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Description

Lasso was originally an acronym for “least absolute shrinkage and selection operator”. Today,
lasso is considered a word and not an acronym.

Lasso is used for prediction, for model selection, and as a component of estimators to perform
inference.

Lasso, elastic net, and square-root lasso are designed for model selection and prediction. Stata’s
lasso, elasticnet, and sqrtlasso commands implement these methods. lasso and elasticnet
fit continuous, binary, count, and failure-time outcomes, while sqrtlasso fits continuous outcomes.

Stata also provides lasso commands for inference. They use lassos to select control variables that
appear in the model, and they estimate coefficients and standard errors for a specified subset of
covariates.

Stata’s lasso inference commands implement methods known as double selection, partialing out,
and cross-fit partialing out. With each of these methods, linear, logistic, or Poisson regression can be
used to model a continuous, binary, or count outcome. Partialing out and cross-fit partialing out also
allow for endogenous covariates in linear models.

Stata also provides a specialized lasso inference command for estimating treatment effects while
using lassos to select control variables. telasso estimates the average treatment effect (ATE), average
treatment effect on the treated (ATET), or potential-outcome means (POMs); see [CAUSAL] telasso.

This entry provides an overview of lasso for prediction, model selection, and inference and an
introduction to Stata’s suite of lasso commands.

Remarks and examples stata.com

Remarks are presented under the following headings:

Summary of Stata’s lasso and elastic-net features
What is lasso?
Lasso for prediction

How lasso for prediction works
Stata commands for prediction

Lasso for model selection
Lasso for inference

Why do we need special lasso methods for inference?
Methods of lasso for inference
Stata commands for inference

Where to learn more
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Summary of Stata’s lasso and elastic-net features

For those of you who are already experts on lasso, here is an overview full of buzz words without
explanations.

Stata provides three estimation commands for prediction and model selection.

lasso fits linear, logit, probit, Poisson, and Cox proportional hazards models.
The final model is selected using cross-validation (CV), adaptive lasso,
plugin estimators, or the Bayesian information criterion (BIC) function.

elasticnet also fits linear, logit, probit, Poisson, and Cox proportional hazards models.
elasticnet uses CV or the BIC function to select models.

sqrtlasso fits square-root lassos for linear models. The final model is selected using
CV, plugin estimators, or the BIC function.

After fitting a model, you obtain out-of-sample predictions by loading another dataset and typing

. predict newvarname

Stata provides another 11 lasso commands for use in inference. These 11 commands are arranged
in three groups.

ds commands perform double-selection lasso:
dsregress for linear models,
dslogit for logit models, and
dspoisson for Poisson models.

po commands perform partialing-out lasso:
poregress for linear models,
pologit for logit models,
popoisson for Poisson models, and
poivregress for linear models with endogenous covariates.

xpo commands perform cross-fit partialing-out lasso, also known as double
machine learning:
xporegress for linear models,
xpologit for logit models,
xpopoisson for Poisson models, and
xpoivregress for linear models with endogenous covariates.

Stata provides one additional lasso command for use in inference when your objective is to estimate
treatment effects.

telasso fits linear, logit, probit, and Poisson models and estimates the ATE, ATET,
or POMs.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
https://www.stata.com/manuals/lassopopoisson.pdf#lassopopoisson
https://www.stata.com/manuals/lassopoivregress.pdf#lassopoivregress
https://www.stata.com/manuals/lassoxporegress.pdf#lassoxporegress
https://www.stata.com/manuals/lassoxpologit.pdf#lassoxpologit
https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
https://www.stata.com/manuals/causaltelasso.pdf#causaltelasso
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Stata provides two preestimation commands that help you prepare your data and specify covariates.

splitsample divides your sample into k random subsamples. Use it for producing
subsamples for training, validation, and prediction.

vl creates named lists of variables to be included in lasso. Sometimes,
you will want to specify many potential covariates without typing every
variable name. vl creates named variable lists that can be used as
command arguments. Lists can contain hundreds or thousands of
variable names.

Stata provides eight postestimation commands that help you evaluate the selected model:

bicplot graphs the BIC function.

cvplot graphs the CV function.

coefpath graphs coefficient paths.

lassoknots displays a knot table for covariates as they enter or leave the model and
measures of fit.

lassogof reports fit statistics that help you evaluate the predictive ability of a model.
It does this for one model or for multiple models in the same table.

lassocoef lists the selected variables in the model. It does this for one model
or for multiple models in the same table.

lassoselect selects a different model from the one chosen by the estimation command.

lassoinfo reports lasso information such as the dependent variable, selection method,
and number of nonzero coefficients for one or more models.

What is lasso?
Lasso is a method for selecting and fitting covariates that appear in a model. The lasso command

can fit linear, logit, probit, Poisson, and Cox proportional hazards models. Let’s consider a linear
model, a model of y on x1, x2, . . . , xp. You would ordinarily fit this model by typing

. regress y x1 x2 . . . xp

Now assume that you are uncertain which variables (covariates) belong in the model, although
you are certain that some of them do and the number of them is small relative to the number of
observations in your dataset, N . In that case, you can type

. lasso linear y x1 x2 . . . xp

You can specify hundreds or even thousands of covariates. You can even specify more covariates
than there are observations in your data! The covariates you specify are the potential covariates from
which lasso selects.

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/lassobicplot.pdf#lassobicplot
https://www.stata.com/manuals/lassocvplot.pdf#lassocvplot
https://www.stata.com/manuals/lassocoefpath.pdf#lassocoefpath
https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassoinfo.pdf#lassolassoinfo
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Lasso is used in three ways:

1. Lasso is used for prediction.

2. Lasso is used for model selection.

3. Lasso is used for inference.

By prediction, we mean predicting the value of an outcome conditional on a large set of potential
regressors. And we mean predicting the outcome both in and out of sample.

By model selection, we mean selecting a set of variables that predicts the outcome well. We do
not mean selecting variables in the true model or placing a scientific interpretation on the coefficients.
Instead, we mean selecting variables that correlate well with the outcome in one dataset and testing
whether those same variables predict the outcome well in other datasets.

By inference, we mean inference for interpreting and giving meaning to the coefficients of the fitted
model. Inference is concerned with estimating effects of variables in the true model and estimating
standard errors, confidence intervals, p-values, and the like.

Lasso for prediction

Lasso was invented by Tibshirani (1996) and has been commonly used in building models
for prediction. Hastie, Tibshirani, and Wainwright (2015) provide an excellent introduction to the
mechanics of the lasso and to the lasso as a tool for prediction. See Bühlmann and van de Geer (2011)
for more technical discussion and clear discussion of the properties of lasso under different assumptions.
See Cameron and Trivedi (2022, chap. 28) for an introduction to lasso for prediction and for inference
with examples using Stata.

Lasso does not necessarily select the covariates that appear in the true model, but it does select
a set of variables that are correlated with them. If lasso selects potential covariate x47, that means
x47 belongs in the model or is correlated with variables that belong in the model. If lasso omits
potential covariate x52, that means x52 does not belong in the model or belongs but is correlated
with covariates that were already selected. Because we are interested only in prediction, we are not
concerned with the exact variables selected, only that they are useful for prediction.

The model lasso selects is suitable for making predictions in samples outside the one you used
for estimation. Everyone knows about the danger of overfitting. Fit a model on one set of data and
include too many variables, and the result will exploit features randomly unique to those data that
will not be replicated in other data.

“Oh,” you may be thinking, “you mean that I can split my data into an estimation sample and a
hold-out sample, and after fitting, I can evaluate the model in the hold-out sample.” That is not what
we mean, although you can do this, and it is sometimes a good idea to do so. We mean that lasso
works to avoid the problem of overfitting by minimizing an estimate of the out-of-sample prediction
error.

How lasso for prediction works

Lasso finds a solution for

y = β1 x1 + β2 x2 + · · ·+ βp xp + ε

by minimizing the prediction error subject to the constraint that the model is not too complex—that
is, it is sparse. Lasso measures complexity by the sum of the absolute values of β1, β2, . . . , βp. The
solution is obtained by minimizing
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1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj | (1)

The first term, (y−Xβ′)′(y−Xβ′), is the in-sample prediction error. It is the same value that least
squares minimizes.

The second term, λ
∑

j |βj |, is a penalty that increases in value the more complex the model. It is
this term that causes lasso to omit variables. They are omitted because of the nondifferentiable kinks
in the

∑
j |βj | absolute value terms. Had the kinks not been present—think of squared complexity

terms rather than absolute value—none of the coefficients would be exactly zero. The kinks cause
some coefficients to be zero.

If you minimized (1) with respect to the βj’s and λ, the solution would be λ = 0. That would set
the penalty to zero. λ = 0 corresponds to a model with maximum complexity.

Lasso proceeds differently. It minimizes (1) for given values of λ. Lasso then chooses one of those
solutions as best based on another criterion, such as an estimate of the out-of-sample prediction error.

When we use lasso for prediction, we must assume the unknown true model contains few variables
relative to the number of observations, N . This is known as the sparsity assumption. How many true
variables are allowed for a given N? We can tell you that the number cannot be greater than something
proportional to

√
N/ ln q, where q = max{N, p} and p is the number of potential variables. We

cannot, however, say what the constant of proportionality is. That this upper bound decreases with q
can be viewed as the cost of performing covariate selection.

Lasso provides various ways of selecting λ: through CV, adaptive lasso, a plugin estimator, or
minimizing the Bayesian information criterion (BIC) function. CV selects the λ that minimizes an
estimate of the out-of-sample prediction error. Adaptive lasso performs multiple lassos, each with
CV. After each lasso, variables with zero coefficients are removed, and remaining variables are given
penalty weights designed to drive small coefficients to zero. Thus, adaptive lasso typically selects
fewer covariates than CV.

The plugin method was designed to achieve an optimal sparsity rate. It tends to select a larger
λ than CV and, therefore, fewer covariates in the final model. The number of covariates selected by
minimizing BIC typically lies between the number selected by CV and the number selected by the
plugin method; however, BIC tends to be more similar to the number selected by the plugin method.
Furthermore, BIC does not require a complex derivation as does the plugin, so like CV, it can be
applied in a more general context. See [LASSO] lasso and [LASSO] lasso fitting for more information
on the methods of selecting λ, their differences, and how you can control the selection process.

Stata commands for prediction

We described the linear lasso model in the last section, but the concepts we have discussed apply
to models for binary and count outcomes as well.

To fit a linear lasso model, we might type

. lasso linear y x1-x500

and lasso will select a subset of variables from x1 to x500 that can be used in prediction.

If we have a binary outcome, we could instead fit a logit model by typing

. lasso logit y x1-x500

or a probit model by typing

. lasso probit y x1-x500

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
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For a count outcome, we could fit a Poisson model by typing

. lasso poisson y x1-x500

For failure-time data that has been stset, we could fit a Cox proportional hazards model by
typing

. lasso cox x1-x500

After any of these lasso commands, we can use predict to obtain predictions of y.

For examples demonstrating how to use the lasso command to fit models suitable for prediction,
see Remarks and examples in [LASSO] lasso and also see [LASSO] lasso examples.

Stata also has commands for fitting elastic nets and square-root lassos for prediction. See
[LASSO] elasticnet and [LASSO] sqrtlasso for more information and examples.

Lasso for model selection

Model selection is an overloaded term that implies different things in different disciplines. To
some, it implies finding a true model or data-generating process. To some, it implies less. Here model
selection means finding a model that fits the data, not finding a model that allows for interpreting
estimated coefficients as effects. If this is your interest, see Lasso for inference below.

Lasso for model selection builds on lasso for prediction. In fact, the same lasso methods are used
in both cases. However, the goal of the analysis is different.

Model selection uses lasso to select variables in one dataset and then fits models using the
selected variables in other datasets. For example, consider finding genes correlated with an outcome
in microarray data. One approach starts with lasso. Researchers use it as a sieve to select the important
predictors. They go on to test whether those predictors (genetic markers) work in other datasets. Note
that these researchers are not giving scientific meaning to the estimated coefficients. They are looking
only for markers that correlate well with an outcome.

We can perform these types of tests because our interest lies in the selected model rather than the
true coefficients of the data-generating process (DGP), sometimes called the data-generating mechanism
(DGM). Interpretation is conditional on the selected model and cannot be interpreted as causal. See,
for instance, Lee et al. (2016). As Berk et al. (2013) put it, the goal is “. . . to merely describe
association between predictor and response variables; no data generating or causal claims are implied.”

Lasso for inference

When we use lasso for inference, we are interested in interpreting the estimated coefficients. We
are also interested in standard errors, hypothesis tests, confidence intervals, comparisons across levels,
and the like. We want to interpret the results in the same way we interpret results from standard
regression models.

Why do we need special lasso methods for inference?

It may be tempting to use lasso to select covariates and then use regress (or logit, probit,
or poisson) to fit a model with the selected covariates. The results from the regression provide
estimated coefficients and standard errors, confidence intervals, and p-values.

This approach does not work. Why?

https://www.stata.com/manuals/lassolasso.pdf#lassolassoRemarksandexamples
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
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Consider fitting a classic regression model. The standard error for a coefficient tells us about the
distribution of the coefficient in repeated sampling. The 95% confidence interval includes the true
value of the coefficient in 95% of repeated samples. Although we do not actually have repeated
samples from the population, the standard errors allow us to account for sample-to-sample variability
when making inferences.

If we use lasso to select covariates and then use regress to fit a model with only the selected
covariates, the results will be problematic for use in inference for a few reasons.

First, when we use lasso, or any variable-selection method, we introduce a new source of variability.
If we actually drew repeated samples from a population and used lasso to select covariates on each
one, different covariates would be selected in each dataset. However, we have selected covariates using
only a single sample. The standard errors reported by regress do not account for the sample-to-sample
variability in the variable selection.

Second, lasso tends to omit covariates with small coefficients. This problem arises because lasso
minimizes prediction error subject to the constraint that the model is not too complex, and lasso
measures complexity by the sum of the absolute values of the coefficients. Covariates with small
coefficients tend to be entrapped by the constraint. Small coefficients of covariates that belong in
the model look just like small coefficients of variables that do not. Mistakenly omitted covariates,
even those with small coefficients, can bias other coefficients. That bias is not solely a function of
the size of the coefficient. See, for instance, Leeb and Pötscher (2005, 2006, 2008) and Belloni,
Chernozhukov, and Hansen (2014).

And then there are more mundane reasons the selected variables can differ from the true variables.
Imagine that you have fit a lasso model. You look at the results and observe that region-of-country
covariates are included. You are surprised because you can think of no reason why they should be
and wonder whether you are about to make an interesting discovery. You look at the lasso results in
hopes of finding an explanation. You discover that income was excluded despite your expectations
to the contrary. You find that age and education were included, but that does not surprise you. But
region, age, and education are predictors of income. That could be the entire reason why region
covariates were included. They were included only because income was excluded. Or it could be
something deeper.

In general, the variables selected by lasso do not even converge to the ones in the true model as the
number of observations goes to infinity. Lasso tends to omit covariates that have small coefficients
in favor of irrelevant ones (variables not in the true model) that are correlated with the error term.

For these reasons, we must use lasso-based methods that are designed specifically for inference
when we want to interpret coefficients.

Methods of lasso for inference

With lasso inferential methods, researchers wish to interpret the covariates selected by lasso in the
context of the DGP. They apply causal interpretations to the results. This approach accounts for the fact
that lasso does not select the true model with probability one, and it accounts for the errors that arise
in model selection. To achieve this DGP causal interpretation, you must perform the selection process
with resampling. Thus, more than split sampling is needed to obtain consistent standard errors. See
Belloni, Chernozhukov, and Hansen (2014) for an excellent introduction to using lasso to perform
inference and make causal interpretations.

When your interest is in the underlying DGP, there are various ways of using lasso to estimate
the effects of a few covariates that you have chosen a priori. These methods may be used when you
know there are more covariates in the model and that they are sparse (relative to N ). These methods



8 Lasso intro — Introduction to lasso

apply, for instance, to performing inference about the effect of smoking on a health outcome when
you know that lots of other variables potentially affect the outcome but do not know which ones.

The double-selection, partialing-out, and cross-fit partialing-out lassos provided by Stata can handle
such problems.

Other methods for inference have been discussed in the literature. For instance, see van de Geer
et al. (2014), Javanmard and Montanari (2014), and Zhang and Zhang (2014). The methods developed
there are not implemented in Stata. While they have some appealing theoretical properties, they have
not yet been much used in applied work.

Stata commands for inference

For inference, multistage extensions of lasso provide standard errors for a subset of variables that
you specify. Imagine that you wish to estimate the coefficients for d1 and d2 in the model that
includes other covariates:

. regress y d1 d2 x1-x500

Covariates x1 through x500 are control variables, some of which you need to include to obtain valid
results for d1 and d2. Suppose your data contain 1,000 observations.

If all 500 covariates belong in the model, there is no way to proceed. Get more data. If only a
small subset of them is required and you simply do not know which they are, there is a lasso-based
solution. Type

. dsregress y d1 d2, controls(x1-x500)

Coefficients and standard errors for d1 and d2 will be reported. dsregress will use lasso to select
from the 500 covariates and do that in a way that is robust to the model-selection mistakes that lasso
makes because of sampling variability. There is no a priori limit on the number of d variables you
can specify. But more variables mean more computation time. Time is roughly proportional to the
number of d variables.

Stata provides three methods to fit these types of inferential models. They are

1. the ds double-selection commands: dsregress, dslogit, and dspoisson.

2. the po partialing-out commands: poregress, pologit, popoisson, and poivregress.

3. the xpo cross-fit partialing-out commands, also known as double machine learning:
xporegress, xpologit, xpopoisson, and xpoivregress.

All three methods require a sparsity assumption. As with lasso for prediction, these methods of
lasso for inference rely on the assumption that the number of nonzero coefficients in the true model
is small relative to the number of observations and that the coefficients are large enough relative to
error variance to be selected by the lasso.

ds and po are asymptotically equivalent. poivregress can handle d1 and d2 being endogenous
in linear models. It does this using instrumental variables. You specify a set of potential instruments,
and lasso will select from among them. You can have many potential control variables and many
potential instruments; the number of each can be greater than N .

xpo is the most computationally intensive of the three methods. It is also generally viewed as
superior to ds and po because it allows a weaker definition of sparsity. The sparsity bound for the
ds and po methods grows in proportion to

√
N , while the sparsity bound for the xpo method grows

in proportion to N .
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For information on the assumptions and how the ds, po, and xpo commands work, see [LASSO] Lasso
inference intro and [LASSO] Inference requirements.

For examples of fitting lasso inferential models, see [LASSO] Inference examples.

Where to learn more
After reading this intro, you may want to learn more about lasso for prediction and model selection,

lasso for inference, and syntax for lasso commands, or you may just want to see some examples.
Here we provide a guide to the entries in this manual that you may want to read next.

If you are interested in lasso for prediction or model selection, you may want to go directly to the
syntax and examples demonstrating lasso, square-root lasso, and elastic net in

[LASSO] lasso Lasso for prediction and model selection
[LASSO] sqrtlasso Square-root lasso for prediction and model selection
[LASSO] elasticnet Elastic net for prediction and model selection
[LASSO] lasso examples Examples of lasso for prediction

If you are interested in lasso for inference, you can read more about the concepts, methods, and
corresponding Stata commands in

[LASSO] Lasso inference intro Introduction to inferential lasso models

If you want to see syntax for one of the lassos for inference commands, see

[LASSO] dsregress Double-selection lasso linear regression
[LASSO] dslogit Double-selection lasso logistic regression
[LASSO] dspoisson Double-selection lasso Poisson regression
[LASSO] poregress Partialing-out lasso linear regression
[LASSO] pologit Partialing-out lasso logistic regression
[LASSO] popoisson Partialing-out lasso Poisson regression
[LASSO] poivregress Partialing-out lasso instrumental-variables regression
[LASSO] xporegress Cross-fit partialing-out lasso linear regression
[LASSO] xpologit Cross-fit partialing-out lasso logistic regression
[LASSO] xpopoisson Cross-fit partialing-out lasso Poisson regression
[LASSO] xpoivregress Cross-fit partialing-out lasso instrumental-variables regression
[LASSO] lasso options Lasso options for inferential models

You might instead want to start with worked examples that demonstrate the lasso inference
commands.

[LASSO] Inference examples Examples and workflow for inference

If your inference involves estimating treatment effects, you can read about the lasso inference
command that estimates the ATE, ATET, or POMs at

[CAUSAL] telasso Treatment-effects estimation using lasso

Whether you are using lasso for prediction or for inference, you may want to learn more about
the process of fitting lasso models and how you can make modifications to this process.

[LASSO] lasso fitting The process (in a nutshell) of fitting lasso models

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassoinferencerequirements.pdf#lassoInferencerequirements
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamples
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlasso
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
https://www.stata.com/manuals/lassodslogit.pdf#lassodslogit
https://www.stata.com/manuals/lassodspoisson.pdf#lassodspoisson
https://www.stata.com/manuals/lassoporegress.pdf#lassoporegress
https://www.stata.com/manuals/lassopologit.pdf#lassopologit
https://www.stata.com/manuals/lassopopoisson.pdf#lassopopoisson
https://www.stata.com/manuals/lassopoivregress.pdf#lassopoivregress
https://www.stata.com/manuals/lassoxporegress.pdf#lassoxporegress
https://www.stata.com/manuals/lassoxpologit.pdf#lassoxpologit
https://www.stata.com/manuals/lassoxpopoisson.pdf#lassoxpopoisson
https://www.stata.com/manuals/lassoxpoivregress.pdf#lassoxpoivregress
https://www.stata.com/manuals/lassolassooptions.pdf#lassolassooptions
https://www.stata.com/manuals/lassoinferenceexamples.pdf#lassoInferenceexamples
https://www.stata.com/manuals/causaltelasso.pdf#causaltelasso
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
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