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Description
After fitting a DSGE model, we often perform tests of structural parameters, and these tests often

place nonlinear restrictions on the parameters. The values and rejection rates of a Wald test for
different nonlinear expressions of the same null hypothesis are different. We illustrate this issue, show
that likelihood-ratio (LR) tests do not have this problem, and illustrate that you can parameterize your
model in terms of invertible transforms of each parameter.

Remarks and examples stata.com

Remarks are presented under the following headings:

Wald tests vary with nonlinear transforms
LR tests do not vary with nonlinear transforms

Wald tests vary with nonlinear transforms

Performing a statistical test of whether a structural parameter in a DSGE has a specific value is one
of the most frequent forms of inference after dsge and dsgenl estimation. The null hypothesis in
one of these tests frequently places nonlinear restrictions on the underlying parameters. Two different
nonlinear expressions of the same null hypothesis produce different Wald test statistics in finite
samples and have different rejection rates. In other words, the Wald test is not invariant to nonlinear
transforms of the null hypothesis. The LR test, on the other hand, is invariant to nonlinear transforms
of the null hypothesis.

Example 1: Different values from logically equivalent Wald tests

Equations (1)–(5) specify how the observed control variable inflation pt, the unobserved control
variable output growth yt, and the observed control variable (interest rate) rt depend on the states zt
and ut, given the shocks εt and ξt.

pt = βEt(pt+1) + κyt (1)

yt = Et(yt+1)− {rt − Et(pt+1)− ρzt} (2)

rt = (1/β)pt + ut (3)

zt+1 = ρzt + εt+1 (4)

ut+1 = δut + ξt+1 (5)
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We estimate the parameters of this model using the macroeconomic data for the United States in
usmacro2.dta.

. use https://www.stata-press.com/data/r18/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)

. dsge (p = {beta}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - {rhoz}*z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rhou}*u, state)
> (F.z = {rhoz}*z, state)
(setting technique to bfgs)
Iteration 0: Log likelihood = -146218.64
Iteration 1: Log likelihood = -5532.4212 (backed up)
Iteration 2: Log likelihood = -1067.4665 (backed up)
Iteration 3: Log likelihood = -938.92415 (backed up)
Iteration 4: Log likelihood = -885.96401 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -880.81743 (not concave)
Iteration 6: Log likelihood = -818.95369
Iteration 7: Log likelihood = -787.30327
Iteration 8: Log likelihood = -754.54306
Iteration 9: Log likelihood = -753.62794
Iteration 10: Log likelihood = -753.57273
Iteration 11: Log likelihood = -753.57131
Iteration 12: Log likelihood = -753.57131

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.57131

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5146674 .0783489 6.57 0.000 .3611065 .6682283

kappa .1659057 .0474074 3.50 0.000 .072989 .2588224
rhoz .9545256 .0186424 51.20 0.000 .9179872 .991064
rhou .7005482 .0452604 15.48 0.000 .6118394 .789257

sd(e.u) 2.318202 .3047435 1.720916 2.915489
sd(e.z) .6507117 .1123844 .4304423 .8709811

The interest rate equation shown in (3) links the nominal interest rate to the inflation rate. The
coefficient on inflation is 1/β. We test whether this parameter is 1.5, a common benchmark value in
the literature.

. testnl 1/_b[beta] = 1.5

(1) 1/_b[beta] = 1.5

chi2(1) = 2.24
Prob > chi2 = 0.1342

We do not reject the null hypothesis that 1/β is 1.5.
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If we test the logically equivalent hypothesis that β = 2/3, the statistic and p-value change.

. test _b[beta] =2/3

( 1) [/structural]beta = .6666667

chi2( 1) = 3.76
Prob > chi2 = 0.0524

The values of these two logically equivalent Wald tests differ because Wald tests are not invariant
to nonlinear transformation. This issue is well known in the literature; see Gregory and Veall (1985)
and Phillips and Park (1988) for details. In this example, the inference of failing to reject the null
hypothesis remains the same when using a 5% significance level, but this is not true in general.
Different formulations of Wald tests can lead to different inferences.

LR tests do not vary with nonlinear transforms

Example 2: LR tests are invariant to nonlinear transforms

We illustrate this feature by performing LR tests that β = 2/3 and that 1/β = 1.5. The cur-
rent estimates are those of the unconstrained model. We repeat these results and store them as
unconstrained.

. dsge

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.57131

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .5146674 .0783489 6.57 0.000 .3611065 .6682283

kappa .1659057 .0474074 3.50 0.000 .072989 .2588224
rhoz .9545256 .0186424 51.20 0.000 .9179872 .991064
rhou .7005482 .0452604 15.48 0.000 .6118394 .789257

sd(e.u) 2.318202 .3047435 1.720916 2.915489
sd(e.z) .6507117 .1123844 .4304423 .8709811

. estimates store unconstrained
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Now, we estimate the parameters of the constrained model in which β = 2/3, store the results as
constrained, and perform an LR test of the null hypothesis that β = 2/3.

. constraint 1 _b[beta] = 2/3

. dsge (p = {beta}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - {rhoz}*z), unobserved)
> (r = (1/{beta})*p + u)
> (F.u = {rhou}*u, state)
> (F.z = {rhoz}*z, state),
> constraint(1)
(setting technique to bfgs)
Iteration 0: Log likelihood = -119695.1
Iteration 1: Log likelihood = -1425.592 (backed up)
Iteration 2: Log likelihood = -984.57609 (backed up)
Iteration 3: Log likelihood = -948.41524 (backed up)
Iteration 4: Log likelihood = -945.83724 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -945.06881 (backed up)
Iteration 6: Log likelihood = -760.71545
Iteration 7: Log likelihood = -755.52634
Iteration 8: Log likelihood = -755.11897
Iteration 9: Log likelihood = -755.11007
Iteration 10: Log likelihood = -755.11003

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -755.11003
( 1) [/structural]beta = .6666667

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .6666667 (constrained)

kappa .1076811 .0276892 3.89 0.000 .0534113 .1619509
rhoz .9538522 .0187789 50.79 0.000 .9170462 .9906581
rhou .7214328 .0439669 16.41 0.000 .6352593 .8076063

sd(e.u) 1.915459 .0867103 1.74551 2.085408
sd(e.z) .4936797 .080513 .3358771 .6514822

. estimates store constrained

. lrtest unconstrained constrained

Likelihood-ratio test
Assumption: constrained nested within unconstrained

LR chi2(1) = 3.08
Prob > chi2 = 0.0794

Note that the value of the LR statistic is 3.08. We now illustrate an LR of the null hypothesis that
1/β = 1.5 produces the same value.

We cannot impose nonlinear restrictions on parameters, so we must begin by reparameterizing
the unconstrained model by replacing {beta} with 1/{beta}. To avoid having {beta} mean two
different things, we write the model in terms of {gamma}=1/{beta} and estimate the parameters:
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. dsge (p = 1/{gamma}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - {rhoz}*z), unobserved)
> (r = ({gamma})*p + u)
> (F.u = {rhou}*u, state)
> (F.z = {rhoz}*z, state),
> from(gamma=2 kappa=0.15 rhou=0.75 rhoz=0.95)
(setting technique to bfgs)
Iteration 0: Log likelihood = -1137.8808
Iteration 1: Log likelihood = -1097.9283 (backed up)
Iteration 2: Log likelihood = -1027.9554 (backed up)
Iteration 3: Log likelihood = -801.19555 (backed up)
Iteration 4: Log likelihood = -784.48041 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -763.19407 (not concave)
Iteration 6: Log likelihood = -754.49971 (not concave)
Iteration 7: Log likelihood = -754.08362
Iteration 8: Log likelihood = -753.57362
Iteration 9: Log likelihood = -753.57131
Iteration 10: Log likelihood = -753.57131

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -753.57131

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
gamma 1.943005 .2957867 6.57 0.000 1.363273 2.522736
kappa .1659061 .0474073 3.50 0.000 .0729895 .2588226
rhoz .9545256 .0186424 51.20 0.000 .9179872 .991064
rhou .7005481 .0452604 15.48 0.000 .6118393 .7892568

sd(e.u) 2.318205 .3047433 1.720919 2.915491
sd(e.z) .6507124 .1123842 .4304434 .8709813

. estimates store unconstrained2

The estimates of the parameters other than gamma and the value of the log likelihood are nearly
the same as those for the unconstrained model. The value for gamma = 1.94 is the same as
1/beta = 1/0.514 = 1.95. By tightening the convergence tolerance, we could make these values
exactly the same. These values are nearly the same because this example is an instance of a general
property of maximum likelihood estimators. Transforming a parameter by an invertible function does
not change the log likelihood or the other parameter estimates. In other words, maximum likelihood
estimators are invariant to invertible transformations of the parameters; see Casella and Berger (2002,
319) for details.
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Having stored the estimates from the unconstrained model, we now estimate the parameters of the
constrained model and store these results in constrained2.

. constraint 2 _b[gamma] = 1.5

. dsge (p = 1/{gamma}*F.p + {kappa}*y)
> (y = F.y - (r - F.p - {rhoz}*z), unobserved)
> (r = ({gamma})*p + u)
> (F.u = {rhou}*u, state)
> (F.z = {rhoz}*z, state),
> constraint(2)
(setting technique to bfgs)
Iteration 0: Log likelihood = -119695.1
Iteration 1: Log likelihood = -1425.592 (backed up)
Iteration 2: Log likelihood = -984.57609 (backed up)
Iteration 3: Log likelihood = -948.41524 (backed up)
Iteration 4: Log likelihood = -945.83724 (backed up)
(switching technique to nr)
Iteration 5: Log likelihood = -945.06881 (backed up)
Iteration 6: Log likelihood = -760.71545
Iteration 7: Log likelihood = -755.52634
Iteration 8: Log likelihood = -755.11897
Iteration 9: Log likelihood = -755.11007
Iteration 10: Log likelihood = -755.11003

DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -755.11003
( 1) [/structural]gamma = 1.5

Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
gamma 1.5 (constrained)
kappa .1076811 .0276892 3.89 0.000 .0534113 .1619509
rhoz .9538522 .0187789 50.79 0.000 .9170462 .9906581
rhou .7214328 .0439669 16.41 0.000 .6352593 .8076063

sd(e.u) 1.915459 .0867103 1.74551 2.085408
sd(e.z) .4936797 .080513 .3358771 .6514822

. estimates store constrained2

The estimates of the parameters other than gamma and the value of the log likelihood are the same
as those for the constrained model. This is another instance of the invariance of the maximum
likelihood estimator to invertible transformations of the parameters.

Having stored the log likelihoods from the constrained and unconstrained model, we now perform
an LR of the null hypothesis that γ = 1.5.

. lrtest unconstrained2 constrained2

Likelihood-ratio test
Assumption: constrained2 nested within unconstrained2

LR chi2(1) = 3.08
Prob > chi2 = 0.0794

The LR test statistic and its p-value are the same as those reported for the test against the null
hypothesis that β = 2/3, which illustrates that LR tests are invariant to nonlinear transforms.
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