Title stata.com

lusolve() — Solve AX=B for X using LU decomposition

Description Syntax Remarks and examples Conformability
Diagnostics Also see

Description

lusolve (A, B) solves AX=B and returns X. lusolve () returns a matrix of missing values if A is
singular.

lusolve(A, B, tol) does the same thing but allows you to specify the tolerance for declaring that
A is singular; see Tolerance under Remarks and examples below.

_lusolve(A, B) and _lusolve(A, B, tol) do the same thing except that, rather than returning
the solution X, they overwrite B with the solution and, in the process of making the calculation, they
destroy the contents of A.

_lusolve_la(A, B) and _lusolve_la(A, B, tol) are the interfaces to the [M-1] LAPACK
routines that do the work. They solve AX=B for X, returning the solution in B and, in the process,
using as workspace (overwriting) A. The routines return 1 if A was singular and O otherwise. If A
was singular, B is overwritten with a matrix of missing values.

Syntax

numeric matrix lusolve (numeric matrix A, numeric matrix B)

numeric matrix lusolve (numeric matrix A, numeric matrix B, real scalar tol)

void _lusolve (numeric matrix A, numeric matrix B)

void _lusolve (numeric matrix A, numeric matrix B, real scalar tol)

real scalar _lusolve_la(numeric matrix A, numeric matrix B)

real scalar _lusolve_la(numeric matrix A, numeric matrix B, real scalar tol)
Remarks and examples stata.com

The above functions solve AX=B via LU decomposition and are accurate. An alternative is qrsolve ()
(see [M-5] qrsolve()), which uses QR decomposition. The difference between the two solutions is not,
practically speaking, accuracy. When A is of full rank, both routines return equivalent results, and
the LU approach is quicker, using approximately O(2/3n®) operations rather than O(4/3n%), where A
isn X n.

The difference arises when A is singular. Then the LU-based routines documented here return missing
values. The QR-based routines documented in [M-5] qrsolve() return a generalized (least squares)
solution.

For more information on LU and QR decomposition, see [M-5] lud() and see [M-5] qrd().

1

http://stata.com
https://www.stata.com/manuals/m-1lapack.pdf#m-1LAPACK
http://stata.com
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5lud.pdf#m-5lud()
https://www.stata.com/manuals/m-5qrd.pdf#m-5qrd()

2 lusolve() — Solve AX=B for X using LU decomposition

Remarks are presented under the following headings:

Derivation
Relationship to inversion
Tolerance

Derivation

We wish to solve for X
AX =B (1)

Perform LU decomposition on A so that we have A = PLU. Then (1) can be written as
PLUX =B

or, premultiplying by P’ and remembering that P'P = I,

LUX = P'B (2)
Define
Z=UX (3)
Then (2) can be rewritten as
LZ="PB (4)

It is easy to solve (4) for Z because L is a lower-triangular matrix. Once Z is known, it is easy to
solve (3) for X because U is upper triangular.

Relationship to inversion
Another way to solve
AX =B
is to obtain A~! and then calculate
X=A"'B

It is, however, better to solve AX = B directly because fewer numerical operations are required, and
the result is therefore more accurate and obtained in less computer time.

Indeed, rather than thinking about how solving a system of equations can be implemented via
inversion, it is more productive to think about how inversion can be implemented via solving a system
of equations. Obtaining A~ amounts to solving

AX =1

Thus lusolve() (or any other solve routine) can be used to obtain inverses. The inverse of A can
be obtained by coding

: Ainv = lusolve(A, I(rows(A)))

In fact, we provide luinv() (see [M-5] luinv()) for obtaining inverses via LU decomposition, but
luinv() amounts to making the above calculation, although a little memory is saved because the
matrix [is never constructed.

Hence, everything said about lusolve () applies equally to luinv().

https://www.stata.com/manuals/m-5luinv.pdf#m-5luinv()

lusolve() — Solve AX=B for X using LU decomposition 3

Tolerance

The default tolerance used is
eta = (le-13)*trace(abs(U))/n

where U is the upper-triangular matrix of the LU decomposition of A: n X n. A is declared to be
singular if any diagonal element of U is less than or equal to eta.

If you specify fol > 0, the value you specify is used to multiply efa. You may instead specify rol <
0, and then the negative of the value you specify is used in place of eta; see [M-1] Tolerance.

So why not specify fol = 0?7 You do not want to do that because, as matrices become close to being
singular, results can become inaccurate. Here is an example:
: rseed(12345)

: A = lowertriangle(runiform(4,4))
: A[3,3] = 1e-15

: trux = runiform(4,1)

: b = Axtrux
: /* the above created an Ax=b problem, and we have placed the true
> value of x in trux. We now obtain the solution via lusolve()
> and compare trux with the value obtained:
> x/
: x = lusolve(4, b, 0)
: trux, x
1 .260768733 .260768733 <— The discussed numerical
2 .0267289389 .0267289389 instability can cause this
3 .1079423963 .0989119749 output to vary a little
4 3666839808 .3863636364 across different computers

We would like to see the second column being nearly equal to the first—the estimated x being nearly
equal to the true x—but there are substantial differences.

Even though the difference between x and trux is substantial, the difference between them is small
in the prediction space:

: Axtrux-b, A*xx-b

1 2
1 0 0
2 0 0
3 0 -2.77556e-17
4 0 0

What made this problem so difficult was the line A[3,3] = 1e-15. Remove that and you would find
that the maximum absolute difference between x and trux would be —2.44249e¢—15.

The degree to which the residuals A*x-b are a reliable measure of the accuracy of x depends on the
condition number of the matrix, which can be obtained by [M-5] cond(), which for 4, is 4.47684e+15.
If the matrix is well conditioned, small residuals imply an accurate solution for x. If the matrix is ill
conditioned, small residuals are not a reliable indicator of accuracy.

https://www.stata.com/manuals/m-1tolerance.pdf#m-1Tolerance
https://www.stata.com/manuals/m-5cond.pdf#m-5cond()

4 lusolve() — Solve AX=B for X using LU decomposition

Another way to check the accuracy of x is to set fol = 0 and to see how well x could be obtained
were b = Axx:

HE 4
T x2

lusolve(A, b, 0)
lusolve(A, Axx, 0)

If x and x2 are virtually the same, then you can safely assume that x is the result of a numerically
accurate calculation. You might compare x and x2 with mreldif (x2,x); see [M-5] reldif(). In our
example, mreldif (x2,x) is .03, a large difference.

If A is ill conditioned, then small changes in A or B can lead to radical differences in the solution
for X.

Conformability
lusolve(A, B, tol):
input:
A: nxn
B: nxk
tol: 1 x 1 (optional)
output:
result: nxk
_lusolve(A, B, tol):
input:
A: nxn
B: nxk
tol: 1 x 1 (optional)
output:
A: 0x0
B nxk
_lusolve_la(A, B, tol):
input:
A nxn
B nxk
tol: 1 x 1 (optional)
output:
A 0x0
B nxk
result: 1 x1
Diagnostics

lusolve(A, B, ...), _lusolve(A, B, ...), and _lusolve_la(A, B, ...) return a result
containing missing if A or B contain missing values. The functions return a result containing all
missing values if A is singular.

_lusolve(A, B, ...) and _lusolve_la(A, B, ...) abort with error if A or B is a view.

_lusolve_la(A, B, ...) should not be used directly; use _lusolve().

https://www.stata.com/manuals/m-5reldif.pdf#m-5reldif()

lusolve() — Solve AX=B for X using LU decomposition 5

Also see
[M-5] cholsolve() — Solve AX=B for X using Cholesky decomposition
[M-5] lud() — LU decomposition
[M-5] luinv() — Square matrix inversion
[M-5] grsolve() — Solve AX=B for X using QR decomposition
[M-5] solvelower() — Solve AX=B for X, A triangular
[M-5] svsolve() — Solve AX=B for X using singular value decomposition
[M-4] Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and

Stata Press are registered trademarks with the World Intellectual Property Organization é\?,\ ©
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp &‘“ = \\’
LLC. Other brand and product names are registered trademarks or trademarks of their b !“ i ;
respective companies. Copyright @ 1985-2023 StataCorp LLC, College Station, TX, ! i

USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5cholsolve.pdf#m-5cholsolve()
https://www.stata.com/manuals/m-5lud.pdf#m-5lud()
https://www.stata.com/manuals/m-5luinv.pdf#m-5luinv()
https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5solvelower.pdf#m-5solvelower()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()
https://www.stata.com/manuals/m-4matrix.pdf#m-4Matrix
https://www.stata.com/manuals/m-4solvers.pdf#m-4Solvers
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

