{U0[id]})

> define(phi2: {b2})

> define(phi3: {b30}+{b31}*cupcake)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -29.014988

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60
Obs per group:
min = 13
avg = 13.0
max = 13
Linearization log likelihood = -29.014988
phil: {b10}+{b11}*1.female+{U0[id]}
phi2: {b2}
phi3: {b30}+{b31}*cupcake
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
/b10 4.072752 .1627414 25.03 0.000 3.753785 4.39172
/b1l 1.264407 .2299723 5.50 0.000 .8136694 1.715144
/b2 8.088102 .0255465 316.60  0.000 8.038032 8.138172
/b30 4.706926 .1325714 35.50  0.000 4.44709 4.966761
/b31 -.2007309 .0356814 -5.63 0.000 -.2706651  -.1307966
Random-effects parameters Estimate  Std. err. [95% conf. intervall
id: Identity
var (U0) . 7840578 .1438924 .5471838 1.123474
var (Residual) .0420763 .0022176 .0379468 .0466551

In the table legend, /10 and /b1l correspond, respectively, to the constant term and coefficient of
1.female in the equation for ¢;. /b2 is ¢;, and /b30 and /b31 correspond, respectively, to the
constant term and coefficient for cupcake in the equation for ¢s;.

Based on our results, consuming rainbow cupcakes after birth indeed slows down brain shrinkage:
/b31 is roughly —0.2 with a 95% CI of [—0.271, —0.131].
N

> Example 4: Specifying linear combinations

A more convenient way to specify the model in example 3 is to use linear-combination specifications;
see Random-effects substitutable expressions.

For example, define(phil: {b10}+{b11}*1.female+{U0[id]}) can be replaced with de-
fine(phil: i.female UO[id]). menl knows that we are defining ¢;; as a linear combination of
i.female and UO[id] and thus will create a constant term and a coefficient for each level of factor



menl — Nonlinear mixed-effects regression 245

variable female and will use a coefficient of 1 for any random effect. Because female has only
two levels, menl will create two coefficients for Ob.female and 1.female, respectively, but will
constrain the coefficient of the base level, level 0, to be 0.

We now fit our model by using linear-combination specifications within the define() options.
We explain the use of the second and third define () specifications following estimation.

. menl weight

> define(phil:
> define(phi2:
> define(phi3:

= {phil:}+({phi2:}-{phil:})*exp(-{phi3:}*time),
i.female UO0[id])

_cons, xb)

cupcake, xb)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Linearization log likelihood = -29.014988

Computing standard errors:

Iteration 1:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60
Obs per group:
min = 13
avg = 13.0
max = 13
Wald chi2(2) = 61.78
Linearization log likelihood = -29.014988 Prob > chi2 = 0.0000
phil: i.female UO[id]
phi3: cupcake, xb
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
female
female 1.264407 .2299723 5.50 0.000 .8136694 1.715144
_cons 4.072752 .1627414 25.03 0.000 3.753785 4.39172
phi2
_cons 8.088102 .0255465 316.60  0.000 8.038032 8.138172
phi3
cupcake -.2007309 .0356814 -5.63 0.000 -.2706651  -.1307966
_cons 4.706926 .13256714 35.50 0.000 4.44709 4.966761
Random-effects parameters Estimate Std. err. [95% conf. intervall
id: Identity
var (U0) . 7840578 .1438935 .5471824 1.123477
var (Residual) .0420763 .0022176 .0379468 .0466551

By using linear-combination specifications within the define () options, we improved the readability
of the coefficient table. For example, it is now clear that _cons in the equation labeled phi3
corresponds to the constant term in the equation for ¢3;. This term was labeled /b30 previously.

Notes:

1. The define () option interprets its specification as a random-effects substitutable expression, so
you do not need to specify the curly braces ({}) around the specification.

2. All rules for random-effects substitutable expressions apply to the specifications within define ().
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3. Following one of the rules for random-effects substitutable expressions, we used the xb option
within define (s for phi2 and phi3, because their linear combinations contained only one term:
—cons for phi2 and cupcake for phi3.

4. Specification define(phi2: _cons, xb) is the same as define(phi2:, xb). In other words,
_cons is implied with any linear combination, unless the noconstant option is specified. We
chose to include _cons directly for clarity.

5. We could have used a free parameter {phi2} instead of the linear combination {phi2: _cons, xb},
but we wanted to preserve the order in which phil, phi2, and phi3 appear in the estimation
table. See example 5, where we specify ¢o; as a free parameter {phi2}.

6. In the presence of linear combinations, menl reports a joint test of significance of all coefficients
(except the constant term) across all linear combinations.

7. Linear combinations containing only a constant such as {phi2:} are not listed in the table
expression legend for brevity.

4

> Example 5: Including random coefficients

In previous examples, we only illustrated how to specify random intercepts such as {U0[id]},
and it is bad karma to end a unicorn story without showing how to specify random coefficients or
random slopes.

Continuing with our model as defined by (5) and (7), let’s suppose that the equation for the
brain-weight scale parameter, ¢3;, is as follows:

¢35 = B30 + (B31 + u1j)cupcake;

We incorporated a unicorn-specific random slope for variable cupcake. The random slope, u1;,
for a continuous variable cupcake can be specified in menl as c.cupcake#U1[id], and by default,
menl assumes that it is independent of the random intercept, ug;. (See example 9 for specifying other
random-effects covariance structures.)
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. menl weight = {phil:}+({phi2}-{phil:})*exp(-{phi3:}*time),
> define(phil: i.female UO[id])
> define(phi3: cupcake c.cupcake#U1[id])

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 165.41751
Iteration 2: Linearization log likelihood = 165.42008
Iteration 3: Linearization log likelihood = 165.42011
Iteration 4: Linearization log likelihood = 165.4201

Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs 780
Group variable: id Number of groups = 60
Obs per group:
min = 13
avg = 13.0
max = 13
Wald chi2(2) = 46.70
Linearization log likelihood =  165.4201 Prob > chi2 = 0.0000
phil: i.female UO[id]
phi3: cupcake c.cupcake#U1[id]
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
female
female 1.320623 .2215707 5.96 0.000 .8863522 1.754894
_cons 4.006823 .1568268 25.55  0.000 3.699448 4.314198
phi3
cupcake -.219661 .0659984 -3.33 0.001 -.3490155  -.0903066
_cons 4.771466 .1128421 42.28  0.000 4.5503 4.992633
/phi2 8.087655 .0179406  450.80  0.000 8.052492 8.122818
Random-effects parameters Estimate Std. err. [95% conf. intervall]
id: Independent
var (U0) .727464 .1337157 .5074012 1.042969
var (U1) .1258914 .0309569 .0777471 .2038487
var (Residual) .0208202 .0011403 .018701 .0231795

In addition to the overall error variance and the random-intercept variance, we now have a random-
slope variance, which is labeled var (U1) in the output. In this example, we also specified parameter
¢2; as a free parameter {phi2} instead of a linear combination as in example 4. As we mentioned
in Summary, free parameters are displayed after linear combinations, so phi2 is listed last in the
estimation table.

Previous studies of unicorns considered a model that also incorporated gender-specific variation
between unicorns in asymptotic weight ¢,

15 = Pro + ug; + (B11 + ug;)female;

but found no statistical evidence of such variation.
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If we wanted to verify this for our data, we could have fit the following model:

. menl weight = {phil:}+({phi2}-{phil:})*exp(-{phi3:}*time), ///
define(phil: i.female UO[id] 1.female#U2[id]) 11/
define(phi3: cupcake c.cupcake#U1[id])

Compared with our previous specification, we included a new term in the define() option for
phil—a random slope for level 1 of the factor variable female, 1.female#U2[id]. To include
random slopes for a factor variable, we must specify random effects for each level, except the base
level, of the factor variable. The specification i.fvvarname for referring to all levels of a factor
variable is not allowed in the context of random effects, because a different set of random effects
must be defined for each level. For example, if we specified i.female#U2[id] in our example, we
would have received an error.

N

To summarize:
1. Use {name} to define free parameters such as {b1}.

2. Use, for example, {U0[id] } to define random intercepts at the id level, {c.varname#U1[id]} to
define random slopes for continuous variable varname at the id level, and {#.fvvarname#U1[id] }
for each level #, except the base level, of variable fyvarname to include random slopes for factor
variable fvvarname. The specification {i.fivvarname#U1[id]} is not allowed.

3. Use linear-combination specifications whenever possible. Do not use {} around random effects
when they are specified within a linear combination.

4. Use multiple define() options to specify parameters of interest that are functions of other
parameters, and use linear-combination specifications within define () whenever possible.

5. Use the xb option within a linear combination or within def ine () whenever you specify one variable
such as define(phil: cupcake, xb), one random effect such as {phi2: UO[id], xb}, or a
constant-only linear combination such as {phi2: _cons, xb} or {phi2: , xb}. When you specify
the xb option, the above specifications are interpreted by menl, respectively, as a linear combination
{phil:_cons}+{phil:cupcake}*cupcake, alinear combination {phi: _cons}+{U0[id]}, and
a constant term {phi2:_cons}.

6. Unicorns do exist in our world, they are just gray, fat, and called rhinos.

Testing variance components

Consider data on the intensity of 23 large earthquakes in western North America between 1940 and
1980 analyzed originally by Joyner and Boore (1981) and then also by Davidian and Giltinan (1995,
sec. 11.4). The objective of the study was to model the maximum horizontal acceleration (in g units),
accel, taken at the ith measuring station for the jth earthquake, as a function of the magnitude of
the quake on the Richter scale, richter, and the distance (in km) of the measuring station from
the quake epicenter, distance. We are also interested in the possible effect of the soil type soil,
soil versus rock, at a given measuring station on acceleration. The results of this study are useful to
understand the nature of the damage caused by a particular earthquake and to determine the location
for sensitive installations such as nuclear facilities.

Let’s consider one of the models studied by Davidian and Giltinan (1995) for these data,

log;o(accel;;) = ¢1j — loglo\/distancefj + exp (¢2;) — ¢3ij \/distancefj + exp (¢2;) + €ij

(8)
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where @15 = Bo + Pirichter; + uy;
P25 = P2 9)
¢3; = P3 + u3;
and - )2 0
u; = {u;] ~ N(0,%), diagonal ¥ = [ o oij’ and ¢;; ~ N(0,02) (10)

> Example 6: Fitting an NLME model for the earthquake data

Let’s fit the model defined by (8), (9), and (10) by using menl.
. use https://www.stata-press.com/data/r18/earthquake
(Earthquake intensity (Joyner and Boore, 1981))

. menl laccel = {phil:}-loglO(sqrt(c.distance#c.distance+exp({phi2})))
> —{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phil: richter Ul[quake]) define(phi3: U3[quake], xb)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 2.4115811
Iteration 2: Linearization log likelihood = 2.4075141
Iteration 3: Linearization log likelihood =  2.407347
Iteration 4: Linearization log likelihood = 2.4073424
Iteration 5: Linearization log likelihood = 2.4073412
Iteration 6: Linearization log likelihood = 2.4073411

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23
Obs per group:
min = 1
avg = 7.9
max = 38
Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000
phil: richter Ul[quakel
phi3: U3[quake], xb
laccel | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
richter .2310021 .0450804 5.12  0.000 .1426461 .319358
_cons -.8836537 .2826255 -3.13  0.002 -1.437589 -.329718
phi3
_cons .004575 .0014192 3.22  0.001 .0017935 .0073566
/phi2 4.063075 .4023386 10.10  0.000 3.274506 4.851644
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Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Independent

var (U1) .0056676 .0073404 .0004477 .071752
var (U3) .000013  8.42e-06 3.66e-06 .0000463
var (Residual) .0461647 .0054421 .0366409 .0581639

We also store our estimates for later use:

. estimates store El

By default, menl assumes that the random effects u1; and u3; are independent, so there is no need to
specify the covariance() option in this case. In other words, omitting the covariance() option
is equivalent to specifying covariance (U1l U3, independent).

4

> Example 7: Likelihood-ratio test for variance components

Davidian and Giltinan (1995) did not include any random effects in the model for the ¢5; parameters.
Let’s check whether the random effects are needed in the equations for ¢;; and ¢s3; parameters in
).

One simple way to assess whether a random effect associated with a certain ¢; can be omitted,
is to examine its coefficient of variation (CV), the ratio of the standard deviation to the mean. Let’s
compute the CV for ¢3;. For convenience, let’s redisplay the results from example 6 as standard
deviations for variance components.
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. menl, stddeviations

Mixed-effects ML nonlinear regression Number of obs 182
Group variable: quake Number of groups = 23
Obs per group:
min = 1
avg = 7.9
max = 38
Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 0.0000
phil: richter Ul[quake]
phi3: U3[quake], xb
laccel | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
richter .2310021 .0450804 5.12 0.000 .1426461 .319358
_cons -.8836537 .2826255 -3.13  0.002 -1.437589 -.329718
phi3
_cons .004575 .0014192 3.22  0.001 .0017935 .0073566
/phi2 4.063075 .4023386 10.10  0.000 3.274506 4.851644
Random-effects parameters Estimate Std. err. [95% conf. interval]
quake: Independent
sd (U1) .0752832 .0487517 .0211582 .2678656
sd (U3) .0036085 .0011673 .0019142 .0068026
sd(Residual) .2148596 .0126644 .1914181 .241172

The stddeviations option specifies that menl display random-effects and error standard deviations
instead of variances. It will also display correlations instead of covariances whenever they are in the
model. Because random-effects variances for these data are very small, we will use this option in all
subsequent examples to display results in the standard deviation metric.

The interquake random variation in the ¢3; values about their mean is CV = sd (U3) /{phi3:_cons}
= 0.0036/0.0046 ~ 78%, and it appears reasonable to keep it in the model. You can perform a
formal likelihood-ratio (LR) test of Hy: 033 = 0 to verify this, as we show below for the test of
Hy: 02 ,=0.

Let’s check whether we need random intercept u1; to model ¢1;. Computing CV in this case to
get an initial assessment is not simple because the mean of ¢;; depends on the jth quake through
variable richter. Given the same main equation (8), we will use the LR test to compare the restricted
model, with u; excluded, which is defined by (11) and (12) below, with the full model defined by
(9) and (10).

The stage 2 specification of the restricted model is

¢1j = ﬁo —+ ﬁlrichterj
G2 = P2

¢3ij = B3 + us;
where

ug; ~ N(07033) and € ~ N(O,a?)
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We now fit the restricted model:

. menl laccel

= {phil:}-logl0(sqrt(c.distance#c.distance+exp({phi2})))
> —{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),

> define(phil: richter, xb) define(phi3: U3[quake], xb)
> stddeviations

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 2.1262862
Iteration 2: Linearization log likelihood =  2.126043
Iteration 3: Linearization log likelihood = 2.1260328
Iteration 4: Linearization log likelihood = 2.12603
Iteration 5: Linearization log likelihood = 2.1260297
Computing standard errors:
Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23
Obs per group:
min = 1
avg = 7.9
max = 38
Wald chi2(1) = 32.22
Linearization log likelihood = 2.1260297 Prob > chi2 = 0.0000
phil: richter, xb
phi3: U3[quake], xb
laccel | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
richter .2208878 .0389144 5.68 0.000 .1446169 .2971586
_cons -.7863293 .2503442 -3.14 0.002 -1.276995  -.2956637
phi3
_cons .0054348 .0015661 3.47 0.001 .0023653 .0085044
/phi2 4.228431 .3702251 11.42  0.000 3.502803 4.954059
Random-effects parameters Estimate Std. err. [95% conf. interval]
quake: Identity
sd (U3) .0042144 .0011309 .0024907 .0071309
sd(Residual) .2170084 .0122821 .1942231 .2424668

. estimates store E2

Next, we use 1lrtest to perform an LR test of the hypothesis:

Hy: o2

U1

0 versus

Hy: 012“ #0
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. lrtest E1 E2, stats

Likelihood-ratio test

Assumption: E2 nested within E1

LR chi2(1) = 0.56

Prob > chi2 = 0.4532

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Akaike’s information criterion and Bayesian information criterion

Model N 11(null) 11l(model) df AIC BIC
E2 182 . 2.12603 6  7.747941 26.97198
El 182 . 2.407341 7 9.185318 31.61336

Note: BIC uses N = number of observations. See [R] IC note.

Because testing of Hy: 012“ = 0 is on the boundary of the parameter space, lrtest reports a note
that the provided LR test is conservative; that is, the actual p-value is smaller than the one reported.
For a test of Hy: o2 , = 0 in a two-level model, the true asymptotic distribution is not 2(1)
but a mixture of x2?(0) and x2(1) with equal weights, 0.5x%(0) + 0.5x2(1); thus the p-value is
actually 0.4532/2 = 0.2266 (see Rabe-Hesketh and Skrondal 2022, sec 8.8). We do not have sufficient
evidence to reject the null hypothesis, so we can omit random effect uq; from the full model. AIC

and BIC also favor a simpler, reduced model.

4

> Example 8: Including within-subject covariates

One of the questions of interest in the earthquake study was the potential effect of the soil type on
acceleration. Variable soil is a within-subject covariate because the values soil;; may vary within
a subject (earthquake). We include variable soil in the equation for ¢s;; in (11),

(z)lj = ﬂo —+ ﬂlrichterj
¢2; = B2
¢3i5 = B3 + Basoily; + us;
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. menl laccel

and fit the corresponding model:

= {phil:}-logl0(sqrt(c.distance#c.distance+exp({phi2})))
> —{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phil: richter, xb) define(phi3: i.soil U3[quake]) stddeviations

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 3.5634779
Iteration 2: Linearization log likelihood = 3.5632472
Iteration 3: Linearization log likelihood = 3.5632339
Iteration 4: Linearization log likelihood = 3.5632304
Iteration 5: Linearization log likelihood = 3.5632298

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23
Obs per group:
min = 1
avg = 7.9
max = 38
Wald chi2(2) = 34.20
Linearization log likelihood = 3.5632298 Prob > chi2 0.0000
phil: richter, xb
phi3: i.soil U3[quake]
laccel | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
richter .2275944 .0395549 5.75 0.000 .1500683 .3051206
_cons -.8079826 .2548833 -3.17  0.002 -1.307545  -.3084205
phi3
soil
soil -.0011041 .0006441 -1.71  0.087 -.0023665 .0001583
_cons .0067347 .0017416 3.87 0.000 .0033213 .0101481
/phi2 4.3212 .3653809 11.83  0.000 3.605067 5.037334
Random-effects parameters Estimate Std. err. [95% conf. intervall
quake: Identity
sd(U3) .0043088 .0011285 .0025788 .0071992
sd(Residual) .2147101 .0121424 .1921829 .2398779

The estimated coefficient for the soil type is —0.0011 with a 95% CI of [—0.0024,0.0002]. The
knowledge of the soil type at a particular site does not appear to add explanatory power to our model.

N

Random-effects covariance structures

menl supports various covariance structures to model the random-effects covariance matrix. They
are specified using the covariance() option. The covariance() option may be repeated. This
is necessary to accommodate multilevel NLME models, where you may need to specify different
covariance matrices for the random effects at different levels. Repeating this option may also be
useful if you want to specify a block-diagonal covariance structure. See example 23 for details.
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> Example 9: Two-level model with correlated random effects

Davidian and Giltinan (1995, sec. 1.1.3 and 11.2) discuss a study of soybean plants that started
in 1988 and spanned over three growing seasons, year. The central objective of the study was to
compare the growth patterns of two genotypes of soybean plants, variety: a commercial variety of
soybean, denoted by F, and an experimental variety, denoted by P. In each season, eight plots were
planted using F variety and eight using P variety. To assess growth, researchers sampled each plot
8 to 10 times (8 < m; < 10 ) at approximately weekly intervals, time. At each sampling time, six
plants were taken from each plot at random. Leaves from the plants were weighed, and the resulting
total weight was divided by six to yield a measure of the average leaf weight per plant (in g) for the
plot for that week, weight. Plots are identified by the plot variable.

Let’s plot the data first.

. use https://www.stata-press.com/data/r18/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))

. twoway connected weight time if year==2, connect(L) by(variety)

304

Average leaf weight per plant (g)

Time the sample was taken (days after planting)

Graphs by Variety

The graph shows the average leaf weights per plant over time for the eight plots with plants of each
genotype in the 1989 growing season. Longitudinal growth measures for each plot are connected with
solid lines. Apart from some intraplot variation, the growth profile of each plot follows roughly an
S shape, according to which growth begins slowly, then shows a linear trend during the middle of
the growing season, and then “levels off” at the end. Such pattern is typical for many growth studies.

The main goal of the study was to compare growth patterns over the growing season for the two
soybean genotypes. Because the three growing seasons differed markedly in terms of precipitation—
1988 was unusually dry, 1989 was wet, and 1990 was normal—contrasting these growth patterns
across years was also of interest. The results of this study are useful, for example, for harvesting
purposes.

A popular model for individual profiles that resemble an S shape is the logistic growth model:
P15

weight,, = ; i ”
ghat;; 1+ exp{— (tlmeij —¢2j)/¢3j} ! ( )

¢1; is the asymptotic average leaf weight per soybean plant in plot j as time;; — 00. ¢o; is the
time at which half of ¢, is reached; that is, if time;; = ¢ , then E(weightij) = 0.5¢1;. ¢1;
and ¢9; will henceforth be referred to as “the limiting growth” and “half-life”, respectively. ¢3; is a
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scale parameter, and it represents the number of days it takes for average leaf weight to grow from
50% (half-life) to about 73% of its limiting growth. That is, if we set time;; = to.73 = P2 + ¢35,
the right-hand side of (13), ignoring the error term, reduces to ¢1;/{1 + exp(—1)} = 0.73¢1;, and
then ¢3; = tg.73 — ¢2;.

We will start with a simple stage 2 specification that does not contain any covariates. Also, because
the number of soybean plots, 48, is large compared with the number of random effects, 3, we consider
a general positive-definite, unstructured, random-effects covariance matrix:

o1; B1 Uy

Q= | P2 | = | Ba| + | uz (14)
¢34 B3 u3;
U1 011 012 013 )
u; = | ugj NN(O,E),E: 012 0922 023 ,EijNN(O,O'e)
L&Y 013 023 033

To specify this covariance structure in menl, we specify unstructured in the covariance()
option. The covariance() option also requires that we list the names of random effects to be
correlated.

. menl weight = {phil:}/(1+exp(-(time-{phi2:})/{phi3:})),

> define(phil: Ul[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> covariance(U1l U2 U3, unstructured)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -739.90142

Iteration 2: Linearization log likelihood = -739.84929
(iteration log omitted)

Iteration 39: Linearization log likelihood = -739.83452

Iteration 40: Linearization log likelihood = -739.83445

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48
Obs per group:
min = 8
avg = 8.6
max = 10
Linearization log likelihood = -739.83445
phil: Ul[plot]l, xb
phi2: U2[plot], xb
phi3: U3[plot], xb
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 19.256314 .8031811 23.97 0.000 17.67893 20.82734
phi2
_cons 55.01999 . 7272491 75.65  0.000 53.59461 56.44537
phi3
_cons 8.403468 .3152551 26.66  0.000 7.78558 9.021357
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Random-effects parameters Estimate Std. err. [95% conf. interval]
plot: Unstructured

var (U1) 27.05081 6.776526 16.5556 44.19932

var (U2) 17.61605 5.317903 9.748762 31.83229

var (U3) 1.972036 .9849788 .7409048 5.248885

cov(U1,U2) 15.73304 5.413377 5.123017 26.34307

cov(U1,U3) 5.193819 2.165588 .9493435 9.438294

cov(U2,U03) 5.649306 2.049457 1.632445 9.666168

var (Residual) 1.262237 .1111685 1.062119 1.500059

The expected limiting growth or expected maximum average weight, 51 = E (¢1,), of soybean
leaves is estimated to be around 19.25 grams. The expected half-life or the time at which the leaves
reach half of their expected maximum average weight, o = F ((bgj), is estimated to be around 55
days after planting. The expected time needed for the average leaf weight per plant to grow from
50% to 73% of the limiting growth, B3 = E (¢3;), is about 8.4 days.

The estimates of the six random-effects variance—covariance parameters o1, 022, 033, 012, 013,
and og3 are displayed in the upper part of the random-effects parameters table. There is a plot-to-plot
variation in the estimates of all three parameters of interest: 51, B2, and (3. Also, the plot-specific
effects associated with the parameters of interest are positively correlated. For example, based on the
estimate of 5.19 of cov(U1,U3), plants with larger maximum weights tend to grow faster.

We store our estimates for later use:

. estimates store S1

> Example 10: Residuals-vs-fitted plot to check for heteroskedasticity

A popular tool for investigating within-cluster heteroskedasticity is the plot of residuals against
the predicted values and other candidate variance covariates. For growth models, variance is often a
function of the mean (predicted values). Below we construct the plot of residuals versus predicted
values to evaluate the assumption of homoskedastic errors in example 9.
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. predict fitweight, yhat
. predict res, residuals

. scatter res fitweight
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The plot reveals increasing variability with the predicted average leaf weights, which indicates that
our within-cluster variance model is misspecified. In Heteroskedastic within-group errors, we will
show how to account for within-cluster heteroskedasticity by using the resvariance() option.

4

Heteroskedastic within-group errors

Until now, we assumed that the within-group errors—the €’s in the considered models—are i.i.d.
Gaussian with common variance 062, labeled as var (Residual) by menl in the output.

To relax the assumptions of homoskedasticity and the independence of errors, menl provides two
alternatives. You can model the within-group error variance—covariance matrix, oA ;, directly by using
the rescovariance () option. If you used the mixed command and its residuals () option before,
you should be familiar with this approach. Alternatively, you can model the error variance—covariance
matrix indirectly by modeling the heteroskedasticity structure with the resvariance() option and
the correlation structure with the rescorrelation() option; see Variance-components parameters.
The latter approach offers more flexibility, particularly in modeling the heteroskedasticity structure.
For example, many NLME models exhibit within-subject heterogeneity that is a power function of the
mean. The rescovariance() option cannot model this, but resvariance (power _yhat) can.

If your error structure is simple and is similar to those encountered in mixed, you can use the
rescovariance () option. Otherwise, use resvariance (), rescorrelation(), or both to model
more flexible within-group error covariance structures.

> Example 11: Heteroskedastic power structure

Continuing with example 9, for these types of growth data, we find it is common for the intraplot
variance to increase systematically with the average leaf weight, as we saw in example 10 from the
residuals-versus-fitted plot. Davidian and Giltinan (1995) proposed a variance structure that models
the within-group error variance as a power function of the mean to account for the intraplot variability.
To reduce the number of parameters to be estimated, the authors assume that the random effects are
independent.
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Stage 2 specification of the model defined by (13) becomes

o1; B1 Uj

Q= | P2 | = | Ba| + | uz; (15)
¢35 B3 Uz,
where
U1 031 0 0
u; = |ug | ~N(0,%), diagonal = | 0 o2 0
Uus; 0 0 0’33
and

P 20

Var (¢;;) = o (weight,;)

Parameter o2 in the above is no longer an overall error variance o> but a common multiplier or
a (squared) scale parameter.

In menl, this type of heteroskedasticity is modeled by specifying resvariance (power _yhat,
noconstant). _yhat designates that the variance should be modeled as a function of predicted
values, weight, ;. By default, variance function power includes a constant, which we suppress by
specifying the noconstant option.

. menl weight = {phil:}/(1+exp(-(time-{phi2:})/{phi3:})),

> define(phil: Ul[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:
Iteration 1: Linearization log likelihood = -364.02249

Iteration 2: Linearization log likelihood = -364.22838
Iteration 3: Linearization log likelihood = -364.43168
Iteration 4: Linearization log likelihood = -364.38319
Iteration 5: Linearization log likelihood = -364.38964
Iteration 6: Linearization log likelihood = -364.38915
Iteration 7: Linearization log likelihood = -364.3892

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412

Group variable: plot Number of groups = 48
Obs per group:

min = 8

avg = 8.6

max = 10
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Linearization log likelihood = -364.3892
phil: Ul[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 16.82289 .6030531 27.90 0.000 15.64093 18.00485
phi2
_cons 51.74669 .4579632 112.99 0.000 50.8491 52.64429
phi3
_cons 7.545371 .0856321 88.11 0.000 7.377535 7.713206
Random-effects parameters Estimate  Std. err. [95% conf. intervall
plot: Independent
var (U1) 11.32134 2.83114 6.934848 18.48242
var (U2) 2.68911 .9344038 1.36093 5.31351
var (U3) 4.88e-11 2.67e-07 0
Residual variance:
Power _yhat
sigma2 .05609223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

The near-zero estimate of the variance component of u3;, var (U3), suggests that the random-effects
model is overparameterized. The within-group heteroskedasticity structure appears to explain enough
variability in our data, and we no longer need random effects specific to ¢3;. This is quite common in
mixed-effects models: the random-effects covariance structure and the within-group error covariance
structure compete with each other, in the sense that fewer random effects are needed when the
within-group error covariance structure is present, and vice versa.

Let’s omit uz; from (15) but now assume an unstructured covariance matrix for uy; and usg;.
The EM algorithm used by menl to obtain initial values produces the starting values for variance
components that are, in general, close to the final estimates upon convergence. Thus it can be used as a
tool to help us detect potential convergence problems because of an overparameterized random-effects
structure at an earlier stage. For example, we can check whether an unstructured covariance matrix
is a reasonable choice for the random effects u;; and us; for these data by displaying estimates after
a few iterations. This can be done by specifying the iterate (#) option, where # is a small number
of iterations, say, between 1 and 4. Below we specify iterate(3) to perform only three iterations
and the stddeviations option to obtain standard deviations and correlations instead of variances
and covariances for easier interpretability:
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. menl weight = {phil:}/(1+exp(-(time-{phi2:})/{phi3})),

> define(phil: Ul[plot], xb) define(phi2: U2[plot], xb)

> covariance(U*, unstructured) resvariance(power _yhat, noconstant)
> iterate(3) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -379.66343

Iteration 2: Linearization log likelihood = -362.90921

Iteration 3: Linearization log likelihood = -361.92335

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48
Obs per group:
min = 8
avg = 8.6
max = 10
Linearization log likelihood = -361.94037
phil: Ul[plot]l, xb
phi2: U2[plot], xb
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 16.92772 .5677148 29.82  0.000 15.81502 18.04042
phi2
_cons 51.81715 .4484351  115.55  0.000 50.93823 52.69606
/phi3 7.54089 .0869059 86.77  0.000 7.370557 7.711223
Random-effects parameters Estimate Std. err. [95% conf. interval]
plot: Unstructured
sd (U1) 2.904856 .4070788 2.207188 3.823047
sd(U2) 1.282287 .255515 .8677018 1.89496
corr(U1,U2) -.99999 .0034198 -1 1
Residual variance:
Power _yhat
sigma .2255029 .0095093 .2076144 .2449327
delta .9553162 .0230654 .9101088 1.000524

Warning: Convergence not achieved.

The U* in covariance (Ux, unstructured) is a shorthand notation to reference all random effects
starting with U, that is, U1 and U2 in this example. The correlation between w1, and us; is near —1 with
a 95% CI of [—1,1], which indicates that the random-effects model may still be overparameterized.
If you try to fit this model without the iteration(3) option, it would keep iterating without
convergence.

Therefore, we further simplify the random-effects covariance structure by assuming independence
between u1; and ug;. Stage 2 specification of the model defined by (13) is now

o1 b1+ ui,
b= | P25 | = | B2+ ugy (16)
¢3; Bs
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where

o
2
0 oy

. 2
u; = [“13} ~ N (0,%), diagonal ¥ = { w0 ]
2

and

Var (€;;) = o (We/ightij)%

We fit this model and store its results as S2:

. menl weight = {phil:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phil: Ul[plot], xb) define(phi2: U2[plot]l, xb)

> resvariance(power _yhat, n

Obtaining starting values by

oconstant)

EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization

Iteration 2: Linearization
Iteration 3: Linearization
Iteration 4: Linearization
Iteration 5: Linearization
Iteration 6: Linearization
Iteration 7: Linearization
Iteration 8: Linearization

Computing standard errors:

log likelihood =

log likelihood
log likelihood
log likelihood
log likelihood

log likelihood =
log likelihood =
log likelihood =

-402.76182
-372.91627
-363.87814
-364.41042
-364.38112
-364.39023
-364.38915
-364.38921

Mixed-effects ML nonlinear regression Number of obs 412
Group variable: plot Number of groups = 48
Obs per group:
min = 8
avg = 8.6
max = 10
Linearization log likelihood = -364.38921
phil: Ul[plot], xb
phi2: U2[plot], xb
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phil
_cons 16.82289 .6030524 27.90 0.000 15.64093 18.00485
phi2
_cons 51.74669 .4579626 112.99  0.000 50.8491 52.64428
/phi3 7.545369 .085632 88.11  0.000 7.377533 7.713205
Random-effects parameters Estimate Std. err. [95% conf. intervall
plot: Independent
var (U1) 11.32134  2.831139 6.934846 18.48241
var (U2) 2.689111 .934404 1.36093 5.313511
Residual variance:
Power _yhat
sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

. estimates store S2
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Because (16) is not nested in (14), we assess the adequacy of the heteroskedastic model by using
information criteria. We use estimates stats to display the AIC and BIC values for the three models.

. estimates stats S1 S2
Akaike’s information criterion and Bayesian information criterion

Model N  11(null) 11(model) df AIC BIC
S1 412 . -739.8344 10 1499.669 1539.879
S2 412 . —364.3892 7 T42.7784  770.9256

Note: BIC uses N = number of observations. See [R] IC note.

The heteroskedastic model defined by (16) has smaller AIC and BIC values and thus provides a much

better representation of the data than (14).
N

»> Example 12: Heteroskedastic model with interactions

The main goal of the soybean study was to compare growth patterns of the two genotypes of
soybean over the three growing seasons, represented by calendar years 1988 through 1990. More
specifically, we would like to compare the limiting growth, the half-life, and the growth rate of
soybeans across growing seasons and genotypes.

Let P =1 (varietyj = P) be the indicator for genotype variety P, Sgg j = I (yearj = 1989)
be the indicator for growing season 1989, and Sgg ; = I (year = 199()) be the indicator for growing
season 1990. Genotype variety F and growing season 1988 are baselines.

Consider an extension of the model defined by (13) and (16), where, in addition to random effects,
¢1; includes main and interaction effects of growing seasons and genotype variety, ¢2; includes main
effects of growing seasons and genotype variety, and ¢3; contains main effects of growing seasons
only.

?1; B11 + B12589,5 + $13590,5 + B1aPj + P15589,; X Pj 4 B16Se0,; X Pj + uyj
b, = | o2 | = Bo1 + B22589,; + B23590,5 + P24 P + ua;
¢34 Bs1 + B32589,; + B33590,;
a7

To fit the model defined by (13) and (17) by using menl, we extend menl’s specification from
example 11 by including the full-factorial interaction i.year##i.variety in the expression {phil:},
main effects i.year and i.variety in the expression {phi2:}, and main effects i.year in the
expression {phi3:}.

. menl weight = {phil:}/(1+exp(-(time-{phi2:})/{phi3:})),

> define(phil: i.year##i.variety Ul[plotl)

> define(phi2: i.year i.variety U2[plot])

> define(phi3: i.year, xb)

> resvariance(power _yhat, noconstant)
Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -292.62615

Iteration 2: Linearization log likelihood = -290.24389
(iteration log omitted)

Iteration 10: Linearization log likelihood = -290.90729

Iteration 11: Linearization log likelihood = -290.9073
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Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs 412
Group variable: plot Number of groups = 48
Obs per group:
min = 8
avg = 8.6
max = 10
Wald chi2(10) = 413.88
Linearization log likelihood = -290.9073 Prob > chi2 = 0.0000
phil: i.year i.variety i.year#i.variety Ul[plot]
phi2: i.year i.variety U2[plot]
phi3: i.year
weight | Coefficient Std. err. z P>|z| [95% conf. intervall
phi1l
year
1989 -8.837933 1.056113 -8.37  0.000 -10.90788 -6.76799
1990 -3.666206 1.165969 -3.14 0.002 -5.951463 -1.38095
variety
P 1.648139  1.033433 1.59 0.111 -.3773532 3.673631
year#variety
1989#P 5.563008 1.167782 4.76  0.000 3.274196 7.851819
1990#P .0974815  1.178054 0.08 0.934 -2.211462 2.406425
_cons 19.42734 .9445749 20.57  0.000 17.57601 21.27867
phi2
year
1989 -2.2563227 .9746495 -2.31 0.021 -4.163505  -.3429494
1990 -4.970736 .9778317 -5.08 0.000 -6.887251  -3.054221
variety
P -1.294058 .4255317 -3.04 0.002 -2.128085 -.4600314
_cons 54.81257 . 7587239 72.24 0.000 53.3255 56.29964
phi3
year
1989 -.9023768 .1992358 -4.53  0.000 -1.292872 -.5118818
1990 -.6805314 .2100799 -3.24 0.001 -1.09228 -.2687823
_cons 8.060677 .1459662 55.22  0.000 7.774588 8.346765
Random-effects parameters Estimate Std. err. [95% conf. intervall]
plot: Independent
var (U1) .8643052 .5271147 .2615435 2.856211
var (U2) .1341755 .2306869 .0046154 3.900652
Residual variance:
Power _yhat
sigma2 .0467091 .0039176 .0396286 .0550546
delta .9451193 .0227608 .9005089 .9897297

. estimates store S3
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By including more fixed effects in the model, which explain some of the variability in the average leaf
weight, we substantially reduced the estimates of variance components. Compared with example 11,
var (U1) decreased from 11.32 to 0.86, and var (U2) decreased from 2.69 to 0.13. It often happens
that specifying a better-fitting model for the fixed effects reduces the need for random effects in the
model.

We can compare model S3 or the model defined by (17) with model S2 or the one defined by
(16) by using, for example, information criteria.

. estimates stats S2 S3

Akaike’s information criterion and Bayesian information criterion

Model N  11(null) 1l(model) df AIC BIC
52 412 . —364.3892 7 742.7784  770.9256
S3 412 . =290.9073 17  615.8146 684.172

Note: BIC uses N = number of observations. See [R] IC note.

Even though S3 has many more parameters, it fits the soybean data better than S2.

By inspecting the fixed-effects estimates from the output of model S3, we see that both the type of
year and genotype variety affect all three parameters: the expected maximum leaf weight, half-life,
and scale. For example, all three parameters achieve their highest values in the dry year, baseline
year 1988, because coefficient estimates for the other years are negative. Also, the genotype variety F
reaches its half-life roughly a day later (824 = —1.29) than genotype variety P.

d

> Example 13: Obtaining predictions

After estimation, we may want to obtain predicted values for the outcome or for the parameters
of interest. Continuing with example 12, we want to predict the asymptotic average leaf weight per
soybean plant in each plot, ¢1;. The ¢1; parameter is not constant but varies for each plot, growing
season, and genotype variety. We can use predict after menl to obtain predicted values for ¢1;;
see [ME] menl postestimation.

First, we create a new grouping variable for growing seasons, genotype variety, and plot types.
We also create the tolist variable to mark the first observation in each group.
. egen group = group(year variety plot)
. by group, sort: generate byte tolist=(_n==1)

Next, we use predict to compute predicted values for the expression {phil:} and store them
in the new variable phil. We store only unique values in phil, one for each group; the remaining
observations are replaced with missing values.

. predict double (phil = {phil:})
. quietly replace phil = . if tolist!=1
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We now list the five smallest and the five largest values of the asymptotic average leaf weight.

. sort phil
. list plot year variety phil if (_n<=5 | _n>43) & phil<., sep(5)

plot year variety phil

1 1989F6 1989 F  8.8421451

2. 1989F4 1989 F  10.449521

3. 1989F5 1989 F 10.473849

4 1989F1 1989 F  10.721364

5 1989F7 1989 F  10.810197

44. 1988P8 1988 P 20.86739
45. 1988P2 1988 P 21.237692
46. 1988P4 1988 P 21.310511
47. 1988P3 1988 P 21.506007
48. 1988P6 1988 P 21.581873

Soybean plants with genotype variety P have substantially larger asymptotic average leaf weight in
the dry year, 1988, than soybean plants with genotype variety F in the wet year, 1989.
d

> Example 14: Within-group error correlation structure

Pinheiro and Bates (2000, chap. 8) analyzed data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data contain daily records of the number of
ovarian follicles larger than 10 mm over a period ranging from 3 days before ovulation to 3 days after
the subsequent ovulation. The measurement times for each mare are scaled so that the ovulations for
each mare occur at times 0 and 1 and are recorded in stime.

The considered model is

fOlliCleSij = ¢1j + ¢2j sin (27T¢3j stimeij) + ¢4j CcOosS (27T¢3j stimeij) + €55

where ¢q; is an intercept, ¢3; is the frequency of the sine wave for the jth mare, and ¢o; and ¢4
are terms determining the amplitude and phase of the sine wave for the jth mare. If a; and p; are
the amplitude and phase for mare j, then ¢o; = a; cos(p;) and ¢4; = a; sin(p;).

This model was fit in example 8 of [ME] mixed in the context of a linear mixed-effects model,
where the number of ovarian follicles was a periodic function of time with known frequency ¢s;
equal to 1. If we want to estimate frequency, we cannot use the mixed command, because ¢3; enters
the model nonlinearly.

Pinheiro and Bates (2000) suggested an AR(1) correlation structure for modeling the within-
group error correlation. This structure can be specified by using the rescorrelation() option as
rescorrelation(ar 1, t(time)), where time is an integer-valued time variable used to order the
observations within mares and to determine the lags between successive observations.

We also considered several random-effects structures and found that we need only one random
intercept to model ¢y ;.
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The full specification for the stage 2 model is

¢1j B1 + uij
_ | 92| _ 2
?; ¢35 B3
Gaj Ba
where
Uj = Ulj ~ N (0703) y 6]‘ ~ N(O, O'EAJ')
and
1 p p2 pnj—l
p 1 p pri?
N I B
pnj—l an—Q an—B 1

We fit this model by using menl as follows:
. use https://www.stata-press.com/data/r18/ovary, clear
(Ovarian follicles in mares)

. menl follicles = {phil: Ul[marel, xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -789.43415
Iteration 2: Linearization log likelihood = -789.43439
Iteration 3: Linearization log likelihood = -789.43439

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11
Obs per group:
min = 25
avg = 28.0
max = 31
Linearization log likelihood = -789.43439
phil: Ul[mare]l, xb
follicles | Coefficient Std. err. z P>|z]| [95% conf. interval]
phil
_cons 11.98929 .9055946 13.24  0.000 10.21436 13.76422
/phi2 .2226033 .3290159 0.68 0.499 -.4222559 .8674626
/phi3 4.18747 . 2746499 15.25  0.000 3.649166 4.725774
/phid .279653 .3223277 0.87 0.386 -.3520977 .9114036
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity

var (U1) 4.,935352 3.967849 1.020897 23.85911
Residual: AR(1),
time time
var (e) 20.14587 3.49294 14.34176 28.29889
corr .7332304 .0463231 .6287332 .8117158

By using estimates of ¢2; and ¢4;, we can compute the amplitude and phase for the sine wave for
mare j. The amplitude and the phase are the same for all the mares because ¢o; and ¢4; are constant
and not mare specific.

For example, the amplitude a; can be computed as , /qﬁ% ;T qZ)i ; by using the relationship
(b%j +¢)421j = a? {sin2 (pj) + cos2(pj)} = a?. The phase p; can be computed as p; = atan(¢4; /d2;)
by using the relationship ¢4;/¢2; = {a;sin(p;)} /{a; cos(p;)} = tan(p;).

We can use nlcom to compute the amplitude and the phase.

. nlcom (amplitude: sqrt(_b[/phi2]~2 + _b[/phi4]~2))
> (phase: atan(_b[/phi4]/_b[/phi2]))
amplitude: sqrt(_b[/phi2]~2 + _b[/phi4]~2)
phase: atan(_b[/phi4]/_b[/phi2])

follicles Coefficient Std. err. z P>z [95% conf. intervall]
amplitude .3574325 .2451183 1.46 0.145 -.1229904 .8378555
phase .8985001 1.090985 0.82 0.410 -1.23979 3.03679

As we mentioned in example 1, it is important to try different initial values when fitting NLME
models to investigate potential convergence to a local maximum, especially for models containing
periodic functions, as in our example. We explore different initial values for this model in Linearization
approach to finding initial values by considering the functional form of the mean function and arrive
at a different solution with a larger log likelihood.

N

Restricted maximum likelihood

Like mixed, menl provides estimation by using ML or REML. The difference between the two
approaches is described in detail in Likelihood versus restricted likelihood in [ME] mixed. Briefly,
REML is preferable when you have a small number of groups because it produces unbiased, at least for
balanced data, estimates of variance components. In large samples, there is little difference between
ML and REML. One disadvantage of REML, however, is that LR tests based on REML are inappropriate
for comparing models with different fixed-effects specifications. See example 15 for an example of
REML estimation.
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Pharmacokinetic modeling

Pharmacokinetics (PKs) is the study of drug absorption, distribution, metabolism, and excretion.
It is often referred to as the study of “what the body does with a drug”. The goal of PK modeling
is to summarize the concentration-time measurements using a model that relates drug input to drug
response, to relate the parameters of this model to patient characteristics, and to provide individual
dose-response predictions to optimize individual doses. In other words, by understanding between-
subject variation in drug disposition, we can individualize the dosage regimen for a particular patient
based on relevant physiological information identified by our PK model.

Single-dose pharmacokinetic modeling

» Example 15: Single-oral-dose model

Consider a PK study of the antiasthmatic agent theophylline that was reported by Boeckmann,
Sheiner, and Beal (2011) and analyzed by Davidian and Giltinan (1995). The drug was administered
orally to 12 subjects, where dosage dose (mg/kg) was given on a per weight basis. Serum concentrations
(in mg/L) were obtained at 11 time points per subject over 25 hours following administration. The
graph below shows the resulting concentration-time profiles for four subjects.

. use https://www.stata-press.com/data/r18/theoph
(Theophylline kinetics (Boeckmann et al., [1994] 2011))

. twoway connected conc time if subject<=4, connect(L) by(subject)
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In PKs, the pattern of rapid rise to a peak concentration followed by an apparent exponential
decay may be described by a so-called one-compartment open model with first-order absorption and
elimination. The model corresponds roughly to viewing the body as one “blood compartment” and
is particularly useful for the PK analysis of drugs that distribute relatively rapidly throughout the
body, which makes it a reasonable model for the kinetics of theophylline after oral administration.
Further details about compartmental modeling may be found in Gibaldi and Perrier (1982). The
one-compartment open model for theophylline kinetics may be expressed as

dosejke, ka,

conc;; = aL, (kaj - ke,-) {exp (—ke].timeij) — exp (—kajtimeij)} + €5 (18)
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fort=1,...,11 and j = 1,...,12. Model parameters are the elimination rate constant k.., the
absorption rate constant k,, and the clearance Cl; for each subject j.

Because each of the model parameters must be positive to be meaningful, we write

Clj = exXp (50 + ’LLQj)
ka; = exp (B1 + u1y)
kej = eXp (/82)

where ug; and uq; are assumed independent and normally distributed with means zero and variance

2 2 :
04, and oy, , respectively.

The model defined by (18) implies that the predicted value for the concentration at time time;; = 0
is conc;; = 0. Therefore, a power variance function, a natural candidate for this type of heteroskedastic
pattern, cannot be used in this example because error variance will be 0 at time;; = 0. So the
constant plus power variance function, which adds a constant to the power term, is used instead to
model the within-group error variance:

Var (€;;) = 0*{(conc;;)° + c}?
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In menl, we use the resvariance(power _yhat) option to specify the constant plus power
variance function and the following model specification:

. menl conc = (dosex{ke:}x{ka:}/({cl:}*({ka:}-{ke:})))*

> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]l}))
> define(ka: exp({b1}+{Ul[subject]l})) define(ke: exp({b2}))

> resvariance(power _yhat)

Obtaining starting values by EM:
Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -167.51953

Iteration 2: Linearization log likelihood = -167.65729
(iteration log omitted)

Iteration 26: Linearization log likelihood = -167.67966

Iteration 27: Linearization log likelihood = -167.67964

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12
Obs per group:
min = 11
avg = 11.0
max = 11
Linearization log likelihood = -167.67964
cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U